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Abstract: Methods are developed for eliciting a Dirichlet prior based upon stating bounds on the
individual probabilities that hold with high prior probability. This approach to selecting a prior is
applied to a contingency table problem where it is demonstrated how to assess the prior with respect
to the bias it induces as well as how to check for prior-data conflict. It is shown that the assessment
of a hypothesis via relative belief can easily take into account what it means for the falsity of the
hypothesis to correspond to a difference of practical importance and provide evidence in favor of
a hypothesis.
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1. Introduction

Perhaps the most basic statistical model is the multinomial (n, p1, . . . , pk) where n ∈ ℵ,
(p1, . . . , pk) ∈ Sk = {(x1, . . . , xk) : xi ≥ 0 and x1 + · · ·+ xk = 1}, Sk is the (k− 1)-dimensional simplex
and (p1, . . . , pk) is unknown. This arises from an i.i.d. sample from the multinomial(1, p1, . . . , pk)

distribution. The goal is then inference about the unknown value of (p1, . . . , pk).
Bayesian inference requires a prior and the Dirichlet(α1, . . . , αk), for some choice of

hyperparameters α1, . . . , αk ≥ 0, is a convenient choice due to its conjugacy. The prior density
is of the form π(p1, . . . , pk) = d(α1, . . . , αk)pα1−1

1 · · · pαk−1
k where d(α1, . . . , αk) = Γ(α1 + · · · +

αk)/Γ(α1) · · · Γ(αk) for (p1, . . . , pk) ∈ Sk. To employ such a prior it is necessary to have an elicitation
algorithm to determine the hyperparameters. The purpose of this paper is to develop a particular
algorithm based on bounds on the probabilities; to show how the chosen prior can be assessed with
respect to the bias that it induces; to demonstrate how to check whether or not the prior conflicts with
the data; to show how to modify the prior when such a conflict is encountered; and to implement
inferences using the prior based on a measure of statistical evidence.

A key component of a Bayesian statistical analysis is the choice of the prior. This paper is
concerned with the choice of a proper prior for a statistical analysis. It is generally acknowledged that
the correct way to do this is through a process of elicitation where knowledgeable experts translate
what is known about an application into the choice of a probability distribution reflecting beliefs about
the unknown values of certain quantities. This is in contrast to the use of rules for the choice of default
priors which are supposedly objective, such as the use of the principle of insufficient reason or the use
of a Jeffreys prior. In fact, such default priors are also subjectively chosen as there appears to be no
universal rule for this purpose and the specific rule itself needs to be chosen. In addition, these rules
sometimes produce priors with characteristics that imply very specific beliefs, such as the Jeffreys prior
for the multinomial which is a Dirichlet with all hyperparameters equal to 1/2. In essence, elicitation is
honest about the subjectivity inherent in the choice of the prior and provides an argument for why
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the choice was made. In the context of the Dirichlet this knowledge will take the form of how likely
a success is expected on each of the k categories being counted. Discussions about the process of
elicitation for general problems can be found in [1,2].

In Section 2, current methods for eliciting a Dirichlet prior are reviewed and a new method
is developed that possesses some advantages for situations where a weakly informative prior is
required. Perhaps the main difference between the elicitation algorithm developed here and those
already available in the literature, is that the user is required to state a lower or upper bound on each
probability that they are virtually certain holds. Thus, a user knows that a cell probability must be
smaller than some upper bound or knows that a probability must be larger than some lower bound.
Rather than stating that such bounds hold categorically, the bound is believed to hold with a large
prior probability, hence the terminology "virtual certainty". This follows good practice as the support
of the prior is still the whole simplex and so does not rule out any values as being impossible. Note that
the lower bound of 0 and the upper bound of 1 on a probability always hold with absolute certainty,
so there is no concern that such bounds cannot be provided, but in many cases much tighter bounds
will be applicable. One of the primary contributions of this paper is show how these bounds can be
chosen consistently in the sense that they determine a Dirichlet prior and to develop an algorithm
for obtaining this prior. In addition, it is shown in an example that this approach lends itself very
naturally to determining a prior for the testing of independence. It is to be noted, however, that no
elicitation methodology can be viewed as the correct approach and the existence of many approaches
can only help to encourage the broad and effective use of priors. Thus, for a particular problem another
elicitation algorithm, such as one among those reviewed in Section 2, may be felt to be more suitable.

A prior chosen via elicitation is proper. This allows for criticism of the prior in light of the
observed data, namely, an assessment for prior-data conflict. If a prior is found to be in conflict with
the data then, unless there is so much data that the effect of the prior is negligible, it is necessary to
modify the prior to avoid this. These issues are discussed in Section 3.2.

In addition one has to be concerned about whether or not the choice of the prior results in bias.
In fact, the issue of bias could be considered one of the main reasons for doubts being expressed about
the appropriateness of Bayesian methodology. To precisely define bias it seems necessary to formulate
a measure of evidence and here we use the relative belief ratio which is the ratio of the posterior to the
prior as this measures change in belief from a priori to a posteriori. The assessment of bias in the prior,
using this measure of evidence, is addressed in Section 3.1.

All inferences are derived from the relative belief ratio. Such inferences are invariant under
1-1 increasing functions of the relative belief ratio (as well as being invariant under smooth
reparameterizations) and so the measure of evidence can equivalently be defined as the log of the
relative belief ratio. It is then immediate that the expected evidence under the posterior is the relative
entropy between the posterior and prior. In essence the relative entropy is a kind of average evidence
and the log of the relative belief ratio at a specific parameter value is playing the role of the bit in
the definition of entropy. It is to be noted, however, that for inference the concern is with measuring
evidence, either in favor of or against a specific value, and not with the measurement of the more
abstract concept of information. As such, there is an intimate connection between the concepts of
entropy, evidence and relative belief inferences. Our purpose here, however, is not to consider this
connection but discuss a methodology for choosing a prior for one of the most basic statistical problems,
demonstrate how the chosen prior is to be assessed for conflict with data and for bias and then used for
the derivation of inferences. Relative belief inferences for the multinomial are discussed in Section 4.

This presents a full treatment of a statistical analysis for the multinomial, although it is assumed
that the multinomial model is correct. Strictly speaking, provided the data are available, it should also
be checked that the initial sample is i.i.d. from a multinomial(1, p1, . . . , pk) distribution, perhaps using
a multivariate version of a runs test, but this is not addressed here.

Throughout the paper, Π denotes the prior probability measure on the full model parameter θ,
which in the case of the multinomial is the vector of cell probabilities, and π denotes its density.
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Dependence of Π on hyperparameters is indicated by subscripts, such as Π(α1,...,αk)
denoting

the Dirichlet(α1, . . . , αk) distribution. When a particular prior Π is referenced and interest is in the
marginal prior of some function ψ = Ψ(θ), then ΠΨ is used for the marginal prior measure of ψ with
corresponding density πΨ. In addition, M denotes the prior (predictive) probability measure of the
data induced by Π and the sampling model and m denotes the corresponding density.

The following example, taken from [3], is considered as a practical application of the methodology.

Example 1. Assessing independence.

Individuals were classified according to their blood type Y (O, A, B, and AB, although the AB individuals
were eliminated, as they were small in number) and also classified according to X, their disease status
(peptic ulcer = P, gastric cancer = G, or control = C). Thus, there are three populations; namely, those
suffering from a peptic ulcer, those suffering from gastric cancer, and those suffering from neither, and it is
assumed that the individuals involved in the study can be considered as random samples from the respective
populations. The data are in Table 1 and the goal is to determine whether or not X and Y are independent. Thus,
the counts are assumed to be multinomial(8766, p11, p12, p13, p21, p22, p23, p31, p32, p33) where the first index
refers to X and the second to Y and with a relabelling of the categories, e.g., X = G is relabeled as X = 2.

Table 1. The data in Example 1.

Y = O Y = A Y = B Total

X = P 983 679 134 1796
X = G 383 416 84 883
X = C 2892 2625 570 6087
Total 4258 3720 788 8766

Using the chi-squared test, the null hypothesis of no relationship is rejected with a value of the chi-squared
statistic of 40.54 and a p-value of 0.0000. Table 2 gives the estimated cell probabilities based on the full
multinomial as well as the estimated cell probabilities based on independence between X and Y. The difference
between the two tables is very small and of questionable practical significance. For example, the largest
difference between corresponding cells is 0.012 and, as a natural measure of difference between two distributions,
the estimated Kullback-Leibler divergence, based on the raw data, is estimated as 0.002. This suggests that in
reality the deviation from independence is not meaningful. The cure for this is that, in assessing any hypothesis,
it is necessary to say what size of deviation δ from the null is of practical significance and take this into account
when performing the test. This arises as a natural aspect of the relative belief approach to this problem and will
be discussed in Sections 3 and 4 it is shown that a very different conclusion is reached in this example.

Table 2. The estimated cell probabilities in Example 1 based on the full and independence models.

Full Y = O Y = A Y = B Ind. Y = O Y = A Y = B

X = P 0.112 0.077 0.015 X = P 0.100 0.087 0.018
X = G 0.043 0.047 0.009 X = G 0.049 0.043 0.009
X = C 0.330 0.299 0.065 X = C 0.337 0.295 0.062

2. Elicitation

The problem of eliciting a Dirichlet prior is simplest when k = 2 and this corresponds to a beta
distribution. Since this simple case contains the essence of the approach to elicitation for the Dirichlet
presented here, this is considered first.
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2.1. Eliciting a Beta Prior

Consider first the situation where k = 2 and the prior Πα1,α2 on p1 is beta(α1, α2). Suppose it is
known with “virtual certainty” that l1 ≤ p1 ≤ u1 where l1, u1 ∈ [0, 1] are known. This immediately
implies that 1− u1 ≤ p2 = 1− p1 ≤ 1− l1 with virtual certainty. Here "virtual certainty" is interpreted
to mean that the true value of p1 is in the interval [l1, u1] with high prior probability γ, say γ = 0.99.
Thus, this restricts the prior to those values of (α1, α2) satisfying Πα1,α2([l1, u1]) = γ. Note that in
general there may be several values of (α1, α2) that satisfy this equality. For example, if l1 = 1/2− a
and u1 = 1/2 + a with a > 0, then Πα,1([l1, u1]) = Π1,α([l1, u1]) for all α. To completely determine
(α1, α2) another condition is added, namely, it is required that the mode of the prior be at the point
ξ ∈ [l1, u1] as this allows the placement of the primary amount of the prior mass at an appropriate place
within [l1, u1]. For example, a natural choice of the mode in this context is ξ = (l1 + u1)/2, namely,
the midpoint of the interval. When α1, α2 ≥ 1 the mode of the beta(α1, α2) occurs at ξ = (α1 − 1)/τ

where τ = α1 + α2 − 2. There is thus a 1-1 correspondence between the values (α1, α2) and (ξ, τ) given
by α1 = 1 + τξ, α2 = 1 + τ(1− ξ). Hereafter, we restrict to the case αi ≥ 1 to avoid singularities on
the boundary as these seem difficult to justify a priori. Therefore, after specifying the mode, only the
scaling of the beta prior is required through the choice of τ. Now if X ∼ beta(1 + τξ, 1 + τ(1− ξ)),
then E(X) = (1 + τξ)/(2 + τ) → ξ and Var(X) = (1 + τξ)(1 + τ(1− ξ))/(2 + τ)2(3 + τ) → 0, as
τ → ∞, which establishes that Π1+τξ,1+τ(1−ξ)([l1, u1])→ 1 as τ → ∞. Thus, the following result has
been proven since Π1,1([l1, u1]) = u1 − l1.

Theorem 1. For 0 ≤ l1 < u1 ≤ 1, γ ∈ (0, 1) and ξ ∈ [l1, u1], then the beta(1 + τξ, 1 + τ(1 − ξ))

distribution has its mode at ξ and whenever u1 − l1 ≤ γ, there is a value τ ∈ [0, ∞) such that there is exactly γ

of the probability in [l1, u1].

While the theorem establishes the existence of a value τ satisfying the requisite equation, it does
not establish that this value is unique. Although uniqueness is not necessary for the methodology,
based on examples and intuition, it seems very likely that Π1+τξ,1+τ(1−ξ)([l1, u1]) is a monotone
increasing function of τ which would imply that the τ in Theorem 1 is in fact unique. In any case, τ can
be computed by choosing τ0 = 0, finding a value τ∗ such that Π1+τ∗ξ,1+τ∗(1−ξ)([l1, u1]) > γ and then
obtaining τ ∈ [τ0, τ∗] satisfying the equality via the bisection root finding algorithm. This procedure is
guaranteed to converge by the intermediate value theorem.

Example 2. Determining a beta prior.

Suppose that [l1, u1] = (0.25, 0.75), ξ = 0.5 and γ = 0.99. The solution obtained via the iterative
algorithm is then τ = 22.0 where the iteration is stopped when |Π1+τiξ,1+τi(1−ξ)([l1, u1]) − γ| ≤ 0.005.
This took seven iterations, the prior is given by (α1, α2) = (12.0, 12.0) and [l1, u1] contains 0.993 of the
prior probability. If instead of 0.005 the error tolerance for stopping was set equal to 0.001, then the solution
τ = 22.04 and (α1, α2) = (12.02, 12.02) was obtained after 20 iterations with [l1, u1] containing 0.990 of the
prior probability.

If u1− l1 > γ, then Π1,1([l1, u1]) > γ and virtual certainty for [l1, u1] is obtained by (α1, α2) = (1, 1).
The concept of “virtual certainty” is interpreted as something being true “with high probability”

and choosing γ close to 1 reflects this. For example, in rolling an apparently symmetrical die the
analyst may be quite certain that the probability pi of observing i pips is a least 1/8 and wants the
prior to reflect this. In effect, the goal is to ensure that the prior concentrates its mass in the region
satisfying these inequalities and choosing γ large accomplishes this. Actually, it is not necessary that
exact equality is obtained to ensure virtual certainty. As long as γ is close to 1, then small changes in
γ will not lead to big changes in the prior as in Example 2 where it is seen that choosing γ = 0.993
rather than γ = 0.990 makes very little difference in the prior. Specifying probabilities beyond 2 or 3
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decimal places seems impractical in most applications so taking γ in the range [0.990, 0.999] seems quite
satisfactory for characterizing virtual certainty while allowing some flexibility for the analyst. Far more
important than the choice of γ is the selection of what it is felt is known, for example, the bounds l1
and u1 on the probabilities for the beta prior, as mistakes can be made. Protection against a misleading
analysis caused by a poor choice of a prior is approached through checking for prior-data conflict and
modifying the prior appropriately when this is the case, as discussed in Section 3. It is also to be noted
that the methodology does not require γ to be large as the analyst may only be willing to say that
the bounds on the probabilities for the die hold with prior probability γ = 0.50. However, choosing
the bounds so that these are fairly weak constraints on the probabilities, and so almost certainly hold
as is reflected by choosing γ close to 1, seems like an easy way to be weakly informative.

2.2. Eliciting a Dirichlet Prior

The approach to eliciting a beta prior allows for a great deal of flexibility as to where
the prior allocates the bulk of its mass in [0, 1]. The question, however, is how to generalize this
to the Dirichlet(α1, . . . , αk) prior. As will be seen, it is necessary to be careful about how (α1, . . . , αk)

is elicited. Again, we make the restriction that each αi ≥ 1 to avoid singularities for the prior on
the boundary.

It seems quite natural to think about putting probabilistic bounds on the pi, such as requiring
li ≤ pi ≤ ui with high probability, for fixed constants li, ui, to reflect what is known with virtual
certainty about pi. For example, it may be known that pi is very small and so we put li = 0, choose ui
small and require that pi ≤ ui with prior probability at least γ. While placing bounds like this on the pi
seems reasonable, such an approach can result in a complicated shape for the region that is to contain
the true value of (p1, . . . , pk) with virtual certainty. This complexity can make the computations
associated with inference very difficult. In fact, it can be hard to determine exactly what the full
region is. As such, it seems better to use an elicitation method that fits well with the geometry of
the Dirichlet family. If it is felt that more is known a priori than a Dirichlet prior can express, then it
is appropriate to contemplate using some other family of priors, see, for example, Elfadaly and
Garthwaite [4,5]. Given the conjugacy property of Dirichlet priors and their common usage, the focus
here is on devising elicitation algorithms that work well with this family. First, however, we consider
elicitation approaches for this problem that have been presented in the literature.

Chaloner and Duncan [6] discuss an iterative elicitation algorithm based on specifying
characteristics of the prior predictive distribution of the data which is Dirichlet-multinomial. Regazzini
and Sazonov [7] discuss an elicitation algorithm which entails partitioning the simplex, prescribing
prior probabilities for each element of the partition and then selecting a mixture of Dirichlet
distributions such that this prior has Prohorov distance less than some ε > 0 from the true prior
associated with de Finetti’s representation theorem. Both of these approaches are complicated
to implement. Closest to the method presented here is that discussed in [8] where (α1, . . . , αk) is
specified by choosing i ∈ {1, . . . , k}, stating two prior quantiles (pγi1 , pγi2) where 0 < γi1 < γi2 < 1
for pi and specifying prior quantile pγj for pj for each j 6= i, k. Thus, there are k constraints that
the Dirichlet(α1, . . . , αk) has to satisfy and an algorithm is provided for computing (α1, . . . , αk).
Drawbacks include the fact that the pi are not treated symmetrically as there is a need to place two
constraints on one of the probabilities and pk is treated quite differently than the other probabilities.
In addition, precise quantiles need to be specified and values αi < 1 can be obtained which induce
singularities in the prior. Furthermore, it is not at all clear what these constraints say about the joint
prior on (p1, . . . , pk) as this elicitation does not take into account the dependencies that occur necessarily
among the pi. Zapata-Vázquez et al. [9] develop an elicitation algorithm based on eliciting beta
distributions for the individual probabilities and then constructing a Dirichlet prior that represents a
compromise among these marginals. Elfadaly and Garthwaite [4] determine a Dirichlet by eliciting the
first quartile, median and third quartile for the conditional distribution of pi | p1, . . . , pi−1 and finding
the beta distribution, rescaled by the factor 1− ∑i−1

j=1 pj, that best fits these quantiles. This requires
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the prescription of precise quantiles, an order in which to elicit the conditionals and an iterative
approach to reconcile the elicited conditional quantiles when these quantiles are not consistent with a
Dirichlet. A notable aspect of their approach is that it also works for the Connor-Mosimann distribution,
a generalization of the Dirichlet, and in that case no reconciliation is required. Similarly, Elfadaly and
Garthwaite [5] base the elicitation on the three quartiles of the marginal beta distributions of the pi
which, while independent of order, still requires reconciliation to ensure that the elicited marginals
correspond to a Dirichlet. In addition, the elicitation procedure based on the conditionals is extended
to develop an elicitation procedure for a more flexible prior based on a Gaussian copula.

The approach in this paper is based on the idea of placing bounds on the probabilities that hold
with virtual certainty and that are mutually consistent for any prior on Sk. The user need only check
that the bounds stated satisfy the conditions stated in the theorems to ensure consistency and these can
be very simple to check and modify appropriately. Rather than being required to state precise quantiles
or moments for the prior, all that is required are weak bounds on the probabilities. For example,
we might be willing to say that we are virtually certain that pi is greater than a value li. We consider
li a weak bound because there may be some belief that the true value is much greater than li but
being precise about how to express such beliefs is more difficult and requires more refined judgements.
Certainly elicitation methodology that requires more assessment than what is being required here
is even more open to concerns about robustness and other issues with the prior. As discussed in
Sections 3–5, such concerns are better addressed through considerations about prior-data conflict,
bias and using inference methods that are as robust to the prior as possible.

There are several versions depending on whether lower or upper bounds are placed on the pi.
We start with the situation where a lower bound is given for each pi as this provides the basic idea for
the others. Generally the elicitation process allows for a single lower or upper bound to be specified
for each pi. These bounds specify a subsimplex of the simplex Sk with all edges of the same length.
As will be seen, this implicitly takes into account the dependencies among the pi. With such a region
determined, it is straightforward to find (α1, . . . , αk) such that the subsimplex contains γ of the prior
probability for (p1, . . . , pk). It is worth noting that the bounds determined in Theorems 2–4 can be
applied to any family of priors on Sk and it is only in Section 2.2.4 where specific reference is made to
the Dirichlet.

Note that a (k− 1)-simplex can be specified by k distinct points in Rk, say a1, . . . , ak, and then
taking all convex combinations of these points. This simplex will be denoted as S(a1, . . . , ak) =

{∑k
i=1 ciai : ci ≥ 0 with c1 + · · · + ck = 1}. Thus, Sk = S(e1, . . . , ek), where ei is the i-th standard

basis vector of Rk, and it is clear that S(a1, . . . , ak) ⊂ Sk whenever a1, . . . , ak ∈ Sk. The centroid of
S(a1, . . . , ak) is equal to CS(a1, . . . , ak) = ∑k

i=1 ai/k.

2.2.1. Lower Bounds on the Probabilities

For this we ask for a set of lower bounds l1, . . . , lk ∈ [0, 1] such that li ≤ pi for i = 1, . . . , k. To make
sense, there is only one additional constraint that the li must satisfy, namely, L1:k = l1 + · · ·+ lk ≤ 1.
If L1:k = 1, then it is immediate that pi = li, otherwise p1 + · · ·+ pk > 1. Thus, the pi are completely
determined when L1:k = 1. Attention is thus restricted to the case where L1:k < 1. The following result
then holds.

Theorem 2. Specifying the lower bounds l1, . . . , lk ∈ [0, 1] such that li ≤ pi for i = 1, . . . , k and

L1:k < 1, (1)

prescribes S(a1, . . . , ak) ⊂ Sk where ai = (l1, . . . , li−1, ui, li+1, . . . , lk) and

ui = 1−∑
j 6=i

lj. (2)
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The edges of S(a1, . . . , ak) each have length
√

2(1− L1:k) and S(a1, . . . , ak) = {(p1, . . . , pk) : p1 + · · ·+ pk =

1, li ≤ pi ≤ ui, i = 1, . . . , k}.

Proof. Note that (1) implies that pi = 1−∑j 6=i pj ≤ 1−∑j 6=i lj = ui, and so stating the lower bounds
implies a set of upper bounds, and also li < ui ≤ 1. Consider now the set S = {(p1, . . . , pk) :
p1 + · · · + pk = 1, li ≤ pi ≤ ui, i = 1, . . . , k} and note that ai ∈ S for i = 1, . . . , k. For ci ≥ 0 with
c1 + · · ·+ ck = 1, then (p1, . . . , pk) = ∑k

i=1 ciai ∈ S since, for example, the first coordinate satisfies
p1 = c1u1 + (∑k

i=2 ci)l1 = c1u1 + (1− c1)l1 so l1 ≤ p1 ≤ u1. Therefore S(a1, . . . , ak) ⊂ S.
If (p1, . . . , pk) ∈ S, then pi = c∗i li + (1 − c∗i )ui where c∗i ∈ [0, 1]. Now 1 = p1 + · · · + pk =

∑k
i=1 c∗i li + ∑k

i=1(1− c∗i )ui = ∑k
i=1 c∗i li + ∑k

i=1(1− c∗i ) (li + 1− L1:k) = L1:k + {∑k
i=1(1− c∗i )} (1− L1:k)

and so ∑k
i=1(1− c∗i ) = 1. For (p1, . . . , pk) = ∑k

j=1(1− c∗j )aj we have pi = (∑j 6=i(1− c∗j ))li + (1−
c∗i )ui = c∗i li + (1− c∗i )ui. This proves that S ⊂ S(a1, . . . , ak) and so we have S(a1, . . . , ak) = S.

Finally note that ||ai − aj||2 = (ui − li)2 + (ui − lj)
2 = 2(1− L1:k)

2 and so S(a1, . . . , ak) has edges
all of the same length. This completes the proof.

It is relatively straightforward to ensure that the elicited bounds are consistent with a prior on
Sk. For, if it is determined that L1:k ≥ 1, then it is simply a matter of lowering some of the bounds to
ensure (1) is satisfied. For example, multiplying all the bounds by a common factor can do this and
lowered li means greater conservatism as it is a weaker bound. Furthermore, it is perfectly acceptable
to set some li = 0 as this does not affect the result.

2.2.2. Upper Bounds on the Probabilities

Of course, it may be that prior beliefs are instead expressed via upper bounds on the probabilities
or a mixture of upper and lower bounds. The case of all upper bounds is considered first. Our goal
is to specify the upper bounds in such a way that these lead unambiguously to lower bounds
l1, . . . , lk ∈ [0, 1] satisfying (1) and so to the simplex S(a1, . . . , ak).

Suppose then that we have the upper bounds u1, . . . , uk ∈ [0, 1] such that pi ≤ ui. It is clear
then that l1, . . . , lk must satisfy the system of linear equations given by (2) as well as 0 ≤ li ≤ ui for
i = 1, . . . , k and (1). Thus, the li must satisfy

u = 1k −


0 1 . . . 1
1 0 . . . 1
...

...
...

...
1 1 . . . 0

 l = 1k + (Ik − 1k1′k)l (3)

where 1k is the k-dimensional vector of 1’s and Ik is the k × k identity. Noting that
(Ik − 1k 1′k)

−1 = Ik − (k− 1)−11k1′k, it is immediate that

l = (Ik − (k− 1)−11k1′k)(u− 1k). (4)

Note that this requires that k ≥ 2 as is always the case.
Putting U1:k = ∑k

j=1 uj, then (4) implies L1:k = (k−U1:k)/(k− 1) and so 0 ≤ L1:k < 1 provided
U1:k satisfies

1 < U1:k ≤ k. (5)

From (4)

li = (ui − 1)− U1:k − k
k− 1

= ui +
1−U1:k

k− 1
(6)

and, for i = 1, . . . , k, this implies that li ≥ 0 iff

ui ≥
U1:k − 1

k− 1
. (7)
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In addition, when (5) is satisfied, then li < ui for i = 1, . . . , k. This completes the proof of the
following result.

Theorem 3. Specifying upper bounds u1, . . . , uk ∈ [0, 1], such that pi ≤ ui for i = 1, . . . , k,
satisfying inequalities (5) and (7), determines the lower bounds l1, . . . , lk, given by (6), which determine
the simplex S(a1, . . . , ak) defined in Theorem 2.

For this elicitation to be consistent with a prior on Sk it is necessary to make sure that the
upper bounds satisfy (5) and (7). If we take u1 = · · · = uk = u ≥ 1/k, then (5) is satisfied and
(k − 1)u ≥ ku− 1 implies that (7) is satisfied as well. If U1:k ≤ 1, then the ui need to be increased
which is conservative and note that U1:k ≤ k is true provided all the ui ≤ 1 which is always the case.
If (5) is satisfied but (7) is not for some i, then ui must be increased, which is again conservative,
and (5) is still satisfied. Thus, again, making sure the elicited bounds are consistent is straight-forward.
In addition, the bound ui = 1 is an acceptable choice.

2.2.3. Upper and Lower Bounds on the Probabilities

Now, perhaps after relabelling the probabilities, suppose that lower bounds 0 ≤ li ≤ pi for
i = 1, . . . , m as well as upper bounds pi ≤ ui ≤ 1 for i = m + 1, . . . , k, where 1 ≤ m < k, have been
provided. Again, it is required that L1:m = l1 + · · ·+ lm < 1 and we search for conditions on the ui that
complete the prescription of a full set of lower bounds l1, . . . , lk so that Theorem 2 applies. Again the
l and u vectors must satisfy (3). Let xr:s denote the subvector of x given by its consecutive r-th
through s-th coordinates and Xr:s the sum of these coordinates provided r ≤ s and be null otherwise.
The following equations hold

u1:m=1m + l1:m − L1:m1m − Lm+1:k1m

um+1:k=1k−m − L1:m1k−m + (Ik−m − 1k−m1′k−m)lm+1:k.

Rearranging these equations so the knowns are on the left and the unknowns are on the right gives

l1:m + (1− L1:m)1m = u1:m + Lm+1:k1m (8)

um+1:k − (1− L1:m)1k−m = (Ik−m − 1k−m1′k−m)lm+1:k. (9)

It follows from (9) that

lm+1:k = (Ik−m − 1k−m1′k−m)
−1[um+1:k − (1− L1:m)lk−m]

= (Ik−m − (k−m− 1)−11k−m1′k−m)[um+1:k − (1− L1:m)lk−m] (10)

and substituting this into (8) gives the solution for u1:m as well.
Thus, it is only necessary to determine what additional conditions have to be imposed on

the l1, . . . , lm, um, . . . , uk so that Theorem 2 applies. Note that it follows from (8) that u1:m takes
the correct form, as given by (2), so it is really only necessary to check that l is appropriate.

First it is noted that it is necessary that k−m > 1. The case k−m = 1 only occurs when m = k− 1
and then pk = 1− p1− · · · − pk−1 ≤ 1− l1− · · · − lk−1 which is the required value for uk for Theorem 2
to apply. Thus, when k−m = 1, there is no choice but to put uk = 1− l1 − · · · − lk−1 and choose a
lower bound for pk, which of course could be 0, which means that Theorem 2 applies. It is assumed
hereafter that k−m > 1.

Now L1:k = L1:m + Lm+1:k and the requirement 0 ≤ L1:k < 1 imposes the requirement
0 ≤ Lm+1:k < 1− L1:m. Using (10) gives
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Lm+1:k = 1′k−mlm+1:k =

(
1− k−m

k−m− 1

)
(Um+1:k − (k−m)(1− L1:m))

=
(k−m)(1− L1:m)−Um+1:k

k−m− 1

and therefore 0 ≤ Lm+1:k < 1− L1:m iff

1− L1:m < Um+1:k ≤ (k−m)(1− L1:m). (11)

It is seen that (11) generalizes (5) on taking m = 0. Now for i > m

li = ui − (1− L1:m)−
Um+1:k

k−m− 1
+

(k−m)(1− L1:m)

k−m− 1

= ui +
(1− L1:m)−Um+1:k

k−m− 1
(12)

thus, for i = m + 1, . . . , k, this implies that li ≥ 0 iff

ui ≥
Um+1:k − (1− L1:m)

k−m− 1
. (13)

Thus, (13) generalizes (5) on taking m = 0. In addition, if (11) is satisfied, then li ≤ ui for i =

m + 1, . . . , k.
The above argument establishes the following result.

Theorem 4. For m satisfying 1 ≤ m ≤ k− 2, specifying the bounds

(i) li ≤ pi with li ∈ [0, 1] for i = 1, . . . , m, satisfying L1:m < 1; and
(ii) ui ≥ pi with ui ∈ [0, 1] for i = m + 1, . . . , k, satisfying (11) and (13), determines the lower bounds

lm+1, . . . , lk, given by (12), which, together with l1, . . . , lm, determine the simplex S(a1, . . . , ak) defined in
Theorem 2.

Ensuring that the elicited bounds are consistent with a prior on Sk can proceed as follows.
First ensuring L1:m < 1 can be accomplished conservatively by lowering some of the li if necessary.
In addition, the inequality 1− L1:m < Um+1:k can be accomplished conservatively by raising some of
the ui if necessary. If Um+1:k > (k−m)(1− L1:m), then some of the ui need to be decreased or some
of the li need to be increased or a combination of both. Indeed setting a ui = 1 to be conservative,
so (13) is satisfied, may require lowering some of the lower bounds but again this is conservative.
Note that, if we assign the ui such that Um+1:k = (k−m)(1− L1:m), then (13) reduces to ui ≥ 1− L1:m
and the assignment ui = 1− L1:m ensures consistency although an alternative assignment can be made
such that Um+1:k = (k−m)(1− L1:m) holds.

The purpose of Theorems 2–4 is to ensure that the bounds selected for the individual probabilities
are consistent. It may be that an expert has a bound which they believe holds with virtual certainty but
the consistency requirements are violated. The solution to this problem is to decrease a lower bound or
increase an upper bound so that the requirements are satisfied. While this is not an entirely satisfactory
solution to this problem, it does not violate the prescription that the bounds hold with virtual certainty.
Furthermore, the lower bound of 0, or the upper bound of 1, is always available if a user feels they
have absolutely no idea how to choose such a bound.

2.2.4. Determining the Elicited Dirichlet Prior

Theorems 2–4 state bounds that are consistent for a prior on Sk. Thus, now it is necessary to
determine the Dirichlet(α1, . . . , αk) prior, denoted Π(α1,...,αk)

, such that Π(α1,...,αk)
(S(a1, . . . , ak)) = γ.

Again we pick a point ξ = (ξ1, . . . , ξk) ∈ S(a1, . . . , ak) and place the mode at ξ, so ξi = (αi − 1)/τ

for i = 1, . . . , k with τ = α1 + · · ·+ αk − k. For example, ξ = CS(a1, . . . , ak) would often seem like
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a sensible choice and then only τ needs to be determined. There is a 1-1 correspondence between
(α1, . . . , αk) and (ξ1, . . . , ξk, τ) given by αi = 1 + τξi.

Again it makes sense to proceed via an iterative algorithm to determine τ. Provided
Π(1,...,1)(S(a1, . . . , ak)) ≤ γ, set τ0 = 0 and find τ1 such that Π(1+τiξ1,...,1+τiξk)

(S(a1, . . . , ak)) ≥ γ.
As before set τ2 = (τ1 + τ0)/2 and then the algorithm proceeds via bisection. Determining
Π(1+τiξ1,...,1+τiξk)

(S(a1, . . . , ak)) at each step becomes problematical even for k = 3. In the approach
adopted here this probability content was estimated via a Monte Carlo sample from the relevant
Dirichlet. This is seen to work quite well as, in the case of determining a prior, high accuracy for
the computations is not required.

Consider an example.

Example 3. Determining a Dirichlet(α1, α2, α3, α4) prior.

Suppose that k = 4 and the lower bounds l1 = 0.2, l2 = 0.2, l3 = 0.3, l4 = 0.2 are placed on the
probabilities. This results in the bounds 0.2 ≤ p1 ≤ 0.3, 0.2 ≤ p2 ≤ 0.3, 0.3 ≤ p3 ≤ 0.4, and 0.2 ≤ p4 ≤ 0.3
which are reasonably tight. The mode was placed at the centroid ξ = (0.22, 0.22, 0.32, 0.22). For γ = 0.99,
an error tolerance of ε = 0.005 and a Monte Carlo sample of size of N = 103 at each step, the values τ = 2560
and (α1, α2, α3, α4) = (577.0, 577.0, 833.0, 577.0) were obtained after 13 iterations. The prior content of
S(a1, a2, a3, , a4) was estimated to be 0.989. If greater accuracy is required then N can be increased and/or
ε decreased.

This choice of lower bounds results in a fairly concentrated prior as is reflected in the plots of the marginals
in Figure 1. This concentration is not a defect of the elicitation as (2) indicates that it must occur when the sum
of the bounds is close to 1. Thus, the concentration is forced by the dependencies among the probabilities.
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Figure 1. Plots of the marginal densities determined when specifying the lower bounds l1 = 0.2,
l2 = 0.2, l3 = 0.3, l4 = 0.2 in Example 3.

Consider now another example.
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Example 4. Determining a Dirichlet (α1, α2, α3, α4, α5, α6, α7, α8, α9) prior.

Suppose that k = 9 and the lower bounds l1 = 0.02, l2 = 0.02, l3 = 0.0, l4 = 0.00, l5 = 0.00, l6 = 0.00,
l7 = 0.10, l8 = 0.10, , l9 = 0.00 are placed on the probabilities. This leads to the following bounds for
the probabilities.

0.02 ≤ p1 ≤ 0.78 0.02 ≤ p2 ≤ 0.78 0.00 ≤ p3 ≤ 0.76
0.00 ≤ p4 ≤ 0.76 0.00 ≤ p5 ≤ 0.76 0.00 ≤ p6 ≤ 0.76
0.10 ≤ p7 ≤ 0.86 0.10 ≤ p8 ≤ 0.86 0.00 ≤ p9 ≤ 0.76

The mode was placed at the centroid ξ = (0.1, 0.1, 0.08, 0.08, 0.08, 0.08, 0.18, 0.18, 0.08). For γ = 0.99,
an error tolerance of ε = 0.005 and a Monte Carlo sample of size of N = 103 at each step, the values τ = 96
and (α1, α2, α3, α4, α5, α6, α7, α8, α9) = (11.03, 11.03, 9.11, 9.11, 9.11, 9.11, 18.71, 18.71, 9.11) were obtained
after seven iterations. The prior content of S(a1, . . ., a9) was estimated to be 0.987. Figure 2 is a plot of the nine
marginal priors for the pi. Again, the dependencies among the pi make the marginal priors quite concentrated.
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Figure 2. Plot of the nine marginal priors in Example 4.

Example 1 (continued). Choosing the prior.

Given that we wish to assess independence, it is necessary that any elicited prior include independence as
a possibility so this is not ruled out a priori. A natural elicitation is to specify valid bounds (namely, bounds that
satisfy our theorems) on the pi· and the p·j and then use these to obtain bounds on the pij which in turn leads
to the prior. Thus, suppose valid bounds have been specified that lead to the lower bounds ai ≤ pi·, bj ≤ p·j.
Then it is necessary that lij = aibj is the lower bound on pij. Note that it is immediate that the lij satisfy the
conditions of Theorem 2 and from (2), pij ≤ 1−∑r,s lrs + lij = 1−∑r ar ∑s bs + aibj which is greater than
lij = aibj since 0 ≤ ∑r ar < 1 and 0 ≤ ∑s bs < 1. As such the region for the pij contains elements of H0.
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For this example, the lower bounds a1 = 0.1, a2 = 0.0, a3 = 0.5, b1 = 0.2, b2 = 0.2, b3 = 0.0 were chosen
which leads to the lower bounds

L =

 0.02 0.02 0.00
0.00 0.00 0.00
0.10 0.10 0.00


on the pij. Note that these are precisely the bounds used in Example 4 so the prior is as determined in that
example where the indexing is row-wise.

The software used in this paper to determine the prior from the bounds is available at
http://utstat.utoronto.ca/mikevans/software/Dirichlet/RDirichlet.html.

3. Assessing the Prior

Here, we specialize the developments discussed in [10,11] to the multinomial problem with a
Dirichlet prior. It is to be noted that the methods presented in this section for the assessment of a prior
are applicable to any prior and not just in the special circumstances discussed here.

Suppose a quantity ψ = Ψ(p1, . . . , pk) is of interest and there is a need to assess the hypothesis
H0 : Ψ(p1, . . . , pk) = ψ0. Let πΨ denote the prior density and πΨ(· | f1, . . . , fk) denote the posterior
density of Ψ, where ( f1, . . . , fk) gives the observed cell counts. When Ψ(p1, . . . , pk) = (p1, . . . , pk),
then πΨ is the Dirichlet(α1, . . . , αk) density and πΨ(· | f1, . . . , fk) is the Dirichlet(α1 + f1, . . . , αk + fk)

density. The relative belief ratio RBΨ(ψ0 | f1, . . . , fk) is defined as the limiting ratio of the posterior
probability of a set containing ψ0 to the prior probability of this set where the limit is taken as
the set converges (nicely) to the point ψ0. Whenever πΨ(ψ0) > 0 and πΨ is continuous at ψ0,
then RBΨ(ψ0 | f1, . . . , fk) = πΨ(ψ0 | f1, . . . , fk)/πΨ(ψ0). As such, RBΨ(ψ0 | f1, . . . , fk) is measuring how
beliefs about ψ0 have changed from a priori to a posteriori and is a measure of evidence concerning
H0. If RBΨ(ψ0 | f1, . . . , fk) > 1, then there is evidence that H0 is true, as belief in the truth of H0 has
increased, if RBΨ(ψ0 | f1, . . . , fk) < 1, then there is evidence that H0 is false, as belief in the truth of H0

has decreased and if RBΨ(ψ0 | f1, . . . , fk) = 1, then there is no evidence either way.
Any 1-1 increasing transformation of a relative belief ratio can also be used to measure evidence.

For example, log RBΨ(ψ0 | f1, . . . , fk) works just as well but now log RBΨ(ψ0 | f1, . . . , fk) > (<) 0
provides evidence for (against) H0. As mentioned in the Introduction, this establishes a connection
between relative belief and relative entropy. The Bayes factor is the ratio of the posterior odds to prior
odds and so is also a measure of change in belief and, as such, is a measure of evidence. When the prior
on ψ is discrete, the Bayes factor for the event {ψ0} equals RBΨ(ψ0 | f1, . . . , fk)/RBΨ({ψ0}c | f1, . . . , fk)

where {ψ0}c is the complement of {ψ0}. Thus, the Bayes factor can be expressed in terms of the relative
belief ratio but not conversely. Furthermore, it can be proved that when RBΨ(ψ0 | f1, . . . , fk) > (<) 1,
then RBΨ({ψ0}c | f1, . . . , fk) < (>) 1 which simply expresses the natural property that evidence for
{ψ0} is evidence against {ψ0}c and conversely. Thus, it is seen that the relative belief ratio is a more
fundamental measure of evidence and moreover the Bayes factor is not really comparing the evidence
for {ψ0} with the evidence for its negation. When the prior on ψ is continuous, the issue is more
complicated because of a common recommendation that such a prior be replaced by a mixture with
a point mass at ψ0 so that a Bayes factor can be defined. Alternatively, one could define the Bayes
factor at ψ0 in the continuous case as the limit of Bayes factors of shrinking sets as we have done for the
relative belief ratio. When this definition is used, the Bayes factor is identical to the relative belief ratio.
For these reasons, and a number of optimality properties proven for relative belief ratios, we adopt the
relative belief ratio as the basic measure of evidence. These issues and results are more fully discussed
in [11].

http://utstat.utoronto.ca/mikevans/software/Dirichlet/RDirichlet.html
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3.1. Assessing Bias in the Prior

Given that there is a measure of evidence for H0, it is possible to assess the bias in the prior with
respect to H0. For this let M(· |ψ0) denote the prior predictive distribution of ( f1, . . . , fk) given that
Ψ(p1, . . . , pk) = ψ0. The bias against H0 is assessed by

M(RBΨ(ψ0 | f1, . . . , fk) ≤ 1 |ψ0), (14)

the prior probability that evidence in favor of H0 will not be obtained when H0 is true. If (14) is large,
then there is bias in the prior against H0 and, as such, if evidence against H0 is obtained after seeing
the data, then this should have little impact. In essence the ingredients of the study are such that it is
not meaningful to find evidence against H0. To measure bias in favor of H0, let ψ∗ be a value of Ψ that
is just meaningfully different than ψ0. In other words, values ψ that differ from ψ0 less than ψ∗ does,
are not considered as practically different than ψ0. Then the bias in favor of H0 is measured by

M(RBΨ(ψ0 | f1, . . . , fk) ≥ 1 |ψ∗). (15)

If (15) is large, then there is bias in favor of H0 and if evidence in favor of H0.is obtained after seeing
the data, then this should have little impact. It is shown in [11] that both (14) and (15) converge to 0 as
n→ ∞. Thus, bias can be controlled by sample size.

The computation of (14) and (15) can be difficult in certain contexts with the primary issue being
the need to generate from the conditional prior predictives of the data. As in the following example,
however, great accuracy is typically not required for these computations and so effective methods
are available.

Example 1 (continued). Measuring bias and choosing δ.

To assess independence between X and Y, the marginal parameter

ψ = Ψ(p11, p12, . . . , pkl) = ∑
i,j

pij ln(pij/pi·p·j) (16)

is used. Note that (16) is the minimum Kullback-Leibler distance between the pij values and an element of H0.
Furthermore, ψ = 0 iff independence holds.

As discussed previously, it is necessary to specify a δ > 0 such that a practically meaningful lack of
independence occurs iff the true value ψ ≥ δ. One approach is to specify a δ such that, if −δ ≤ (pij −
pi·p·j)/pij < δ for all i and j, then any such deviation is practically insignificant, as the relative errors are all
bounded by δ. Using ln(1 + x) ≈ x for small x, this condition implies that −δ ≤ ψ < δ. The range of ψ is
then discretized using this δ and the hypothesis to be assessed is now, because ψ ≥ 0 always, H0 : 0 ≤ ψ < δ.
This assessment is carried out using the relative belief ratios based on the discretized prior and posterior of Ψ
as discussed in Section 4. For the data in this problem, we take δ = 0.01 which corresponds to a 1% relative
error. Thus, this says that we do not consider independence as failing when the true probabilities differ from
probabilities based on independence with a relative error of less than 1%.

With this choice of δ the issue of bias is now addressed. The prior distribution of the discretized Ψ is
determined by simulation. For this, generate the pij from the elicited prior and compute ψ and the prior
probability contents of the intervals for ψ given by [0, δ), [δ, 2δ), . . . , [(k− 1)δ, kδ) where k is determined so as
to cover the full range of observed generated values of ψ. The plot of the prior density histogram for ψ is provided
in Figure 3.

For inference, the posterior contents of these intervals are also determined via simulating from the posterior
based on the observed data. For measuring bias, however, we proceed as follows. Each time a generated ψ

satisfies [0, δ) the corresponding pij are used to generate a new data set Fij and RBΨ([0, δ) | F11, . . . , Fkl)

is determined and note that this requires generating from the posterior based on the Fij. The probability
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M(RBΨ([0, δ) | F11, . . . , Fkl) ≤ 1 | [0, δ)) is then estimated by the proportion of these relative belief ratios
that are less than or equal to 1. This gives an estimate of the bias against H0. Estimating the bias in favor of H0

proceeds similarly, but now the Fij are generated whenever ψ ∈ [δ, 2δ) is satisfied, as these represent values that
correspond to just differing from independence meaningfully.
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Figure 3. Plot of the prior density histogram for ψ in Example 1.

Clearly this procedure could be computationally quite demanding if highly accurate estimates of the biases
are required. In general, however, high accuracy is not necessary. Even accuracy to one decimal place will provide
a clear indication of whether or not there is serious bias. In this problem the biases for the elicited prior are
estimated to be 0.12 for bias for and 0.02 for bias against. Thus, there is only a probably of 0.02 of obtaining
evidence against H0 when it is true, which implies virtually no bias against H0. There is, however, a prior
probability of 0.12 of obtaining evidence in favor of H0 when it is just meaningfully false and so some bias in
favor of H0. It is to be noted that bias decreases as ψ∗ moves away from ψ0. These values depend on the chosen
value of δ but in fact are reasonably robust to this choice. The prior probability content of the interval [0, 0.01)
is 0.14 while [0.01, 0.02) contains 0.25 of the prior probability. Thus, there is a reasonable amount of prior
probability allocated to effective independence and also to the smallest nonindependence of interest.

3.2. Checking for Prior-Data Conflict

Anytime a prior is used it is reasonable to question whether or not the prior is contradicted by the
data. Essentially such a contradiction occurs when the data indicate that the true value of the model
parameter lies in the tails of the prior. While opinions vary on this, the point-of-view taken here is
that properly collected data are primary in determining inferences, and so models and priors that are
contradicted by the data need to be modified when this occurs. The issue is somewhat less relevant for
priors, as with enough data the effect of the prior is minimal, but on the other hand it often turns out
to be relatively easy to modify the prior so that the conflict is avoided, see [12].

The elicitation discussed here could be in error, namely, if the true probabilities lie well outside
the intervals obtained. If the data demonstrate this in a reasonably conclusive way, then it would seem
incorrect to proceed with an analysis based on this prior unless there was an absolute conviction that
the amount of data was sufficient to overwhelm the influence of the prior. To check for prior-data
conflict we follow Evans and Moshonov [13] and compute the tail probability

M(m(F1, . . . , Fk) ≤ m( f1, . . . , fk)) (17)

where ( f1, . . . , fk) is the observed value of the minimal sufficient statistic and M is the prior predictive
distribution of this statistic with density m. In [14] it is proved that quite generally (17) converges to
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Π(π(p1, . . . , pk) ≤ π(p1,true, . . . , pk,true)) as n→ ∞, where Π is the prior on (p1, . . . , pk). Thus, a small
value of (17) is indicating that the true value of (p1, . . . , pk) lies in a region where the prior is relatively
low and so the data are contradicting the prior. Certainly a value like 0.01 for (17) suggests that the true
value is well into the “tails” of the prior. It is to be noted that prior-data conflict can have a number
of ill-effects. For example, results in [15] show that robustness to the prior cannot be achieved in the
presence of prior-data conflict.

When the prior is given by the uniform, then a simple computation shows that (17) is equal to
1 and so there is no prior-data conflict. Intuitively, the closer τ is to 0, then the less information the
prior is putting into the analysis. This idea can be made precise in terms of the weak informativity
of one prior with respect to another as developed in [12]. As such, if prior-data conflict is obtained
with the prior specified by a value of (ξ1, . . . , ξk, τ), then this prior can be replaced by a prior that is
weakly informative with respect to it so that the conflict can be avoided and this entails choosing a
value τ′ < τ.

Example 1 (continued). Checking the elicited prior.

For the elicited Dirichlet prior, the value of (17) is approximately equal to 1 (to the accuracy of the
computations) and so there is definitely no prior-data conflict.

4. Inference

For data ( f1, . . . , fk) and Dirichlet(α1, . . . , αk) prior the posterior, of (p1, . . . , pk) is Dirichlet(α1 +

f1, . . . , αk + fk). As such it is easy to generate from the posterior of ψ, estimate the posterior contents
of the intervals [(i− 1)δ, iδ) and then estimate the relative belief ratios RBΨ([(i− 1)δ, iδ) | f1, . . . , fk).
From this a relative belief estimate of the discretized ψ can be obtained and various hypotheses assessed
for this quantity.

The strength of the evidence provided by RBΨ(ψ0 | f1, . . . , fk) is measured by, see [11],

ΠΨ(RBΨ(ψ | f1, . . . , fk) ≤ RBΨ(ψ0 | f1, . . . , fk) | f1, . . . , fk), (18)

namely, the posterior probability that the true value of ψ has a relative belief ratio no greater than
the hypothesized value. When RBΨ(ψ0 | f1, . . . , fk) < 1, so there is evidence against ψ0, a small
value for (18) implies there is strong evidence against ψ0 since there is a large posterior probability
that the true value has a larger relative belief ratio than ψ0. When RBΨ(ψ0 | f1, . . . , fk) > 1, so there
is evidence in favor of ψ0, a large value for (18) indicates there is strong evidence in favor of ψ0

since there is a small posterior probability that the true value has a larger relative belief ratio than ψ0.
Note that when RBΨ(ψ0 | f1, . . . , fk) > 1, then the best estimate of ψ in the set {ψ : RBΨ(ψ | f1, . . . , fk) ≤
RBΨ(ψ0 | f1, . . . , fk)} is ψ0 as it has the most evidence in its favor. While the measure of strength looks
like a p-value, it has a very different interpretation and it is not measuring evidence. Note that, if our
goal was instead to estimate ψ, then the measure of evidence adopted dictates that this be given
by the relative belief estimate ψ(x) = arg supψ RBΨ(ψ | f1, . . . , fk) as this is the value with the most
evidence in its favor (supψ RBΨ(ψ | f1, . . . , fk) is always greater than 1). In addition, an assessment
of the accuracy of the estimate is given by the size of a λ-relative belief region Cλ( f1, . . . , fk) = {ψ :
RBΨ(ψ | f1, . . . , fk) ≥ cλ( f1, . . . , fk)} where cλ( f1, . . . , fk) is the smallest constant so that the posterior
content of Cλ( f1, . . . , fk) is a least λ for a choice of λ ∈ (0, 1). Note that ψ(x) is always in Cλ( f1, . . . , fk).
Relative belief inferences possess a number of optimal properties in the class of Bayesian inferences,
see [11], and with particular relevance for the choice of prior, optimal robustness to the prior properties
as developed in [15]. Whether or not the elicitation methodology itself assists in inducing such
robustness is a matter for further investigation. Especially when the bounds are chosen to be quite
diffuse, this seems plausible.

Given that there is no prior-data conflict with the elicited prior and little or no bias in this prior
relative to the hypothesis H0 of independence, we can proceed to inference in Example 1.
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Example 1 (continued). Inference.

The posterior of the pij is the Dirichlet(998.2, 694.2, 146.48, 395.48, 428.48, 96.48, 2918.1, 2651.1, 582.48)
distribution. For the hypothesis H0 of independence between the variables, and using the discretized
Kullback-Leibler divergence with δ = 0.01, the value RBΨ([0, δ) | f1, . . . , fk) = 7.13 was obtained so there
is evidence in favor of H0. For the strength of this evidence the value of (18) equals 1. Thus, the evidence in
favor of H0 is of the maximum possible strength. Of course, this is due to the large sample size and the fact that
the posterior distribution concentrates entirely in [0, δ). Note that this is a very different conclusion than that
obtained by the p-value based on the chi-squared test.

5. Conclusions

A very natural and easy to use method has been developed for eliciting Dirichlet priors based
upon placing bounds on the individual probabilities that takes into account the dependencies among
the probabilities. Of course, there may be more information available, such as upper and lower bounds
on many of the probabilities. The price paid for this, however, is a much more complicated region
where the bulk of the prior mass is located and even difficulties in determining what that region is,
so this represents a problem for further work. It is also relevant to consider the individual bounds
holding with possibly different prior probabilities but, as with considering both lower and upper
bounds simultaneously for each probability, mathematical issues arise that make this a problem for
further work.

While we view the approach to elicitation presented here as being fairly simple, it is certainly
reasonable that other approaches are practically useful and preferable in certain situations. There is no
doubt that the Dirichlet imposes what may be unnatural constraints for some situations and so more
general families of priors are also needed for the multinomial. As such, extending our approach to
more general families of priors is another problem of interest. In particular, Theorems 2–4 are relevant
to any family of priors placed on Sk and so, provided sampling from such a prior is straightforward
and there is a nice way to parameterize the prior as with the Dirichlet, then the approach of this paper
can be implemented.

The application of the Dirichlet prior to an inference problem has also been illustrated using
a measure of statistical evidence, the relative belief ratio, as a basis for the inferences. Given that
a measure of evidence has been identified, it is possible to assess the bias in the prior before proceeding
to inference. In addition, the prior has been checked to see if it is contradicted by the data. While the
adequacy of the prior in light of the data can be assessed via the methods discussed in Section 3, there
is also a need to measure how closely an elicited prior reflects an expert’s judgements and suitable
methodology needs to be developed for that problem.

Finally, it is seen that the assessment of a hypothesis can be different than that obtained by
a standard p-value and, in particular, provide evidence in favor of a hypothesis. Of course, this is based
on a well-known defect in p-values, namely, with a large enough sample, a failure of the hypothesis
of no practical importance can be detected. The solution to this problem is to say what difference
matters and use an approach that incorporates this. Relative belief inferences are seen to do this in
a very natural way. The choice of δ is not arbitrary but is rather a fundamental characteristic of the
application. When such a δ cannot be determined, it is not a failure of the inference methodology,
but rather reflects a failure of the analyst to understand an aspect of the application that is necessary
for a more refined analysis to take place.
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