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Abstract: Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational
field in an equilibrium situation. In 2012, Tolman’s law was generalized to a non-equilibrium
situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing
the gravitational force through the molecular acceleration, couples the heat flux with the metric
coefficients and the gradients of the state variables. In the present paper it is shown, by explicitly
describing the single particle orbits as geodesics in Boltzmann’s equation, that a gravitational field
drives a heat flux in this type of system. The calculation is devoted solely to the gravitational field
contribution to this heat flux in which a Newtonian limit to the Schwarzschild metric is assumed.
The corresponding transport coefficient, which is obtained within a relaxation approximation,
corresponds to the dilute fluid in a weak gravitational field. The effect is negligible in the
non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
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1. Introduction

The problem of calculating the heat flux in a simple dilute relativistic fluid due to a gravitational
field can be approached from different perspectives. In 1930, Richard C. Tolman considered such system
in an equilibrium situation and showed that a gravitational field can balance a temperature gradient,
leading to a vanishing heat flux; this is known as Tolman’s law [1]. Several decades later, in 2012,
an expression for the heat flux in the presence of a linearized gravitational field was established in a
non-equilibrium situation and Tolman’s law was recovered when the equilibrium limit is attained [2].

On the other hand, in reference [3] the heat flux was calculated using a Schwarzschild metric with
isotropic coordinates within the framework of general relativistic kinetic theory, concluding that the
contribution of the gravitational field vanishes. In that work, it was suggested that the effect obtained
in reference [2] may be traced back to a metric factor that has not been considered in the equilibrium
distribution function.

In the present paper it is shown that the gravitational contribution to the heat flux prevails when
assuming structureless particles moving along geodesics. The calculation is performed in a local Minkowsky
space-time and the thermodynamic forces appear in a hydrodynamic scale [4]. These important conceptual
features improve the formalism presented in reference [2]. Moreover, thermodynamic forces corresponding
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to the gravitational field are established through the covariant derivatives of the hydrodynamic velocity
present in the formalism.

Another approach to this problem was presented in 1984 by Wodarzik [5]. In that work the
heat flux is expressed using the corresponding Eckart constitutive equation [6]. It is relevant to
mention that the well known hydrodynamic generic instabilities arise if this type of coupling is
assumed [7]. Moreover, in that work it is assumed that the fluid as a bulk moves following geodesics,
an argument that can be questioned as individual molecules follow geodesics [4], while stresses
deviate the bulk from this type of dynamics. On the other hand, in the present paper, we introduce
the formal kinetic theory definition of heat flux in the Navier-Stokes regime with no hydrodynamic
acceleration present in the constitutive equation. According to the assumptions of linear irreversible
thermodynamics, heat flux is driven by all vector gradients present in the system such that it is coupled
with ∇T, ∇n (see references [2,7–9]) and, in the presence of a gravitational field, to the gravitational
potential gradient.

In order to establish the heat flux following the approach described above, the rest of this paper
is divided as follows. In Section 2, we review a few concepts regarding the Boltzmann equation in
the general relativistic regime. In Section 3, the first order in the gradients approximation to the
distribution function ( f (1)) is obtained, following the general relativistic kinetic theory formalism in
the BGK approximation within the Chapman–Enskog expansion. The calculation of the heat flux is
shown in Sections 4 and 5 is devoted to final remarks.

2. Basic Formalism: Relativistic Fluids

2.1. Basic Elements of General Relativity and the Schwarzschild Metric

A simple, non-degenerate gas is considered in a curved space-time where the line element
(arc length) is expressed as [4,10,11]:

ds2 = gµνdxµdxν, (1)

where gµν is the metric tensor. Different metrics may be obtained from Einstein’s field equations,
depending on the symmetries present in the system to be analyzed. For a Schwarzschild metric,
which has the property of being spherically symmetric and static, the line element is given by (with a
signature + + + −) :

ds2 =
1(

1− 2GM
c2 r̃

)dr̃2 + r̃2
(

dθ2 + sin2θdϕ2
)
−
(

1− 2GM
c2r̃

)(
dx4
)2

, (2)

with G being the gravitational constant, c the speed of light, M the total mass, source of the
gravitational field, and r, θ, and ϕ the spherical coordinates. As in reference [3], an isotropic
Schwarzschild metric is used [12], for which the substitution r̃ = r

(
1+ GM

c2r

)
is introduced in Equation (2).

Considering Φ (r) = GM
r , the gravitational potential, the Newtonian limit of the Schwarzschild metric,

which corresponds to the weak field approximation
(

Φ
c2 � 1

)
reads:

ds2 =

(
1 +

2Φ
c2

)(
dx2 + dy2 + dz2

)
−
(

1− 2Φ
c2

)(
dx4
)2

(3)

In order to perform the relevant calculations in the following sections it is convenient to recall
that in general relativity, the four-velocity is the derivative of the position four-vector with respect to
the arc length, that is:

vµ = c
dxµ

ds
. (4)
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Also, in the following sections use of the Christoffel symbols is made, with the usual definition being:

Γµ
αβ =

g̃µν

2

(
∂g̃αν

∂xβ
+

∂g̃βν

∂xα
−

∂g̃αβ

∂xν

)
(5)

It must be noticed that the only non-vanishing symbols for this metric are the following:

Γ1
11 = Γ2

21 = Γ3
31 = Γ2

12 = Γ3
13 =

Φ′

c2
(

1 + 2Φ
c2

) , (6)

Γ1
22 = Γ1

33 = Γ1
44 = − Φ′

c2
(

1 + 2Φ
c2

) , (7)

Γ4
14 = Γ4

41 =
Φ′

c2
(
−1 + 2Φ

c2

) . (8)

2.2. Boltzmann’s General Relativistic Equation

Relativistic kinetic theory has been successfully applied to the study of high temperature
astrophysical and cosmological fluids [13,14]. When the thermal energy of a single mass particle
(kT) is comparable to its rest mass (mc2), the ordinary Maxwellian distribution function must be
modified in order to be consistent with the tenets of the relativity theory. Decades after the pioneering
works of Jüttner [15], a thorough revision of its validity was performed by Cubero, Dünkel and other
authors [16]. Boltzmann’s equation describes the evolution of the single-particle distribution function
and is expressed as follows [9,10]:

ḟ = J( f f ′), (9)

where J( f f ′) is the collisional kernel. Since f is a function of the position (xµ) and velocity (vµ)
four-vectors, ḟ can be written as:

ḟ =
∂ f
∂xµ ẋµ +

∂ f
∂vµ v̇µ. (10)

In the special relativistic regime, a dot denotes the total proper time (τ) derivative in a flat
space-time. On the other hand, in a general relativistic scenario, ḟ corresponds to the arc length
derivative ( ḟ = d f

ds ), with s being the arc length [4]. Also in this approach, we have v̇µ = vαvµ
;α =

vα
(

∂vµ

∂xα + Γµ
αβvβ

)
.

In this paper, particles are assumed to lack structure (they do not have internal degrees of freedom)
so that as a consequence of the field equations, the acceleration v̇µ = dvµ

ds is zero, and the molecules
move following geodesics, i.e.,:

d2xµ

ds2 + Γµ
αβ

dxα

ds
dxβ

ds
= 0. (11)

The Boltzmann’s equation can thus be written as:

vµ f,µ =
∂ f
∂xµ vµ = J( f f ′), (12)

where Equation (4) has been used. The collisional kernel can be modeled in a simple form using the
BGK approximation [17], so that Equation (12) becomes:

vµ f,µ = − f − f (0)

τc
, (13)

where τc is a relaxation time and f (0) the local equilibrium distribution function.
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In order to calculate the heat flux, the first order in the gradients correction to the distribution
function f (1) must be obtained. Following the kinetic theory approach, Chapman–Enskog’s method [10]
is now used, such that a solution given by f = f (0) + f (1) is assumed. By substituting this solution in
Equation (13) and after simple algebraic manipulations, one obtains:

f (1) = −τc
∂ f (0)

∂xµ vµ. (14)

The next step consists of introducing the functional hypothesis by means of which the factor ∂ f (0)
∂xµ

is written in terms of the state variables n (the local particle number density), T (the local temperature)
and Uµ (the hydrodynamic fluid velocity) [8]:

∂ f (0)

∂xµ =
∂ f (0)

∂n
∂n
∂xµ +

∂ f (0)

∂T
∂T
∂xµ +

∂ f (0)

∂U α
U α

;µ. (15)

The covariant derivative U α
;µ introduced in Equation (15) is imperative to preserve its invariance.

Indeed, the quotient rule leads to the use of the covariant derivative of the velocity field. It is important
to notice that in the definition of the covariant derivative of this local variable:

U α
;µ =

∂U α

∂xµ + Γα
µνU ν, (16)

the second term will become a thermodynamic force.
The Jüttner (Maxwell–Boltzmann relativistic) function must be considered in order to establish

the derivatives in Equation (15):

f (0) =
n

4πc3zK2

(
1
z

) eU
αvα/zc2

=
n

4πc3zK2

(
1
z

) e−
γ
z , (17)

where K`

(
1
z

)
is the modified Bessel function of the second kind of order ` and z = kBT/mc2 is the

relativistic thermal parameter, with kB the Boltzmann constant. The invariant U νvν in the equilibrium
distribution function in Equation (17) can be written in terms of the molecular speed when calculated
in a reference frame where the spatial components of U ν vanish (comoving frame). In such a frame
U 4 ≈ c in the scale in which our dilute fluid is describable by a Jüttner function (Equation(17)).

Substituting in Equation (15) the covariant derivative’s definition (Equation (16)) and the
corresponding partial derivatives of f (0) one obtains:

∂ f (0)

∂xµ = f (0)

 1
n

∂n
∂xµ +

1 +
U νvν

zc2 −
G
(

1
z

)
z

 ∂T
∂xµ +

vα

zc2

(
∂U α

∂xµ + Γα
µνU ν

) , (18)

where G
(

1
z

)
=

K3( 1
z )

K2( 1
z )

.

3. The Field Contribution to f (1)

The rest of the calculations in this paper focuses on the gravitational field contribution to the heat
flux, which arises from the third term on the right hand side of Equation (18). Thus, we isolate such
term by defining

f (1)U = −τc
vα f (0)

zc2

(
∂U α

∂xµ + Γα
µνU ν

)
vµ. (19)

In order to establish the corresponding thermodynamic flux, space and time components are
separated as follows (Latin indexes run up to three and Greek ones up to four):
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f (1)U = −τc f (0)

zc2

(
vαv`

∂U α

∂x`
+ vαv4 ∂U α

∂x(4)
+ vαvµΓα

µνU ν

)
. (20)

At this point, the Euler equation is introduced as a requirement in order to guarantee the existence
of the Chapman–Enskog solution [9,10,18]. This step allows for f (1) to be expressed in terms of the
local state variables’ gradients. Indeed, since the hydrodynamic velocity satisfies [9]

ρ̃U̇ ν = −hνα p,α, (21)

where ρ̃ is
(

nε
c2 + p

c2

)
, with ε the internal energy per particle, p the local pressure and hνα the spatial

projector defined as g̃να + U νUα

c2 , we can write:

U (4) ∂U ν

∂x(4)
= −hνα p,α

ρ̃
− Γν

µβU βUµ −U ` ∂U ν

∂x`
. (22)

and thus

f (1)U = −τc f (0)

zc2

(
vαv`

∂U α

∂x`
+

vαv(4)

U (4)

(
−hνα p,α

ρ̃
− Γν

µβU βUµ −U ` ∂U ν

∂x`

))
In what follows, only the terms depending on Christoffel symbols will be taken into account since

they contain the curvature, and thus the gravitational effects:

f (1)
[g] = −τc f (0)

zc2

(
−vαv(4)

U (4)
Γα

βλUλU β + vαvµΓα
µνU ν

)
. (23)

Also, calculations will be performed in the comoving frame where U ν = (0, 0, 0, c),
kν ≡ (k1, k2, k3, c), vη = γ(k)kη with kη representing the chaotic velocity (the molecule’s velocity

measured in the comoving frame) and γ(k) = (1 − kl kl
c2 )−1/2 [9,19]. With these substitutions we

obtain the following expression for the gravitational contribution to the first order in the gradients
distribution function:

f (1)
[g] = −

τcγ2
(k) f (0)

zc

(
kαkµΓα

µ4 − ckαΓα
44

)
. (24)

In reference [3], the terms corresponding to the ones in parenthesis in Equation (24) cancel
out as the molecular acceleration term is expressed in terms of a force induced by the field,
i.e., dvµ

dτ = −Γµ
αβvαvβ, together with the fact that a partial derivative is considered for the hydrodynamic

velocity in Equation (18) of reference [3].
Before proceeding to the heat flux calculation it is useful to notice that the summation kαkµΓα

µ4

vanishes up to first order in φ

c2 , so that:

f (1)
[g] =

τcγ2
(k) f (0)

z
(kαΓα

44) . (25)

Equation (25) is the basis of the heat flux field contribution that will be calculated in the
next section.

4. Heat Flux Calculation with a Spherically Symmetric Static Metric

Kinetic theory’s definition of heat flux in the comoving frame is expressed as follows [20]:

Q` = mc2
∫

k` f (1)γ(k)

(
γ(k) − 1

)
d∗K, (26)
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where the volume element is d∗K = 4πc3(γ2
(k) − 1)

1
2 dγ(k) [19]. Now, using Equation (25) for f (1)

[g] ,
the gravitational field contribution to the heat flux can be written as:

Q`
[g] =

τcmc
z

∫
k` f (0)γ3

(k)

(
γ(k) − 1

)
(ckαΓα

44) d∗K. (27)

Performing the calculations (see the Appendix A for details) it is obtained that:

Q`
[g] =

τcmnc4

3z
g̃``Γ`

44

[
1 + 5zG

(
1
z

)
− G

(
1
z

)]
. (28)

In an isotropic Schwarzschild metric, after substitution of the Christoffel symbols, it is found that
the gravitational contribution to the heat flux in a simple dilute general relativistic fluid is:

Q`
[g] = τcnkBT

{
1 + 5zG

(
1
z

)
− G

(
1
z

)}
Φ,`, (29)

A similar expression was obtained for simple charged relativistic fluids in the presence of
electrostatic fields [21].

This effect vanishes in the non-relativistic case and is always present in the relativistic regime,
both in special and in general relativity, at least in the case of a static and symmetric metric. When the
limit z→ 0 (low temperature) is considered one obtains:

Q`
[g] =

5znmτcc4

2
Φ,`

c2 =
5nτck2T2

2m
Φ,`

c2 . (30)

This result is in agreement with the one presented in references [1,2].

5. Conclusions

It was shown that a gravitational field contributes to the heat flux of a simple dilute
general relativistic fluid. Covariant derivatives were explicitly introduced in Boltzmann’s equation
for structureless particles that follow geodesic trajectories in a static and isotropic space time.
The acceleration term in Boltzmann’s equation vanishes if this geodesic approach to the particle
dynamics is considered. The expression obtained leads to the low temperature result in which the
gravitational contribution to the heat flux corresponds to Φ,`

c2 which is negligible in comparison to
its thermal (Fourier) counterpart, as expected. The case of a flat space-time in Cartesian coordinates
was addressed in reference [2] where the covariant derivative vanishes (Christoffel symbols are zero).
In that case, the field coupling with the heat flux would survive if a linearized gravity approach is
taken into account.

In contrast with related works, the gravitational field is coupled with the heat flux and will
contribute to the entropy production; in other words, the curvature of space-time contributes to the
heat flux and produces entropy through the motion of the particles. A complete evaluation of the

entropy production (σ = − kB
c
∫

J( f f ′)ϕd∗v, with ϕ = ς f (1)

f (0)
and ς the Knudsen parameter) will be

addressed in a separate work.
Future work corresponds to the study of tensor effects, which involve viscosity coefficients and

the use of Christoffel symbols as thermodynamic forces. In the longer term a similar formalism will
be presented to thoroughly analyze the entropy production associated with a microscopic (quantum)
approach to the gravitational field.
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Appendix A

In this appendix, details of the gravitational field contribution to the heat flux presented in
Section 4 are described. Performing the summation over α in Equation (27) we have:

Q`
[g] =

τcmc2

z

∫
k` f (0)γ3

(k)

(
γ(k) − 1

) (
k1Γ1

44 + k2Γ2
44 + k3Γ3

44 + k4Γ4
44

)
d∗K, (A1)

which leads to :

Q`
[g] =

τcmc2

z

∫
f (0)γ3

(k)

(
γ(k) − 1

)
Γd∗K. (A2)

where factor Γ is:

Γ =


Γ1

44k(1)k(1) + Γ2
44k(1)k(2) + Γ3

44k(1)k(3) + Γ4
44k(1)k(4)

Γ1
44k(2)k(1) + Γ2

44k(2)k(2) + Γ3
44k(2)k(3) + Γ4

44k(2)k(4)
Γ1

44k(3)k(1) + Γ2
44k(3)k(2) + Γ3

44k(3)k(3) + Γ4
44k(3)k(4)

 . (A3)

In order to write Equation (A2) in covariant form, it will be used that g̃``k(`) = k(`) for ` = 1, 2, 3,

and thus k(1)k(1) =
(

k(1)
)2

. Taking into account that all the terms with the factor k(µ)k(ν)for µ 6= ν

vanish for parity reasons, we shall have:

Q`
[g] =

τcmc2

z

∫
f (0)γ3

(k)

(
γ(k) − 1

)


Γ1
44 g̃11

[
k(1)
]2

Γ2
44 g̃22

[
k(2)
]2

Γ3
44 g̃33

[
k(3)
]2

 d∗K. (A4)

Since the three integrals are equal and
[
k(1)
]2

+
[
k(2)
]2

+
[
k(3)
]2

= k2, Equation (A4) can be
written as:

Q`
[g] =

τcmc2

3z

∫
f (0)γ3

(k)

(
γ(k) − 1

)
k2 g̃``Γ`

44d∗K. (A5)

The next step is to express the integral in terms of γ(k):

Q`
[g] =

τcmc2

3z

∫ ∞

1
f (0)γ3

(k)

(
γ(k) − 1

) c2(γ2
(k) − 1)

γ2
(k)

g̃``Γ`
444πc3(γ2

(k) − 1)
1
2 dγ(k), (A6)

and after Juttner’s distribution function is substituted we obtain that:

Q`
[g] =

τcmnc4

3zK2(
1
z )

g̃``Γ`
44

∫ ∞

1
e−

γ(k)
z γ(k)

(
γ(k) − 1

)
(γ2

(k) − 1)
3
2 dγ(k), (A7)

from where the field contribution to the heat flux is given by Equation (28):

Q`
[g] = τcnkBT

{
1 + 5zG

(
1
z

)
− G

(
1
z

)}
Φ,`,

where the substitution of g̃``Γ`
44 values has been performed.
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