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Abstract: This paper addresses entropy generation in the flow of an electrically-conducting couple
stress nanofluid through a vertical porous channel subjected to constant heat flux. By using the
Buongiorno model, equations for momentum, energy, and nanofluid concentration are modelled,
solved using homotopy analysis and furthermore, solved numerically. The variations of significant
fluid parameters with respect to fluid velocity, temperature, nanofluid concentration, entropy
generation, and irreversibility ratio are investigated, presented graphically, and discussed based on
physical laws.
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1. Introduction

A striking feature of nanofluids is the inclusion of nanosized metallic particles with high thermal
properties to a working base fluid to enhance their thermal properties. Commonly used nanoparticles
are gold (Ag), aluminum (Al), copper (Cu), and their oxides. Interestingly, Cu is usually used in many
energy conversion processes because it is abundant in nature and inexpensive. At the forefront of
these findings is the pioneering work done by Choi [1] on the heat transfer enhancement of fluids with
low thermal conductivity. Subsequently, Sheikholeslami et al. [2] performed an analysis to enhance
the flow and thermal structure in rotating systems. A similar investigation was also conducted by
Sheikholeslami et al. [3] for a magnetohydrodynamic Cu–water nanofluid in a cylindrical passage.
Also, Das [4] investigated the radiative magnetohydrodynamic flow over a stretching sheet subjected to
slippage. In a study by Heris et al. [5], a Cu–water nanofluid in a tube was examined. Sheikholeslami
and Ganji [6] considered the heat transfer of a squeezed Cu–water nanofluid channel flow. Domairry
and Hatami [7] analysed the Cu–water nanofluid channel flow using the Maxwell–Garnetts and
Brinkman models. Das et al. [8] presented the radiative hydromagnetic buoyancy-induced flow
and heat transfer of a Cu–water nanofluid. Hayat et al. [9] investigated the steady MHD Cu–water
nanofluid flow on a rotating porous disk. In all the above studies, the Newtonian constitutive model
has been used to describe the rheological properties of the fluid. In general, due to technological
advancements, there are huge applications for non-Newtonian nanofluids that show more complex
rheological properties. In the mechanical engineering and thermal community, for instance, Nadeem
and collaborators introduced the wave concept in the study of a couple stress fluid that contains
nanoparticles in order to explain arterial flow [10]. Similarly, an analysis was performed for stagnation
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point flow over a stretching sheet [11]. Furthermore, Awais et al. [12] considered couple stress
nanofluid fluids in a vertical configuration and subjected them to Newtonian heating. Hayat et al. [13]
presented a comprehensive analysis of magnetohydrodynamics using the couple stress nanofluid
concept. More recently, Hayat et al. [14] examined the hydromagnetic flow of squeezed couple stress
nanofluids through a channel.

The unavailability of energy has been a major challenge in the energy industry globally, as a
good percentage of the energy generated is dissipated as heat in transport. Therefore, since heat
transfer processes are irreversible, the place and role of entropy generation minimization in the
nanofluid flow and heat transfer cannot be over-emphasized in energy conservation and management.
Based on this, Bejan [15,16] used the second law of thermodynamics to describe the minimization of
entropy generation in an irreversible process by accounting for the component and sub-component that
depletes the available energy for work. Also, Ibáñez et al. [17] reported the global entropy in a radiative
nanofluid flow through a micro-channel with slippage. Hussain et al. [18] investigated MHD mixed
convection and entropy generation under an inclined magnetic field. The forced convective flow of
CuO–water nanofluids that filled the lid-driven cavity with inclined magnetic fields was investigated
in [19]. Kefayati [20] studied heat transfer and entropy generation analysis for free convective
non-Newtonian nanofluid in a square cavity. Fersadou et al. [21] studied the entropy generation in
radiative MHD convective heat-generating nanofluid flow in a porous channel. Hossein et al. [22]
studied the entropy analysis for a transient MHD nanofluid flow over an accelerating stretching
permeable membrane. Cho [23] investigated the entropy generation in hydromagnetic convective
Cu–water nanofluid flow in a cavity with complex-wavy surfaces. More recently, Chen et al. [24]
reported on an MHD water–alumina nanofluid through a vertical channel. Interested readers can read
more on recent works with or without entropy generations in [25–34] and the references therein.

Motivated by the study in [25], the specific objective of the present study is to examine entropy
generation in the convective flow of couple stress nanofluid with thermophoretic, Brownian motion
and constant heat flux in consideration. There are several applications of the present study in
mechanical and thermal engineering, for instance, in the crude pyrolysis and heating of other biomass
and bioenergy processes. The mathematical problem under discussion is coupled and nonlinear as
presented in the model formulation in Section 2. By using a convergent series solution, we obtain a
reliable approximate solution for both dimensionless velocity and temperature equations which are
presented in Section 3. Entropy generation analysis is presented in Section 4 of the paper. In Section 4
numerical results and discussion are presented, while Section 5 concludes the work.

2. Mathematical Analysis

Consider the convective flow of an incompressible electrically-conducting couple stress nanofluid
through a vertical channel of width h apart as shown in Figure 1. The vertical channel is subjected
to constant heat flux in one part of the channel and is cooled at the other wall. The present study is
done in the presence of a transversely imposed external magnetic field of strength B0 which is applied
parallel to the y-axis. The magnetic Reynolds number and the induced electric field are assumed to be
small and negligible.

Therefore, the equations governing the fluid flow are as follows:

−ρv0
du′

dy′
= − dP

dx
+ µ

d2u′

dy′2
− η

d4u′

dy′4
− σB2

0u′ + ρgβT (T − T0) + ρgβC (C− C0) (1)

−v0
dT
dy′

=
k

(ρCP) f

d2T
dy′2
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µ

(ρCP) f

(
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dy′

)2
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η

(ρCP) f

(
d2u′
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+
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0
(ρCP) f

u′2

+τ

(
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dy′

dC
dy′

+
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(
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+
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−v0
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= DB
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dy′2

+
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d2T
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The non-slip and the non-moving walls, as well as the stress-free and surface constant heat fluxes are
given by:

u′ = 0 = d2u′

dy′2
, dT

dy′ = −
qW
k , C = C1 at y′ = 0,

u′ = 0 = d2u′

dy′2
, T = T0, C = C0 at y′ = h.

 (4)

where u′ is the axial velocity, ρ is the fluid density, v0 is the scale of suction velocity, P is the pressure,
µ is the dynamic viscosity, η is is the fluid particle size effect due to couple stresses, σ is electrical
conductivity, g is the acceleration due to gravity, βT is the volumetric coefficient of thermal expansion,
βC is the coefficient of concentration expansion, T is the fluid temperature, T0 is is the ambient
temperature, C is the fluid concentration, C0 is the ambient fluid nanoparticle concentration, k is
the thermal conductivity, Cp is the specific heat, τ is the ratio of the heat capacity of the fluid
of the nanoparticle material to the effective heat capacity of the base fluid, DB is the chemical
molecular diffusivity of the species concentration, DT is the thermophoretic diffusion, Q0 is the
uniform volumetric heat heat generation/absorption coefficient, and qw is the constant heat flux.

Figure 1. Physical model of the problem.

Introducing the following dimensionless parameters and variables,

y =
y′

h
, u =

u′

v0
, θ =

T − T0

∆T
, φ =

C− C0

∆C
, Pr =

(ρCp) f ν

k
, a2 =

h2µ

η
, H2 =

σB2
0h2

µ
,
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h2gβT∆T

v0ν
, GrC =
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v0ν

, qW =
k∆T

h
, NT =

τDT∆T
T0ν

, τ =
(ρCP)P
(ρCP) f

, λ =
h2Q0

k∆T

NB =
τDB∆C

ν
, Sc =

ν

DB
, Ω =

T0
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, Γ =

C0

∆C
, s =

v0h
ν

, Br =
µv2

0
k∆T

, G = − h2

v0µ

dP
dx

(5)

Equations (2)–(4) then become

d4u
dy4 = a2

(
G + s

du
dy

+
d2u
dy2 − H2u + GrTθ + GrCφ

)
; (6)

d2φ

dy2 = −
(

sSc
dφ

dy
+

NT
NB

d2θ

dy2

)
; (7)

d2θ

dy2 = −λ− Pr

(
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dθ
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+ NB
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(
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(
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)2
+

1
a2

(
d2u
dy2

)2)
; (8)

u (0) = u′′ (0) = 0 = u (1) = u′′ (1) , φ (0) = 1, φ (1) = 0, θ′ (0) = −1, θ (1) = 0 (9)
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where a2 denotes couple stress inverse parameter, G is the modified pressure gradient, H stands for
the magnetic field intensity parameter, GrT the thermal Grashof number, GrC stands for the solutal
Grashof number, Sc is the Schmidt number, NT is the thermophoretic parameter, NB is the Brownian
motion parameter, λ denotes the constant heat source parameter, Pr is the Prandtl number, and Br is
the Brinkman number.

3. Entropy Analysis

The local entropy generation rate per unit volume can be expressed as:

Eg =
k

T2
0 (ρCP) f

(
dT
dy

)2
+

µ

T0 (ρCP) f

(
du′

dy′

)2
+

σB2
0u′2

T0 (ρCP) f
+

η
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(
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dy′2

)2

+
DB (ρCP)p

C0 (ρCP) f

(
dC
dy′
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+
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T0 (ρCP) f

(
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dT
dy′

dC
dy′

+
DT
T0

(
dT
dy′

)2
) (10)

Equation (10) can be written in dimensionless form as:

Ns =
(

1 +
NT Pr

Ω

)(
dθ

dy

)2
+
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Ω

[
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(
du
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+
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(
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(11)

Let

M1 =

(
1 +

NT Pr
Ω

)(
dθ

dy

)2

,M2 =
Br
Ω

[
H2u2 +

(
du
dy

)2

+
1
a2

(
d2u
dy2

)2]
, M3 =

NB Pr
Ω

(
dθ

dy
dφ

dy
+

Γ
Ω

(
dφ

dy

)2
)

(12)

Then M1 is the heat transfer irreversibility and M2 is the fluid friction irreversibility, while M3

is the diffusive irreversibility. The Bejan number (Be) which represents the ratio of the heat transfer
irreversibility to the total entropy generation is given as:

Be =
M1

M1 + M2 + M3
(13)

4. Methodology of Solution

We propose a series of analytical solutions for the system of coupled nonlinear differential
Equations (6)–(8) subject to the boundary conditions of Equation (9) via the homotopy analysis method
(HAM) as described in [35,36]. To solve (6)–(8) we choose the initial approximation estimates u0, θ0

and φ0 as follows:

u0 =
a2G
24

y(y− 1)
(

y2 − y− 1
)

, θ0 =
1
2
(1− y) (λy + λ + 2) and φ0 = 1− y (14)

which satisfies the boundary conditions of Equation (9), and the linear operators Lu, Lθ and Lφ are also
defined as:

Lu =
d4

dy4 , Lθ =
d2

dy2 and Lφ =
d2

dy2 (15)

with the properties

Lu

[
c1 + c2y +

1
2

c3y2 +
1
6

c4y3
]

= 0 (16)

Lθ [c5 + c6y] = 0 (17)

Lφ [c7 + c8y] = 0 (18)
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where ci(i = 1.8) are the arbitrary integration constants determined from the boundary conditions.
If p ∈ [0, 1] denotes an embedding parameter, and h̄u, h̄θ and h̄φ are the non-zero parameters, then the
zeroth order deformation problems are:

(1− p) Lu [û (y; p)− u0 (y)] = ph̄uN1
[
û(y; p), θ̂(y; p), φ̂(y; p)

]
(19)

(1− p) Lθ

[
θ̂ (y; p)− θ0 (y)

]
= ph̄θ N2

[
û(y; p), θ̂(y; p), φ̂(y; p)

]
(20)

(1− p) Lφ

[
φ̂ (y; p)− φ0 (y)

]
= ph̄φN3

[
θ̂(y; p), φ̂(y; p)

]
(21)

Subject to the conditions

û(0; p) = û′′(0; p) = 0, û(1; p) = û′′(1; p) = 0, θ̂′(0; p) = −1, θ̂(1; p) = 0, φ̂(0; p) = 1, φ̂(1; p) = 0
(22)

where N1, N2 and N3 are the nonlinear operators defined as follows:

N1
[
û(y; p), θ̂(y; p), φ̂(y; p)

]
=

1
a2

∂4û(y; p)
∂y4 − G− s

∂û(y; p)
∂y

− ∂2û(y; p)
∂y2 + H2û(y; p)

−GrT θ̂(y; p)− GrC φ̂(y; p) (23)

N2
[
û(y; p), θ̂(y; p), φ̂(y; p)

]
=

∂2 θ̂(y; p)
∂y2 + λ + Pr

s
∂θ̂(y; p)

∂y
+ NB

∂φ̂(y; p)
∂y

∂θ̂(y; p)
∂y

+ NT

(
∂θ̂(y; p)

∂y

)2


−Br

(
H2û(y; p)2 +

(
∂û(y; p)

∂y

)2

+
1
a2

(
∂2û
∂y2

)2)
(24)

N3
[
θ̂(y; p), φ̂(y; p)

]
=

∂2φ̂(y; p)
∂y2 +

(
Scs

∂φ̂(y; p)
∂y

+
NT

NB

∂2 θ̂(y; p)
∂y2

)
(25)

for p = 0 and p = 1 we have

û(y; 0) = u0(y), θ̂(y; 0) = θ0(y), φ̂(y; 0) = φ0(y), û(y; 1) = u(y), θ̂(y; 1) = θ(y), φ̂(y; 1) = φ(y) (26)

When p variation is taken from 0 to 1, then u(y; p), θ(y; p) and φ(y; p) approach u0(y), θ0(y) and
φ0(y), becoming u(y), θ(y) and φ(y). Now, expanding u(y; p), θ(y; p) and φ(y; p)in Taylor’s series
with respect to p yields the following:

u(y; p) = u0(y) +
∞

∑
n=1

un(y)pn (27)

θ(y; p) = θ0(y) +
∞

∑
n=1

θn(y)pn (28)

φ(y; p) = φ0(y) +
∞

∑
n=1

φn(y)pn (29)

where

un(y) =
1
n!

∂nu(y; p)
∂pn |p=0 , θn(y) =

1
n!

∂nθ(y; p)
∂pn |p=0 and φn(y) =

1
n!

∂nφ(y; p)
∂pn |p=0 (30)
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By proper choice of the auxiliary linear operator, initial guess and auxiliary parameter, the series
above converge from p = 1 and hence

u(y) = u0(y) +
∞

∑
n=1

un(y) (31)

θ(y) = θ0(y) +
∞

∑
n=1

θn(y) (32)

φ(y) = φ0(y) +
∞

∑
n=1

φn(y) (33)

is the one of the solutions of the original nonlinear equation, as proved by [35]. The nth order
deformation is

Lu [un(y)− χnun−1(y)] = h̄uRn
u(y) (34)

Lθ [θn(y)− χnθn−1(y)] = h̄θ Rn
θ (y) (35)

Lφ [φn(y)− χnφn−1(y)] = h̄φRn
φ(y) (36)

subject to the boundary conditions:

un (0) = u′′n (0) = 0 = un (1) = u′′n (1) , θ′n (0) = θn (1) = 0 , φn (0) = φn (1) = 0, (37)

and

Rn
u(y) =

1
a2 uiv

n−1 − (1− χn) G− su′n−1 − u′′n−1 + H2un−1 − GrTθn−1 − GrCφn−1 (38)

Rn
θ (y) = θ′′n−1 + (1− χn)λ + Pr

(
sθ′n−1 +

n−1

∑
k=0

φ′n−1−kθ′k + NT +
n−1

∑
k=0

θ′n−1−kθ′k

)
(39)

+Br

(
H2

n−1

∑
k=0

un−1−kuk +
n−1

∑
k=0

u′n−1−ku′k +
1
a2

n−1

∑
k=0

u′′n−1−ku′′k

)
(40)

Rn
φ(y) = φ′′n−1 + Scsφ′n−1 +

NT
NB

θ′′n−1 (41)

χn =

{
0, n ≤ 1;
1, n > 1.

(42)

The general solution of equations are given by:

un(y) = u∗n(y) + c1 + c2y +
1
2

c3y2 +
1
6

c4y3 (43)

θn(y) = θ∗n(y) + c5 + c6y (44)

φn(y) = φ∗n(y) + c7 + c8y (45)

where u∗n, θ∗n and φ∗n are the particular solutions. Constants ci(i = 1.8) are determined by the boundary
conditions equation.

With the help of symbolic packages such as MATHEMATICA or MAPLE, Equations (34)–(37) can
be solved one after the other in the order n = 1, 2, 3, . . .. All computational work in this present study
has been carried out by utilizing symbolic software MAPLE 18, running on an intel fifth-generation
computer of 6G RAM. The above computational work may take quite a long solution time mainly
due to the lengthy series solution. For example, it takes 8733.484 CPU time for the computation of the
15th-order approximation.
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5. Convergence of the HAM Solution

The convergence of the homotopy solution strongly depends on the values of the auxiliary
parameters h̄u, h̄θ and h̄φ. These parameters are used to control the convergence region of the HAM
solution. To choose the admissible range for these parameters, the h̄− curves are plotted for the
15th-order approximation and are displayed in Figure 2. Clearly, from Figure 2a–c, the admissible
range for h̄u, h̄φ and h̄θ is 0 ≤ h̄u ≤ 1.3, −1.7 ≤ h̄u ≤ −0.1 and −0.6 ≤ h̄u ≤ −0.1, respectively.

Figure 2. Variations of convergence parameters in the solutions.

6. Discussion of Results

In the present section, both tabular and graphical representation of the solutions to the coupled
couple stress nanofluid model are presented. Tables 1 and 2 represents the validation of the result with
that obtained numerically. The results of the computation clearly show good agreement.
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Table 1. a = Sc = 2, G = H = s = λ= 1, GrT = GrC = NB = NT = 0.1, Pr = 6.2, Br = 10, h̄u = 1.0,
h̄φ = h̄θ = −0.4.

y u HAM u RK4 Abs. Error θ HAM θ RK4 Abs. Error

0 0.00000 0.00000 0.000 0.39475 0.39473 1.6129 × 10−5

0.1 0.01212 0.01212 3.952 × 10−7 0.30974 0.30972 2.0124 × 10−5

0.2 0.02282 0.02282 7.308 × 10−7 0.24748 0.24746 2.1147 × 10−5

0.3 0.03104 0.03104 9.892 × 10−7 0.19967 0.19965 2.8675 × 10−4

0.4 0.03612 0.03612 1.155 × 10−6 0.16087 0.16082 4.7640 × 10−4

0.5 0.03772 0.03772 1.236 × 10−6 0.12763 0.12758 3.2397 × 10−4

0.6 0.03575 0.03575 1.246 × 10−6 0.09787 0.09795 7.9192 × 10−4

0.7 0.03042 0.03042 1.222 × 10−6 0.07056 0.07083 2.7514 × 10−4

0.8 0.02218 0.02218 1.174 × 10−6 0.04524 0.04565 4.1654 × 10−4

0.9 0.01171 0.01171 1.092 × 10−6 0.02180 0.02212 3.2119 × 10−4

1.0 0.00000 0.00000 9.20 × 10−7 0.00000 0.00000 2.0000 × 10−7

Table 2. a = Sc = 2, G = H = s = λ= 1, GrT = GrC = NB = NT = 0.1, Pr = 6.2, Br = 10, h̄u = 1.0,
h̄φ = h̄θ = −0.4.

y φ HAM φ RK4 Abs. Error

0 1.0000000 1.0000000 0.0000000
0.1 0.8387730 0. 8387837 1.07275 × 10−5

0.2 0.6862309 0.6863211 9.01931 × 10−5

0.3 0.5483278 0.5484970 1.6923 × 10−4

0.4 0.4273287 0.4275787 2.5002 × 10−4

0.5 0.3231850 0.3235501 3.65135 × 10−4

0.6 0.2346430 0.2351325 4.84783 × 10−4

0.7 0.1599510 0.16044790 5.280647 × 10−4

0.8 0.0972060 0.0976057 3.99661 × 10−4

0.9 0.0444898 0.0446433 1.534344 × 10−4

1.0 0.0000000 0.000000 0.00000000

In Figure 3 the results obtained by using HAM are validated numerically by using the fourth–fifth
order Runge–Kutta–Fehlberg method RK4; the result shows an excellent agreement in the three cases
thus showing the strength of the method in handling coupled nonlinear problems. Evidently, the
computation suggests the uniqueness of the solutions. Figure 4 demonstrates the effect of the couple
stress inverse parameter on the flow profiles. As seen from the plot in Figure 4a, the couple stress
inverse parameter is seen to elevate all the profiles except for the Bejan number. The physical reason
is that, as the couple stress inverse parameter increases, the flow velocity increases due to shear
thinning of the fluid. Therefore, it enhances the temperature too due to the increasing inter-molecular
interactions as presented in Figure 4c. More so, as seen in Figure 4b, the rise in flow and temperature
elevates the entropy generation in the porous channel across the channel width, and this decreases
the heat transfer rate in the flow domain. Therefore, heat irreversibility due to frictional interaction
and diffusion dominates over the heat transfer irreversibility in the flow channel as reported in
Figure 4d. In the real sense, the reverse phenomenon is experienced as the couple stress inverse
parameter increases.
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Figure 3. Validation of solutions.

Figure 4. Cont.
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Figure 4. Influence of couple stress inverse parameters.

Figure 5 depicts the response of the variation in Brinkman number to the flow profiles. In Figure 5a,
an increase in Brinkman number is observed to enhance the fluid flow velocity. This is true since
increasing the value of Brinkman number leads to a rise in the heat transfer rate from the channel wall
to the couple stress nanofluid within the flow channel. As a result, there is a rise in the kinetic energy
of the fluid particles in the core region of the channel. Thus, an increase in Brinkman number is seen
to improve the fluid temperature of the fluid particles closer to the heat flux region due to external
heating of the channel wall as shown in Figure 5c. The combined effect of the enhance flow and heat
transfer is seen to elevate the entropy generation rate in the flow channel in Figure 5b and decreases
the heat transfer irreversibility. As a result, the diffusive and frictional heat irreversibility dominates
over the transfer irreversibility as presented in Figure 5d. In Figure 6, the effects of the thermal Grashof
number on the overall structure is presented. As the temperature of the fluid rises, the volumetric
thermal expansion increases. This enhances the fluid flow velocity (see Figure 6a) since the density of
the fluid decreases. The inter-molecular bonds maintaining the fluid particles weaken with increasing
thermal Grashof number, and therefore, the fluid temperature increases due to increased inter-particle
collision as seen in Figure 6c. Entropy generation, therefore, rises due to irreversible heat flow, the
destructive nature of the chemical reaction thus leading to the dominance of thermal irreversibility
due to frictional forces and diffusion over irreversibility due to heat transfer as observed in Figure 6b,d,
respectively. Similar behaviour is experienced as the solutal Grashof number increases in Figure 7.

Figure 5. Cont.
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Figure 5. Influence of the Brinkman number.

Figure 6. Influence of the thermal Grashof number.
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Figure 7. Effects of the solutal Grashof number.

Figure 8a shows the interaction of couple stress nanofluid particles with the external magnetic
field imposed across the flow channel. As seen in the plot provided in Figure 8a, as the magnetic
field intensity parameter increases, the flow velocity declines due to particle agglomeration and
the retarding action of the Lorentz forces as the Hartman number increases. As a result, the fluid
temperature decreases as seen in Figure 8c. The decrease in the flow and temperature profiles led to
decline in the entropy generation within the flow channel as shown in Figure 8b. This means that
irreversibility due to fluid friction will be higher than the diffusive and heat transfer irreversibility as
shown in Figure 8d.
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Figure 8. Effects of the Hartmann number.

In Figure 9, the effects of a constant heat source on the velocity and temperature profiles
are illustrated. From the result in Figure 9a, an increase in the heat source parameter is seen to
enhance the flow velocity due to shear thinning property associated with decreased fluid viscosity
as the temperature rises. However, as the couple stress fluid is heated, it expands with increased
buoyancy-force and the fluid temperature increases as seen in Figure 9c. In Figure 9b, an increase in
the heat source parameter is observed to decrease the fluid concentration profile. This is physically
correct due to the destructive nature of the chemical reaction. As a result, the entropy generation rises
across the flow channel as seen in Figure 9d and heat irreversibility dominates the Bejan number as
reported in Figure 9e.
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Figure 9. Effects of constant heat source parameters.

Figure 10 represents the effect of Schmidt number on the flow profiles. As seen in Figure 10a,
an increase in Schmidt number is seen to decrease the fluid flow velocity. This is because of the
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increased viscous force within the flowing fluid layers. This leads to reduced fluid temperature since
fluid particle collision is discouraged as seen in Figure 10c. Moreover, an increase in Schmidt number
is seen to decrease the concentration of the reacting species due to reduced diffusive force in the couple
stress nanofluid. The net balance is noted in Figure 10b. In Figure 10d, entropy generation is seen to be
higher in the region subjected to constant heat flux while it declines at the other part of the channel.
Subsequently, this resulted in minimal heat transfer irreversibility in the area exposed to heat flux
while it dominates over both the diffusive and frictional irreversibility at the other part of the channel
as presented in Figure 10e.

Figure 10. Effects of the Schmidt number.



Entropy 2017, 19, 580 16 of 19

Figure 11 represents the variations of the dimensionless Brownian motion coefficient. From the
random motion it is seen to distort the laminar motion of the fluid particles as seen in Figure 11a
while it enhances the fluid inter-particle collision. As a result, the fluid temperature rises as seen in
Figure 11b. By increasing the randomized motion coefficient, the chemical reaction profile is decreased
due to destructive nature of the reaction. This elevates the entropy generated in the flow region as
reported in Figure 11d and heat irreversibility due to diffusion dominates at the suction wall only,
but in the core area, heat transfer irreversibility dominates over the frictional and diffusive
irreversibility.

Figure 11. Effects of the Brownian motion parameter.
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As the thermophoresis parameter increases, there is a rise in fluid velocity as shown in Figure 12a.
In Figure 12b, as the thermophoresis parameter increases, there is an increase in the fluid temperature
due to increased temperature gradient since heated fluid particles tend to migrate from the hot region
of the channel to cold area as seen in Figure 12b. This further elevates the concentration profile as
displayed in Figure 12c. Evidently, the entropy generated within the region is expected to rise as
reported in Figure 12d. Finally, Figure 12e, heat transfer irreversibility is expected to dominate over
irreversibility from viscous dissipation and diffusion.

Figure 12. Thermophoresis effect.
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7. Conclusions

In this work, the flow and heat transfer in a magnetohydrodynamic Cu–water couple stress
nanofluid through a vertical channel subjected to constant heat flux has been studied. The equations
governing the fluid flow are formulated, non-dimensionalized, and solved using the homotopy analysis
method and are validated numerically. These solutions were shown to be convergent and were used to
compute the entropy and Bejan profiles. The major contribution to knowledge is that, for adequate
energy conservation and management, parameters leading to increase entropy generation in the flow
channel need to be minimized for optimal performance of the thermo-fluid set up.
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