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Abstract: Voice activity detection (VAD) is a vital process in voice communication systems to avoid
unnecessary coding and transmission of noise. Most of the existing VAD algorithms continue to suffer
high false alarm rates and low sensitivity when the signal-to-noise ratio (SNR) is low, at 0 dB and
below. Others are developed to operate in offline mode or are impractical for implementation in actual
devices due to high computational complexity. This paper proposes the upper envelope weighted
entropy (UEWE) measure as a means to enable high separation of speech and non-speech segments
in voice communication. The asymmetric nonlinear filter (ANF) is employed in UEWE to extract
the adaptive weight factor that is subsequently used to compensate the noise effect. In addition,
this paper also introduces a dual-rate adaptive nonlinear filter (DANF) with high adaptivity to
rapid time-varying noise for computation of the decision threshold. Performance comparison with
standard and recent VADs shows that the proposed algorithm is superior especially in real-time
practical applications.

Keywords: voice activity detector (VAD); gammatone filter; asymmetric nonlinear filter; weight factor;
entropy; dual-rate adaptive nonlinear filter

1. Introduction

1.1. Voice Activity Detection

Voice activity detection (VAD) is a process in which speech and non-speech segments in an audio
signal are detected. Non-speech segments include silences, unwanted utterances or background noise
from crowds, machinery, aircraft, in the interior of moving vehicles, etc. [1]. Voice activity detection
is an important component in speech signal processing for speech recognition and noise reduction.
Its application covers a variety of areas such as mobile telecommunication systems and hearing aid
devices. In mobile telecommunication systems, voice activity detectors help to increase system capacity
and enhance overall speech coding quality. Another application of VAD is to avoid unnecessary coding
and transmission of non-speech packets in the Voice over Internet Protocol (VoIP) [2]. The accuracy
of a voice activity detection algorithm is affected by the amount of noise in a speech signal, which is
measured by the signal-to-noise ratio (SNR). The non-stationary background noise also affects the
performance of VAD.
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1.2. Discriminative Features and Classification

Much research has been conducted to develop robust VAD algorithms to fulfill specific needs
in various applications. These algorithms utilize distinctive spectro-temporal features to distinguish
between speech and non-speech segments. Similar features have been used for musical timbre
analysis [3]. A voice activity detector basically consists of two main processes, namely feature extraction
and classification. Some of the popular features in speech processing are zero crossing rate [4],
energy [5], signal-to-noise ratio, spectral flatness [6], correlation [7], etc. Instead of modeling the
dynamic noise features using support vector machine (SVM) trained on noise-labeled training data [8],
some recent VADs focus on the extraction of robust speech features such as the formant frequencies of
eight English vowels [9].

In existing VADs, three classification algorithms are used, namely the rule-based algorithm,
statistical modeling or the machine learning approach. Some conventional VADs incorporated the
zero-crossing rate or energy-related feature with the rule-based algorithm [10]. Some VADs, such as
G.729B [11] and VAD for AMR [12], which are commercially available, employ rule-based classification
algorithms with pre-determined thresholds or trained models [13]. Rule-based classification algorithms
are most suitable when the features show clear discrimination between speech and non-speech
segments [14]. Statistical models are superior to rule-based classification algorithms when the segments
are not clearly demarcated. There are several popular statistical models in VAD systems such as the
likelihood ratio test (LRT) [15]. Tan et al. modified the LRT-based model by selecting discrete Fourier
transform bins that consist of harmonic spectral peaks to determine the likelihood ratio. Based on
the investigation by He et al., the LRT-based VAD suffers from false triggering in the detection of
non-verbal vocalized acoustic signals, i.e., non-speech sounds produced during breathing, coughing
or other similar activities. Other commonly-used statistical models in VADs are the hidden Markov
models (HMMs) [16] and Gaussian mixture models (GMMs) [17]. In recent years, impressive results
in VAD have been obtained using machine learning approaches such as deep neural network [18],
deep learning [19] and support vector machine. Among these algorithms, support vector machines
are the most popular classifiers that incorporate Mel frequency cepstral coefficients (MFCCs) as the
discriminative feature for robust VAD development [20,21].

1.3. VAD Systems and Performance Measurement

The classification algorithms for VADs can be constructed using supervised, semi-supervised
or unsupervised learning systems. These three learning systems differ in terms of their dependency
on labeled training data. Voice activity detection algorithms trained on labeled speech and noise
data are known as supervised learning systems. The aforementioned support vector machine is
one of the supervised learning systems that was trained to obtain the optimum decision hyperplane
for classification. In semi-supervised learning systems, training is achieved using speech or noise
data, e.g., in formant-based VAD, the threshold is determined using initial non-speech segments [9].
Both supervised and semi-supervised learning systems require labeled training data, which could
be costly when the size of training data increases. VADs based on supervised and semi-supervised
learning systems are not robust against noise types that were not used in the training stage. It is
unrealistic to construct a training database of every possible noise type. Hence, the unsupervised
learning system is preferable since the training does not require labeled data. Unsupervised VAD
simply relies on ongoing analysis of the signals as in [22] in which the adaptive threshold is derived
using unlabeled data.

Performance parameters of voice activity detection algorithms are detection accuracy, robustness
and speed. The detection accuracy quantifies the ability of the VAD algorithm to correctly detect
speech and non-speech components in a given audio signal. Robustness is a measure of the ability
of a VAD algorithm to maintain accurate performance for different types and levels of signal
degradation. In practical applications, high-speed VADs are preferred. Most of the VADs suffer
from the trade-off between speed and detection accuracy. VAD for adaptive multi-rate Option 2
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(AMR-VAD2) is fast, and simple features are extracted based on the mapping of the channel SNR
to a pre-defined voice metric table. In their feature extraction algorithm, the summation of voice
metrics would be higher for channels that contain higher SNR [12]. A revised version of AMR-VAD2,
which is known as low-resource VAD (LR-VAD), was proposed in [23] to optimize AMR-VAD2 for
implementation in DSP systems. The authors simplified AMR-VAD2 by eliminating the long-term
prediction flag. The robustness and detection accuracy of both AMR-VAD2 and LR-VAD decrease
when SNR drops. In this case, the sound level of speech is close to the background noise floor
level in a highly degraded speech signal. Similarly, Yoo et al. proposed a simple formant-based
VAD that extracts the peak-neighbor difference (PND) where peaks are localized using formant
frequencies [9]. However, the formant-based VAD is not robust against noise because the average
energy of peaks from the immediate surrounding areas increases as SNR decreases, resulting in
a low peak-neighbor difference and low detection accuracy. To improve the detection accuracy
of non-stationary noise, Aneeja and Yegnanarayana proposed the single frequency filtering (SFF)
approach for amplitude envelope extraction. The feature extracted using SFF survives in a highly
degraded signal. However, its envelope computation is complex due to the large number of frequency
channels required. The SFF-based VAD can be improved by replacing the SFF extraction approach
with gammatone filter banks with the reduced channel numbers [24]. Besides using the gammatone
filters, the mean and variance computation in SFF-based VAD are replaced with the entropy measure
to improve the discrimination power of features. Similar to the SFF approach, GE-VAD uses a weight
factor to compensate the effect of the noise floor. The authors in [25] assumed that the noise floor of the
SFF amplitude envelope can be modeled using the lowest twenty percent of the samples. This approach
is inappropriate for continuous real-time VADs. Further, VADs with weight factors obtained using this
assumption are not robust in audio signals with time-varying noise.

1.4. The Contributions of This Article

A review of existing VAD algorithms shows that the presence of non-stationary noises especially
at low SNRs results in low detection accuracy. A number of these VADs are designed for offline
applications. In this paper, we aim to develop a real-time robust voice activity detection algorithm
with high detection accuracy for voice command devices. We have implemented an unsupervised
learning system to avoid dependency on labeled training data.

As in our earlier paper [24], this paper also uses gammatone filter and extract weighted entropy at
the front-end of the VAD to extract features that contain frequency-sensitive information of the signal.
Unlike [24], which relies on the sampled signal to establish a constant noise floor and weight factors,
this paper uses the asymmetric nonlinear filter (ANF) to generate adaptive weight factors. ANF is used
as an upper envelope detector in the calculation of adaptive weight factors, which is subsequently
used to obtain the weighted entropy. This upper envelope weighted entropy (UEWE) can be used to
identify speech and non-speech segments of the gammatone-filtered signal.

In addition to UEWE, we also proposed the dual-rate adaptive nonlinear filter (DANF) for decision
threshold computation. At low SNR, it is a challenge to set an appropriate decision threshold due to
the high noise floor level. The difficulty is compounded by short intermediate pauses between two
sets of continuous utterances. In UEWE, short pauses in the potential speech regions are prone to have
a higher noise floor level than long noise intervals. If the decision thresholds of a long noise interval
and potential speech regions are obtained in the same manner, some of the speech segments may be
detected as noise. DANF has been developed to simultaneously apply the correct decision threshold
during long noise intervals and potential speech regions.

The remaining parts of this paper are organized in the following manner. Section 2 discusses the
techniques and implementation of the proposed VAD algorithm. Section 3 presents the results of the
proposed and existing VAD algorithms. Section 4 discusses the performance evaluation, and Section 5
summarizes the paper.
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2. Proposed Voice Activity Detection Algorithm

This section details the motivations and implementation procedure of the upper envelope
weighted entropy (UEWE) measure and the dual-rate adaptive nonlinear filter (DANF) of the proposed
algorithm. In Section 2.1, the theoretical basis of UEWE and DANF is discussed, and Section 2.2
describes the implementation procedures of the proposed algorithm.

2.1. Background and Motivation

In this section, we present an overview of the proposed VAD and the description of each technique
implemented in the UEWE measure and DANF. Figure 1 shows the architecture of the proposed
VAD algorithm.

VAD decision

Pre-processing

Entropy computation

Upper envelope detection

Signal normalization and 

Noise effect compensation

Dual-rate adaptive 

nonlinear classification

Gammatone filtering

Features extraction using UEWE measure

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the proposed voice activity detection algorithm.

In this proposed VAD, the UEWE measure is used to extract robust discriminative features of the
signal, while DANF is used to compute an adaptive threshold at the dual-changing rate. The various
techniques used for feature extraction and the classification procedures of speech and non-speech
segments are discussed below.

2.1.1. Gammatone Filter

In the human ear, the cochlea is the identifier for constituent frequencies embedded in any given
audio sample. The cochlea is composed of the basilar membrane with different thicknesses and widths
along its length, and it functions as a frequency analyzer. Different frequencies resonate maximally at
different positions of the basilar membrane [26]. In other words, the basilar membrane is tonotopically
organized. The gammatone filter was popularized by Johannesma in 1972 [27] and has found wide use
in speech recognition [28,29], musical timbre analysis [3], etc. The gammatone filter bank simulates
the frequency analysis capability of the basilar membrane by having several gammatone filters with
different center frequencies. The gammatone filter is a linear filter described by an impulse response
formed by multiplying the gamma distribution with a sinusoidal tone as shown in Equation (1).

g(t) = atn−1e−2πbt cos(2π fct + φ) (1)

where fc is the center frequency in Hz, a is the amplitude (gain), φ is the phase of the carrier in radians,
n is the order of the filter, t is time in seconds and b is the bandwidth of the filter in Hz, and its value is
given in Equation (2).

b = 1.019× 24.7(4.37× 10−3 fc + 1) (2)

In [25], signal amplitude envelopes are computed at equally-distributed center frequencies with
a constant bandwidth of 20 Hz. This distribution of center frequencies does not realistically represent
the resonances present in the basilar membrane. To simulate the motion of the basilar membrane,
center frequencies of the gammatone filter bank are equally distributed on the equivalent rectangular
bandwidth scale (ERB-rate scale) as defined below,

ERBS( fc) = 21.4 · log10(1 + 4.37 · fc/1000) (3)
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Similar to the frequency-to-place transformation that takes place in the basilar membrane,
the convolution of the gammatone filter bank and speech signals produces output-specific frequencies
and responds strongly to particular frequency bands of the gammatone filter bank. Similar to
a bandpass filter, the gammatone filter retains only frequency components that fall within the band.
Thus, each band specified by its center frequency represents a specific location on the basilar membrane.
Characteristics of speech and noise differ in terms of their constituent frequencies. The noise spectrum
is typically flat, whereas the speech spectrum is usually localized in the lower frequency band and has
peaks at the respective formant frequencies. Thus, the gammatone filter bank can be applied in the
extraction of useful frequency-sensitive information.

2.1.2. Asymmetric Nonlinear Filter

In this section, we discuss noise compensation using the asymmetric nonlinear filter (ANF).
Unlike most of the conventional noise suppression methods, which filter noise with a fixed value
estimated from the noise floor [25], an adaptive noise filtering approach is more appropriate in filtering
a time-varying noise floor. The asymmetric nonlinear filter is one of the approaches used to estimate
the changing noise floor, which is necessary for noise suppression. The asymmetric nonlinear filter is
represented in αout[m, n] and output αout[m, n], respectively.

αout[m, n] =

{
λiαout[m− 1, n] + (1− λi)αin[m, n], if αin[m, n] ≥ αout[m− 1, n]

λjαout[m− 1, n] + (1− λj)αin[m, n], if αin[m, n] < αout[m− 1, n]
(4)

where m is the frame index, n is the channel index and λi and λj are constants. By having two
conditional filter designs, the asymmetric nonlinear filter is able to track the fast-changing speech
energy or the slower time-varying noise floor depending on the value of λi and λj from Equation (4).
When λi < λj, the nonlinear filter is tuned to track the upper envelope of the fast-changing speech
energy. When λi ≥ λj, the filter tracks the slower-varying noise floor or the lower envelope. Figure 2
illustrates the two modes of tuning of the asymmetric nonlinear filter.
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Figure 2. Input (blue) and output (red) response of the asymmetric nonlinear filter (ANF): (a) ANF as
the upper envelope detector, λi < λj; (b) ANF as the lower envelope detector, λi ≥ λj.

The asymmetric nonlinear filter was utilized in [30] as a lower envelope detector. Noise
suppression is carried out using the spectral subtraction technique in which the estimated noise
floor was subtracted from the instantaneous power. The effectiveness of noise suppression using
spectral subtraction relies on the accuracy of the noise floor level estimated by the lower envelope
detector. One of the drawbacks of spectral subtraction using the asymmetric nonlinear filter is that
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the accuracy of lower envelope detection suffers from a trade-off between estimated noise floor
maximization and the minimization of fast changing speech energy especially in cases in which the
noise floor varies rapidly. If λj is set high enough to cover an uneven noise floor, it is likely that the
fast-changing speech energy would also be partially tracked as noise floor. On the other hand, if λj is
reduced to avoid any tracking of speech energy, the estimated noise floor-level would not be sufficient
for the suppression, as shown in Regions A and B of Figure 2b. Furthermore, the nature of the noise
floor varies from one noise type to another, compounding the difficulty in determining an optimal
value for both λi and λj. In our model, instead of using spectral subtraction to compensate noise
effects, we have used the asymmetric nonlinear filter as an upper envelope detector to obtain a weight
factor to compensate the noise effect in real time. The advantage of using the asymmetric nonlinear
filter as an upper envelope detector is that the upper envelope of the speech energy can be traced in
real time with hangover effect.

2.1.3. Entropy as a Information-Theoretic Measures

The characteristic of speech and noise in terms of their distribution across frequency is utilized as
a discriminative feature for voice activity detection. Entropy is an information-theoretic measurement
that measures variability based on the probability of event occurrences. Entropy has been used to
compute the long-term signal variability (LTSV), which measures the amount of non-stationarity [1,31].
Entropy has also been used to quantify disorder in a spectral domain based on the assumption of speech
being more organized than noise [32,33]. Entropy has also found use in a speaker recognition system as
approximate entropy [34] and in the biomedical field as the refined multi-scale Hilbert–Huang spectral
entropy [35]. Shannon’s entropy for information source measurement is defined in Equation (5).

H(x) = −
n−1

∑
i=0

P(xi) log2 P(xi) (5)

where P(xi) is the probability function of the i-th element of variable x of length n.
In our approach, the upper envelope weighted entropy is measured to discriminate speech

and noise segments. In Section 2.1.1, we have mentioned that the responses of speech and noise
regions to gammatone filter frequencies differ in terms of their distribution, as speech has higher
resonances at certain frequency bands, whereas the noise has a more even distribution. Hence, entropy
is an appropriate measure to provide a good discrimination parameter for speech and non-speech
segments of the filtered signal across frequency bands. This application of entropy differs from the
approach taken in the LTSV measure [1], where entropy is used to compute signal variability across
time. Entropy is a more suitable measure for the computation of signal variability across frequencies
instead of time. Entropy depends on the probability of each event, but does not capture the spread
and magnitude of a signal. The application of the entropy measure in our approach will be further
discussed in Section 2.2.

2.1.4. Dual-Rate Adaptive Nonlinear Filter

As shown in Figure 3, practical VAD applications usually contain non-speech intervals before and
after an utterance usually exist.
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Figure 3. Illustration of a signal of a single utterance and the weighted entropy extracted using the
UEWE measure: (a) an audio sample consisting of a single utterance and crowd noise at 0 dB SNR;
(b) corresponding weighted entropy feature for the signal described in (a).

From Figures 3 and 4, we observe that the signal in intervals shown as Region A has a similar
amplitude as parts of the speech signal shown as Region B, especially in low SNR scenarios, which
makes it hard to identify an ideal threshold that can be used to correctly classify speech and non-speech
segments. In addition, we can also observe from Figure 4 that short intermediate pauses (non-speech
segments) exist between sentences in Region B. Although the noise floor level of Region A is relatively
constant, the amplitude of the short intermediate pauses in Region B is generally higher than Region A.
If the decision threshold is set high enough to accommodate Region A and the intermediate pauses in
Region B, parts of the speech segments in Region B would also be classified as noise. To circumvent
this scenario, the dual-rate adaptive nonlinear filter (DANF) that computes an adaptive decision
threshold at two different rates of change, one for Region A and another for Region B, is introduced.
The functional block diagram of DANF is as shown in Figure 5.
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Figure 4. Illustration of a signal of multiple sentences and the weighted entropy extracted using the
UEWE measure: (a) an audio sample consisting of a multiple utterances and crowd noise at 0 dB SNR;
(b) corresponding weighted entropy feature for the signal described in (a).
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Figure 5. Functional block diagram of DANF.

The decision threshold for Region A is set to the input, γm, while the decision threshold for
Region B is computed using the asymmetric nonlinear filter (ANF). A simple binary switch controller,
um, with two states, i.e., off (zero) and on (one), is used to determine the switching between Region A
and Region B, respectively. The controller is turned on when γm is higher than the transition threshold,
Tm. The ANF is used as a lower envelope detector to aptly separate speech segments and short
intermediate pauses (if any) in Region B into speech and non-speech classes, respectively. The filter
output, which is the decision threshold θm of the current m-th frame, is fed back to the ANF for the
next filter cycle. The output of the DANF (θm) is fed into the decision logic circuit to produce the final
VAD decision.

2.2. The Proposed Voice Activity Detection Algorithm

In this section, we present the implementation details of the proposed voice activity detection
algorithm. The following procedures apply for each speech frame of size N. Let sm(n) be the
discrete-time speech samples in the m-th frame (also the current frame) where n = 0, 1, . . . , N − 1.
Steps 2–6 describe the implementation of UEWE measure in the proposed VAD, whereas Steps 7–9
describe the speech/non-speech classification procedure using DANF.

Step 1 Pre-emphasis: Signal sm(n) is pre-emphasized, and the resultant signal is denoted as
xm(n) = sm(n)− ζ · sm(n− 1), where ζ is the pre-emphasis factor.

Step 2 Gammatone filtering: A K channel gammatone filter bank, where each filter has length L,
is constructed based on Equations (1)–(3). The impulse response of the k-th gammatone filter is
denoted as Gk(l), where l = 0, . . . , L− 1, with center frequency fc(k), where the frequencies
fc(1), . . . , fc(k), . . . , fc(K) are equally distributed on the ERB-rate scale to cover the useful speech
spectral bands. Figure 6 shows the plots of the gammatone impulse response at three different
center frequencies. The pre-emphasized signal xm(n) is then passed through each gammatone
filter, and the output is denoted as:

yk,m(n) =
L−1

∑
l=0

Gk(l)xm(n− l) (6)

and illustrated in Figure 7.
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Figure 6. Impulse response of gammatone filter bank: (a) gammatone impulse response at fc = 300 Hz;
(b) gammatone impulse response at fc = 691.8 Hz; (c) gammatone impulse response at fc = 2976.2 Hz.

Figure 7. Gammatone filter output at each center frequency.

Step 3 Signal envelope: The envelope of signal yk,m(n) is obtained by taking the magnitude of the
gammatone filtered signal.

ek,m(n) = |yk,m(n)| (7)

Step 4 Weight function: The average value of ek,m(n) in a frame is calculated according to Equation (8).

ek,m =
∑N−1

n=0 ek,m(n)
N

(8)

Then, the weight factor wk,m is computed using the asymmetric nonlinear filter to track the
upper envelope of ek,m, i.e.,

wk,m =

{
λiwk,m−1 + (1− λi)ek,m, if ek,m ≥ wk,m−1

λjwk,m−1 + (1− λj)ek,m, if ek,m < wk,m−1
(9)

where 1 > λj > λi > 0.
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Step 5 Signal normalization and noise effect compensation: The envelope ek,m(n) is normalized across
the K frequency bands to obtain:

ek,m(n) =
ek,m(n)

∑K
k=1 ek,m(n)

(10)

This is then multiplied with the weight factor wk,m to compensate noise effect at each frequency
band, i.e.,

pk,m(n) = ek,m(n)× wk,m (11)

We observe from Figure 8 that the speech signal has better representation in the weighted
envelopes as compared to the gammatone filter output envelope. The speech region has
a relatively higher magnitude than the noise region in the weighted envelopes. They are
represented with higher magnitude at certain frequencies, while the magnitude of the noise
region is evenly spread across the frequency.

Figure 8. Noise effect compensation on the degraded signal: (a) speech signal degraded by crowd
noise at 5 dB SNR; (b) signal envelope of the clean speech signal; (c) signal envelope of the noisy signal;
(d) noise-compensated signal envelope.
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Step 6 Information-theoretic measures: The entropy of pk,m(n) is measured across frequency according to:

Hm(n) = −
K

∑
k=1

pk,m(n) log2 pk,m(n) (12)

Figure 9 shows the entropy of the noise-compensated signal envelope for speech signal
degraded by crowd noise at 0 dB SNR. We can observe from the figure that speech and
noise regions have significant differences in terms of their entropy values, and this can be
exploited as an appropriate discriminative feature to decide the presence or absence of speech.
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Figure 9. (a) Speech signal degraded by crowd noise at 0 dB SNR; (b) weighted entropy H(n).

Step 7 Dual-rate adaptive nonlinear filter: The input of the filter is the frame averaged entropy, i.e.,

γm =
∑N−1

n=0 Hm(n)
N

(13)

A controller, um, is used to differentiate the long noise interval (Region A) and potential speech
segments (Region B). We set u1 = 0 and θ1 = γ1 in the starting frame. In subsequent frames,
um and θm are given by:

um =


1, if um−1 = 1{

0, if γm ≤ Tm

1, if γm > Tm
, if um−1 = 0

(14)

θm =


γm, if um = 0{

αiθm−1 + (1− αi)γm, if γm > θm−1

αjθm−1 + (1− αj)γm, if γm ≤ θm−1
, if um = 1

(15)

where Tm = BN + ε ∗ σBN is the transition threshold to set um from zero (Region A) to one
(Region B), where BN and σBN are the mean and standard deviation of the eight most recent
values of γm of only the noise frame. Figure 10 demonstrates the adaptivity of the decision
threshold of a noisy signal. In Region B, when um = 1, the decision threshold, computed
using ANF, varies slowly with respect to the DANF input, whereas in Region A, the decision
threshold adapts itself to the fluctuating noise floor.
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Figure 10. Computation of the decision threshold using DANF. (a) Speech signal degraded by
subway noise at 0 dB SNR; (b) corresponding average weighted entropy feature, γm, and its decision
threshold, θm.

Step 8 Decision logic: The VAD decision is made based on:

VADm =

{
1, if γm > θm

0, if γm ≤ θm
(16)

where 1 represents speech, while 0 represents noise.
Step 9 Noise frame counter: The number of identified noise frames is counted, and this is used to

reset um accordingly, i.e.,

st =

{
st + 1, if VADm = 0 and um = 1

0, if VADm = 1
(17)

um =

{
0, if st > β

1, if st ≤ β
(18)

where 0 represents a long interval of noise and 1 represents otherwise.

3. Results

This section presents the results of the proposed VAD and compares it with other well-known
VAD algorithms. We also discuss the technical background information of the common performance
metrics, and we have used these metrics to evaluate the results of our VAD algorithms.

3.1. Performance Evaluation Metrics

Freeman et al. proposed a set of metrics in [36], which are widely used to evaluate the performance
of the voice activity detector [1,25,37]. Specifically, the five metrics are illustrated in Figure 11 and
defined thereafter.

• CORRECT: The correct speech or non-speech detection done by the VAD algorithm.
• Front-end clipping (FEC): Clipping caused by misclassification of speech as noise at the shift of

the noise segment to the speech segment.
• Mid-speech clipping (MSC): Clipping caused by misclassification of speech as noise within

a speech segment.
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• Carry over (OVER): Noise misclassified as speech at the shift of the speech segment to the
noise segment.

• Noise detected as speech (NDS): Noise misclassified as speech within the noise segment.

DetectionAccuracy/Correct(%) =
∑ CORRECT

Length of signal
× 100 (19)

FEC(%) =
∑ FEC

Length of speech
× 100 (20)

MSC(%) =
∑ MSC

Length of speech
× 100 (21)

NDS(%) =
∑ NDS

Length of non-speech
× 100 (22)

OVER(%) =
∑ OVER

Length of non-speech
× 100 (23)

FEC MSC OVER NDS

Activity

Inactivity

VAD Decision

Figure 11. Illustration of the VAD performance metrics proposed in [36].

3.2. Experimental Setup

The performance of existing voice activity detection algorithms and the proposed VAD are
evaluated using the above performance metrics. Three existing VAD algorithms are chosen for the
evaluation purposes. The first is the voice activity detection for adaptive multi-rate Option 2 (denoted
as AMR-VAD2) that was standardized for the European Telecommunications Standards Institute
(ETSI) [12]. The other three are the single-frequency filtering approach for discriminating speech and
non-speech (SFF) [25], the formant-based robust voice activity detection (PND) [9] and the robust voice
activity detection using long-term signal variability (LTSV) [1]. In addition, the gammatone filtering
and entropy-based VAD (GE-VAD) proposed in [24] is also compared. The performance evaluation is
carried out on noise-added speech signals under different signal-to-noise ratios (SNR). In particular,
clean speech signals from the TIMIT acoustic-phonetic continuous speech corpus [38] are degraded
by noise signals from the AURORA project database 2.0 (AURORA-2) [39] at SNRs ranging from
−10 dB–20 dB with increments of 5 dB. In this experiment, the 16-kHz clean TIMIT speech signals
are downsampled to 8 kHz to accommodate AMR-VAD2 [12] and other existing VADs, such as
the formant-based VAD [9], which were designed and had been experimented on at this frequency.
In addition, the 8-kHz sampling rate is also applied to the proposed VAD, which is designed to work
optimally at this frequency. The clean speech signals from the TIMIT corpus consist of a relatively
higher concentration of speech segments than silences [25]. Thus, the signals may be suitable for the
measurement of the sensitivity of the VAD, but not the specificity. However, the evaluation results are
only reliable when both the sensitivity and specificity of a VAD are measured, because an ideal VAD
should have high sensitivity and high specificity. Thus, each TIMIT clean speech signal is appended
fore and aft with 1.5 s of silence prior to the addition of noise to even out the proportion of speech and
noise segments [1,9,25]. To evaluate the performance of the existing and proposed VAD in continuous
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speech detection, ten silence-padded TIMIT signals are concatenated. This time, the length of silence
between each sentence is randomly generated from the range of 2–3 s. Table 1 below shows the
parameters and the corresponding values considered in the experiments.

Table 1. Parameters applied in the proposed voice activity detection algorithm.

Parameters Values

Sampling frequency 8000 Hz
Frame size, N 512 (64 ms)
Pre-emphasis factor, ζ −0.9375
Number of gammatone filter channel, K 16
Number of gammatone filter tap, L 200
Gammatone filter bank frequency range, fc(1); fc(K) 300 Hz; 4000 Hz
ANF coefficient, λi; λj 0.1; 0.9
Transition threshold coefficient, ε 3
Threshold value, β 20
ANF coefficient, αi; αj 0.99; 0.9

3.3. Voice Activity Detection Results and Benchmarking

Figures 12–14 present the performance comparison between AMR-VAD2, PND, SFF, LTSV,
GE-VAD and the proposed UEWE-DANF-based VAD when tested on 100 TIMIT speech signals
that were degraded by additive white Gaussian noise (AWGN) and eight non-stationary noise samples
from the AURORA-2 noise database, namely airport, babble, exhibition, car, restaurant, street, subway
and train, at SNR ranging from −10 dB–20 dB with an increment of 5 dB.

The detection accuracy of the proposed UEWE-DANF-based VAD for all noise types is averaged
and summarized in Table 2.

The results tabulated in Table 2 were obtained using isolated noise-degraded speech sentences.
To examine the performance of the proposed VAD in continuous operation, the speech utterances are
concatenated and fed into each VAD system contiguously. The average detection accuracy obtained in
this experiment is tabulated in Table 3. To monitor the improvement achieved by the proposed VAD
from GE-VAD, the detection accuracy at each stage of improvement is added into Table 3. The GE-VAD
represents the initial stage, followed by UEWE, which represents the improvement made using the
asymmetric nonlinear filter, and lastly, UEWE-DANF represents the replacement of offline threshold
calculation with the dual-rate adaptive nonlinear filter.
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Figure 12. Performance comparison as a percentage of detection accuracy/CORRECT, front-end
clipping (FEC), mid-speech clipping (MSC), noise detected as speech (NDS) and carry over (OVER) for
different noise types at various SNR: (a–e) AWGN; (f–j) airport noise; (k–o) babble noise.
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Figure 13. Performance comparison as a percentage of detection accuracy/CORRECT, front-end
clipping (FEC), mid-speech clipping (MSC), noise detected as speech (NDS) and carry over (OVER) for
different noise types at various SNR: (a–e) exhibition noise; (f–j) car noise; (k–o) restaurant noise.
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Figure 14. Performance comparison as a percentage of detection accuracy/CORRECT, front-end
clipping (FEC), mid-speech clipping (MSC), noise detected as speech (NDS) and carry over (OVER) for
different noise types at various SNR: (a–e) street noise; (f–j) subway noise; (k–o) train noise.

Table 2. Average detection accuracy (%) at different signal-to-noise ratios of AMR-VAD2 [12], PND [9],
SFF [25], LTSV [1], GE-VAD [24] and the proposed UEWE-DANF.

SNR (dB)
Voice Activity Detection Algorithms

AMR-VAD2 PND SFF LTSV GE-VAD UEWE-DANF

−10 57.96 57.07 67.67 63.23 53.58 66.62
−5 63.3 60.36 76.59 70.06 57.16 75.36
0 73.17 64.25 83.93 74.97 61.58 82.95
5 82.03 66.43 87.2 76.81 66.37 87.8

10 87.21 67.44 88.44 77.01 69.93 90.27
15 89.35 69.46 88.98 76.38 73.38 90.94
20 90.34 70.49 89.06 76.04 75.61 91.2
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Table 3. Average detection accuracy (%) of the existing and proposed VADs for continuous detection at
different signal-to-noise ratios.

SNR (dB)
Voice Activity Detection Algorithms

AMR-VAD2 PND SFF LTSV GE-VAD UEWE UEWE-DANF

−10 60.11 58.63 62.59 55.58 53.91 62.4 64.16
−5 69.23 63.39 67.63 64.41 57.82 70.51 72.84
0 80.16 68.84 71.67 68.52 64.38 72.82 84.4
5 79.12 72.71 75.28 63.44 67.43 70.51 88.44
10 81.36 76.42 77.82 62.96 70.79 70.49 92.06
15 81.54 78.9 80.88 65.76 72.78 69.5 91.67
20 87.91 80.17 81.12 64.07 74.89 66.54 91.56

4. Discussion

From Figures 12–14, we observe that the detection accuracy of the proposed UEWE-DANF VAD
is superior to its predecessor, GE-VAD and PND, at all SNR for all types of noise. Overall, the detection
accuracy of UEWE-DANF VAD is also higher than LTSV except for subway noise. The difference
in accuracy between UEWE-DANF and LTSV rises as the SNR increases. The LTSV-based VAD is
a non-causal system that relies on past and future frames with reference to the current frame of
interest. The voting scheme of LTSV-based VAD applied overlapping long windows of 300 ms on past
and future frames to make a final VAD decision [1]. This implementation results in a less real-time
VAD performance.

The proposed UEWE-DANF VAD also outperformed AMR-VAD2 [12] at low SNR (−10 dB–5 dB)
for AWGN, airport noise, babble noise, exhibition noise, car noise and train noise. The performance
of UEWE-DANF VAD and AMR-VAD2 is comparable at −10 dB–5 dB SNR for restaurant, street and
subway noises. Some of these observations can be attributed to the characteristics of the noise.
For instance, restaurant noise, street noise and subway noise have a higher degree of non-stationarity,
e.g., transient interference produced by the departure and arrival of subway trains, as compared to
the other six types of noise, which result in more impulsive traits in the noise region of the weighted
entropy feature. These traits could potentially result in noise being detected as speech when SNR is
low. Based on Figure 15, non-stationary noise such as airport and car noise are relatively constant
over a long interval of time as compared to street noise and subway noise. Thus, the performance of
the proposed VAD at negative SNR is better when tested against airport and car noises than street
or subway noises; whereas for 5 dB–20 dB SNR, the detection accuracy of the proposed VAD is
comparable to AMR-VAD2 for all noise types.
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Figure 15. Noise signals form the AURORA-2 database. (a) Airport noise; (b) car noise; (c) street noise;
(d) subway noise.
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From Figures 12–14, we can see that the detection accuracy of the SFF approach is highest among
the four existing voice activity detectors that were selected for comparison. The SFF approach has
higher accuracy in the offline mode as it relies on the knowledge of the entire signal to estimate the
noise floor in noise compensation and computation of the decision threshold. Out of the nine types of
noise, UEWE-DANF VAD achieved comparable detection accuracy for all noises except car noise and
subway noise. The accuracy gap between the SFF approach and the proposed VAD is significantly
large in subway noise at low SNR (−10 dB–5 dB). The drop in percentage is mainly due to the higher
MSC rate at low SNR. The reason behind the high MSC rate for subway noise is the similarity between
the speech and noise segments of the weighted entropy feature.

Based on Table 2, UEWE-DANF outperformed AMR-VAD2, PND, LTSV and GE-VAD regardless of
the types of degradation. At −10 dB–0 dB SNR, the detection accuracy of UEWE-DANF is slightly lower
than SFF, but it overtakes SFF from 5 dB onwards. Although the detection accuracy of UEWE-DANF is
slightly lower than SFF at negative SNR for isolated speech, the detection accuracy of UEWE-DANF is
much higher than SFF in continuous detection scenarios. In addition, UEWE-DANF also outperformed
all existing VADs at every SNR. The ability of UEWE-DANF to detect voice activity continuously can
be attributed to the highly adaptive weight factor and threshold computed using ANF and DANF,
respectively.

The improvement achieved by the proposed VAD from GE-VAD can be observed from the last
three columns of Table 3. The replacement of offline weight factor calculation with ANF has improved
the detection accuracy at low SNR. However, the accuracy at high SNR drops due to the inability of
the constant threshold to distinguish noise segments correctly. Therefore, the detection accuracy is
largely improved after the implementation of DANF for adaptive threshold calculation.

Despite having slightly lower accuracy for car and subway noises in the isolated sentences
scenario, the proposed VAD has the ability to produce VAD decision for each 64-ms frame. Meanwhile,
the SFF could only achieve high accuracy by operating in offline mode. To ensure that the proposed
VAD is fast enough for real-time implementation, we have tested it with various combinations
of numbers of frequency channels, K, and the numbers of taps, L, for the gammatone filter bank
on the ARM Cortex-M7 microcontroller. The efficiency of the proposed VAD algorithm on this
microcontroller can be evaluated based on the required million instructions per second (MIPS). A lower
MIPS (<10 MIPS) is preferable for real-time implementation on a digital signal processor (DSP) [40].
The required MIPS for each combination are as shown in Table 4.

From Table 4, the combination of 12 channels and 50 taps requires the lowest MIPS, which is
8.0–9.3. The performance of the proposed VAD is re-evaluated by reducing the default 16 gammatone
filter channels and 200 gammatone filter taps in Table 1 to 12 and 50, respectively. The average
detection accuracy of the proposed VAD with the new combination in continuous detection at different
signal-to-noise ratios is tabulated in Table 5. The average detection accuracy decreases as the number of
channels and taps are reduced. However, the accuracy of the proposed VAD with reduced complexity
is superior to the existing VADs at negative SNR and achieved comparable results with the highest
accuracy achieved by the existing VADs at negative SNR.

Table 4. The required MIPS for different combination of channel and tap numbers.

Number of Channels, K Number of Taps, L MIPS

16 50 232.3–250.3
16 30 148.8–159.4
14 50 47.4–49.86
12 100 8.53–8.84
12 50 8.0–9.3
12 30 8.9–9.4
8 100 16–16.5
8 50 16.3–17.5
8 30 16.5–17.0
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Table 5. A comparison between the highest average detection accuracy (%) of the existing VADs and
the average detection accuracy (%) of UEWE-DANF and its reduced version for continuous detection
at different signal-to-noise ratios.

SNR (dB) Highest Value among UEWE-DANF UEWE-DANF
the Existing VADs (K = 16, L = 200) (K = 12, L = 50)

−10 62.59 64.16 62.91
−5 69.23 72.84 69.39
0 80.16 84.4 81.6
5 79.12 88.44 87.71

10 81.36 92.06 91.81
15 81.54 91.67 91.47
20 87.91 91.56 91.43

5. Conclusions

In this paper, we propose a voice activity detection algorithm using the upper envelope weighted
entropy (UEWE) measure and the dual-rate adaptive nonlinear filter (DANF). The novel UEWE
measure extracts frequency-sensitive information using the gammatone filter and computes the signal
variability, i.e., weighted by its own upper envelope, across frequency using entropy. The signal’s upper
envelopes were extracted using an asymmetric nonlinear filter, which also provides a hangover effect
on the weighted entropy feature. This discriminative feature demonstrates high speech and non-speech
separability. Based on the discriminative feature, an adaptive decision threshold is computed using
DANF. The decision threshold was computed at two different changing rates for long noise intervals
and potential speech segments to minimize the trade-off between sensitivity and specificity, i.e., caused
by the similarity between the amplitude of speech and non-speech at low SNR. Based on the results
from our extensive evaluations, the proposed VAD outperformed existing formant-based VAD [9]
and our earlier VAD [24] for all types of noises that were tested. The proposed VAD also achieved
higher detection accuracy as compared to AMR-VAD2 for all noise types. Besides, the performance
of the proposed VAD also achieved comparable results with the best existing VAD, which is the
SFF approach [25]. While the SFF approach achieved high accuracy, the proposed VAD achieved
comparable results while being implemented in real time. In addition, the proposed VAD also achieved
superior results as compared to SFF when both were tested with contiguous sentences, which mean
that the proposed VAD is more suitable for continuous speech detection that is commonly practiced in
real-time practical applications. The proposed VAD is also capable of maintaining its high detection
accuracy as compared to the existing VADs when the number of channels and the number of taps for
the gammatone filter bank are reduced to 12 and 50, respectively. The reduced combination enabled
the proposed VAD to lower the requirement in million instructions per second (8–9.3 MIPS).
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Abbreviations

The following abbreviations are used in this manuscript:

VAD Voice activity detection
SNR Signal-to-noise ratio
UEWE Upper envelope weighted entropy
ANF Asymmetric nonlinear filter
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DANF Dual-rate adaptive nonlinear filter
VoIP Voice over Internet Protocol
SVM Support vector machine
LRT Likelihood ratio test
GMMs Gaussian mixture models
HMMs Hidden Markov models
MFCCs Mel frequency cepstral coefficients
AMR-VAD2 Voice activity detection for adaptive multi-rate Option 2
PND Peak neighbor difference
SFF Single frequency filtering
GE-VAD Gammatone and entropy-based voice activity detector
ERB Equivalent rectangular bandwidth
LTSV Long-term signal variability
FEC Front-end clipping
MSC Mid-speech clipping
OVER Carry over
NDS Noise detected as speech
ETSI European Telecommunications Standards Institute
AWGN Additive white Gaussian noise
MIPS Million instructions per second
DSP Digital signal processor
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