
entropy

Article

Instance Selection for Classifier Performance
Estimation in Meta Learning

Marcin Blachnik

Department of Applied Informatics, Silesian University of Technology, 44-100 Gliwice, Poland;
marcin.blachnik@polsl.pl; Tel.: +48-32-603-4170

Received: 20 September 2017; Accepted: 23 October 2017; Published: 1 November 2017

Abstract: Building an accurate prediction model is challenging and requires appropriate model
selection. This process is very time consuming but can be accelerated with meta-learning–automatic
model recommendation by estimating the performances of given prediction models without training
them. Meta-learning utilizes metadata extracted from the dataset to effectively estimate the accuracy
of the model in question. To achieve that goal, metadata descriptors must be gathered efficiently and
must be informative to allow the precise estimation of prediction accuracy. In this paper, a new type of
metadata descriptors is analyzed. These descriptors are based on the compression level obtained from
the instance selection methods at the data-preprocessing stage. To verify their suitability, two types
of experiments on real-world datasets have been conducted. In the first one, 11 instance selection
methods were examined in order to validate the compression–accuracy relation for three classifiers:
k-nearest neighbors (kNN), support vector machine (SVM), and random forest. From this analysis,
two methods are recommended (instance-based learning type 2 (IB2), and edited nearest neighbor (ENN))
which are then compared with the state-of-the-art metaset descriptors. The obtained results confirm
that the two suggested compression-based meta-features help to predict accuracy of the base model
much more accurately than the state-of-the-art solution.

Keywords: machine learning; classification; instance selection; meta-learning; accuracy estimation

1. Introduction

The data mining process consists of four stages, which are: (1) data collection; (2) data
preprocessing (of all data transformation elements, for example feature normalization, instance
or feature selection [1], discretization [2], and type conversion); (3) prediction model construction
(e.g., k-nearest neighbors (kNN), decision trees, and kernel methods) [3]; and finally (4) data
postprocessing (see Figure 1). In real applications, when an accurate model is needed the process
requires a search for the best combination among the elements available in stages (2) and (3).
This significantly increases the computational complexity (we have to find the combination of
preprocessing elements which best supports given prediction model) thus causing a rise in the expenses
of building the prediction system and a longer computational time.

There are several solutions to this problem (for example [4]), but one of the most robust solutions
is meta-learning [5], which is designed to accelerate stage (3). It is based on representing the training
set, which consists of n feature vectors by a single meta-date instance, and then uses it as an input to
the meta-model which returns the estimate of the accuracy without training the actual (base) model [6].
The obtained values for different base models are ranked from the best to the worst and only the best
model with the highest estimated accuracy is finally trained on the entire training set.

Entropy 2017, 19, 583; doi:10.3390/e19110583 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19110583 
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 583 2 of 25

Figure 1. The data mining process with search loops, firstly to optimize predictive model type and its
parameters, and secondly to optimize and select preprocessing operations. kNN: k-nearest neighbors;
SVM: support vector machine.

The quality of the meta-learning system greatly depends on the quality of the meta-descriptors.
In the beginning, these were simple statistics calculated per attribute or information theory measure
(e.g., information gain) which can be obtained very quickly but usually are not very informative. Great
progress was made with the introduction of landmark descriptors [7]. They are based on performances
obtained by simple and “fast” algorithms like naive Bayes, decision trees, or one nearest neighbor
(1NN). These descriptors are very informative and provide important insights into the nature of the
data, but on the other hand this radically increases computational complexity. The research to identify
good data descriptors is still open and an overview is provided in Section 3.

In this paper we also address this topic, but in contrast to the other researchers we postulate
utilizing knowledge which can be extracted from the preprocessing stage, from the instance selection
methods. These type of methods are commonly used for two purposes: data cleansing, and training set
size reduction by eliminating redundant training samples. In other words, instance selection methods
take as an input training set T and return a new dataset P such that P ⊂ T. In this paper we show that
the relation between T and P is a very good landmark for the meta-learning system for example by
considering the training set compression (see Equation (1)). Intuitively, when the training set T can be
significantly compacted, the classification problem should not be difficult. High classification accuracy
should be easy to achieve, and in the opposite case, with low compression, the problem is expected
to be difficult and low accuracy can be expected. An inverse relation appears for cleansing methods
where the increase in compression corresponds to a deterioration of the accuracy. The main thesis of
this paper that compression of selected instance selection methods is a good meta-data descriptor for
estimating the accuracy of selected machine learning methods. Thus, we reuse information extracted
from the preprocessing stage that was obtained without any computational effort, and use it to
construct new landmarks.

As mentioned above, particular instance section methods were designed with different aims
(cleansing, compression), so the relationship between T and P can reflect different properties of the
training set. In order to validate this relation we examined a set of 11 instance selection methods and
analyzed the relationship between compression and prediction accuracy. Having obtained the results
we identify which algorithms can be used as landmarks for meta-learning. The study is based on
empirical analysis on 80 datasets.

The paper is structured as follows. First, we discuss the state-of-the-art in instance selection and
meta-learning, where the most popular algorithms are described in more detail, and then we show
and discuss which and why particular evaluated instance selection methods are good landmarks.
In Section 5 we perform real-world experiments on meta-learning systems, and finally in Section 6 we
summarize the obtained results and draw further research directions.



Entropy 2017, 19, 583 3 of 25

2. The Instance Selection Methods

The purpose of the instance selection methods is to remove data samples. They take as an
input the entire training set T consisting of n samples (T = {(x1, y1), (x2, y2), . . . (xn, yn)}, xi ∈ <m,
yi = {s1, s2, ..., sc}, where si denotes i-th symbol), and then eliminate from it useless samples, returning
the remaining ones denoted as P. The difference between cardinality of the input dataset n and the
output dataset ‖P‖ = n′, divided by the cardinality of the input dataset n, is called compression.

cmp = 1− n′

n
(1)

Note that a cmp approaching 1 represents a scenario in which n′ � n, which means many
samples are removed from the training set (we would call it high compression as cmp is close to 1) and
respectively when cmp is close to 0 or in other words small compression appears when n′ ' n, that
means just few instances were removed from T.

In instance selection algorithms, the decision of selection or rejection of particular sample or
samples is made by optimizing one of two or both objectives, which are:

• Type-I: Maximization of the accuracy of the classifier. This objective is achieved by eliminating
noise samples,

• Type-II: Minimization of the execution time of the classifier. This objective is achieved by reducing
the number of reference vectors, and keeping the selected subset of samples as small as possible
by rejecting all redundant ones.

Note that this taxonomy is just one possible presentation (a more detailed view can be found
in [8]), however it is crucial as these two type of algorithms behave differently considering the relation
between compression and prediction accuracy. An illustrative example of the accuracy–compression
relation was presented in our preliminary paper [9]. A theoretical background of sampling and instance
selection derived from the information theory can be found in [10].

In the paper we use and compare 11 instance selection algorithms, but for 2 of them additional
configuration settings are used, so in total we have 13 methods to compare. This set of algorithms
includes older ones like the condensed nearest neighbor rule (CNN) and the edited nearest neighbor
(ENN) through to the decremental reduction optimization procedure (Drop) family developed at the
end of the 1990s, to the more modern algorithms such as the modified selective subset (MSS). These are:

• CNN [11]. It is an ancestor of all condensation methods, and thus it belongs to the Type-II group.
It starts by randomly selecting one representative instance per class, and adds it to the reference
set P (the dataset T remains unchanged while the algorithm works), and then starts the main loop
where each misclassified instance from T by the nearest neighbor classifier trained on P is added
to P. The algorithm stops when all the instances in T are correctly classified.

• IB2. This was developed by Aha et al. as an instance-based learning [12] algorithm (version 2).
It is very similar to CNN; it also starts by selecting one sample per class, adding it to P, but it only
once iterates over all samples in the data, trying to add them to P if an instance is misclassified.
It is also a representative of a Type-II family.

• Gabriel graph editing (GGE) [13]. This method builds a Gabriel graph over training data and then
selects border samples and stores them in P. Border samples have at least one instance of another
class in their neighborhood according to the Gabriel graph, and therefore this is a Type-II method.
The Gabriel graph is determined by validating condition

∀
a 6=b 6=c

‖xa − xb‖2
2 > ‖xa − xc‖2

2 + ‖xb − xc‖2
2 (2)

between every three instances, where {xa, xb, xc} are instances from T, and ‖·‖2
2 denotes the square

of the L2 norm. However, there is is another known version of the Gabriel graph editing method,



Entropy 2017, 19, 583 4 of 25

which keeps the remaining samples in P and the border samples are removed. In this case it works
as a Type-I method, being a regularization for kNN. In the experiments we used the first approach,
which keeps the border samples only.

• Relative neighbor graph editing (RNGE) [13]. This method is very similar to GGE. The difference is in
the graph construction criteria, which is now defined as:

∀
a 6=b 6=c

‖xa − xb‖2 ≥ max(‖xa − xc‖2 + ‖xb − xc‖2) (3)

As shown in [13], the following relation takes place:

T ⊇ PVoronoi ⊇ PGGE ⊇ PRNGE (4)

where PVoronoi/GGE/RNG is a set of P returned by given instance editing algorithm. The PVoronoi
are border instances according to the Voronoi diagram.

• Edited nearest neighbor (ENN) [14]. This is another ancestor but for Type-I methods, and it is often
used as a preprocessing step before other instance selection algorithms. This algorithm analyzes
the neighborhood of the given query instance x. If this instance is misclassified by its k neighbors,
it is removed from P. Initially P = T.

• Repeated ENN (RENN) [15]. This method is an extension of the ENN algorithm where the ENN
algorithm is repeated until no instance is removed (also a Type-I method)

• All-kNN [15]. This is another extension of the ENN algorithm (Type-I method) where the ENN step
is repeated for a range of k = [kmin . . . kmax] values.

• Drop n. The decremental reduction optimization procedure is a family of five similar algorithms [16],
which can be assigned to a mixture of Type-I and Type-II methods. It can be explained as dropping
instances from P while at the beginning of the algorithm P = T. Drop algorithms are based on the
analysis of the associate array, which is defined as a set of indexes of instances having particular
instance xi in its neighborhood. In Drop 1 the algorithm analyzes if the removal of instance x
from the associates does not affect the classification accuracy, if so x is then removed. The Drop 5
algorithm is similar to the Drop 2 algorithm (thus only one was used in the experiments); again
it analyzes the effect of the removal of xi from the associates array, but in the analysis the order
of removal becomes crucial as instances are ordered according to the distance to the so-called
nearest enemy (the nearest vector from the opposite class) starting with the farthest instances first.
The Drop 3 and Drop 4 algorithms are similar to Drop 1 but before selection the ENN algorithm is
used to prune the dataset. These last two versions have not been used in the experiments; instead
Drop 1 and Drop 5 were analyzed.

• Iterative case filtering (ICF) [17]. This is a two-step algorithm. First, it applies the ENN algorithm to
prune noisy samples, then in the second step it finds a local set φ(x) for every instance xi (φ(xi)),
defined by the largest hypersphere centered at xi which includes only instances of the same class
as xi. The local set is then used to calculate two statistics:

Coverage(x) =
{

x′ ∈ T : x ∈ φ(x′)
}

(5)

Reachability(x) =
{

x′ ∈ T : x′ ∈ φ(x)
}

(6)

and if reachability(xi) > coverage(xi) then the sample xi is removed from P. ICF is another
example of a mixed Type-I and Type-II method.

• Modified selective subset (MSS) [18]. This is a modification of the selective subset algorithm proposed
by Ritter [19]. In the basic algorithm the authors define the so-called selective subset as a subset P,
which is consistent (all samples in the training set T are correctly classified by the nearest neighbor
rule based on P). Samples from the training set T must be closer to instances in P from the same
class, and P must be as small as possible. The modified version applies changes to the definition of
the selective subset, and selects examples which are closest to the nearest enemy of given sample.
It belongs to the Type-II family



Entropy 2017, 19, 583 5 of 25

A common strategy in the development of more recent instance selection algorithms is the
assembly of both objectives into one algorithm, for example as in noise removing based on minimal
consistent set (NRMCS) [20] or class conditional instance selection (CCIS) [21], or even in the Drops or
ICF, where first the noise filter is applied and then the condensation step starts. This usually results
in a better and more consistent set of reference vectors being obtained, but as we will further show,
these mixed type (Type-I and Type-II) methods negatively affect the relation between compression and
prediction accuracy. For more details of classical instance selection methods and their comparison
readers are referred to [8,22–24].

Instance selection methods are still under rapid development. Recent methods in the field first
solve other problems and then use classification, namely, regression problems as in [25–30], instance
selection in data streams as in [31–33], and time series classification [34,35], or build ensembles of
instance selection [36–40] and even create meta-learning systems, which automatically adjust a proper
instance selection method to a given dataset as in [41,42].

3. Meta-Learning

Meta-learning is the efficient selection of the best prediction model for a given training set T.
In other words, it is a recommendation system which recommends a prediction model for a given
training set. To achieve this goal, instead of validating each prediction model M() (base model) on
training set T, meta-data descriptors are extracted from T, so that the training set is represented as
a single instance of meta-data features and used by another previously trained meta-model (usually
a classical regression model) which predicts the quality of M() (the meta-model application frame in
Figure 2). This significantly reduces the computational complexity, because to select the best model
we do not need to train and optimize parameters of each M(), and instead estimate its accuracy by
using meta-data and the meta-model [43]. Each meta-model is trained for a single base model using a
meta-set (the meta-model training frame in Figure 2). Finally, the meta-set is obtained out of collection of
historical datasets (a repository) for which we already know both the meta-date descriptors and the
performance of the base model, so that each instance of the meta-set consists of both the meta-data
extracted from given dataset, and a label representing highest accuracy of the base model (see the
meta-set construction frame in Figure 2). In applications we need several meta-models, each dedicated
to a specific base model, for example one for the support vector machine (SVM), one for kNN, etc.
The obtained estimated performances of the base models are then ranked and the best one is selected
for final application. Another common approach replaces the regression-based meta-model with
the kNN model, which identifies the most similar dataset from the metaset (the nearest neighbors
according to the meta-feature space), and returns an aggregated ranking of the best models obtained
for each of the most similar datasets [44]. In the experiments we follow the first approach.

In both approaches the quality of the meta-model strongly depends on selected meta-data
descriptors also called meta-features, which should reflect the prediction power of given base model.
Note that we need a separate meta-model for each base model. An extension of this approach even
allows for the estimation of the value of hyper-parameters [45] of the base model or at least helps to
decide whether hyper-parameter optimization is needed [46].

The problem is finding good meta-data descriptors which would allow us to accurately estimate
the accuracy or other desired values like execution or training time, etc. The basic examples of
meta-learning can be found in the variable bias management system (VBMS) [47] which automatically
choses a learning algorithm based on two meta-parameters: the number of features and the number of
vectors, often extended by descriptors representing the number of features of given type.



Entropy 2017, 19, 583 6 of 25

Figure 2. The process of construction of a meta-learning system.

An extension of this idea is a meta-learning system which is based on a set of meta-variables
describing aggregated statistical and information theory properties of individual attributes and class
labels [5,6,48–50]. Commonly reported meta-features of this type include: canonical correlation for the
best single combination of features (called cancor1), canonical correlation for the best single combination
of features orthogonal to cancor1, the first normalized eigenvalue of the canonical discriminant matrix,
the second normalized eigenvalue of the canonical discriminant matrix, the mean kurtosis of attributes
of T, the mean skewness of attributes of T, the mean mutual information of class and feature, joint
entropy of a class variable and attribute, and entropy of classes, etc.

Another approach to determine valuable meta-data descriptors is the idea of landmarking [7,51].
It utilizes the relationship between the accuracies obtained by simple predictors with low computational
complexity such as naive Bayes, 1NN, decision tree, and complex data mining algorithms like SVM,
neural networks, or other systems. The selection of meta-features describing the dataset is the real
challenge. Various authors use different combinations of landmarks and not only provide performance
of the simple classifiers but also use model-based features where the structure of a simple model is
provided as a dataset descriptor. A common solution is based on unpruned decision tree properties
as described in [52]. In this case, to represent the complexity of the data, authors suggested the ratio
of the number of tree nodes to the number of attributes, the ratio of the number of tree nodes to the
number of training instances, the average strength of support of each tree leaf, the difference in the
gain-ratio between the attributes at the first splitting point of the tree building process, maximum
depth, number of repeated nodes, a function of the probabilities of arriving at the various leaves given
a random walk down the tree, the number of leaves divided by tree shape, and the number of identical
multi-node subtrees repeated in the tree.

In [53] the author studied a set of data complexity measures for classification problems to assess
the accuracy. He divided these measures into three groups: Group 1 is comprised of measures of
overlaps in feature values from different classes like the maximum Fisher’s discriminant ratio and the
maximal (individual) feature efficiency; Group 2 refers to measures of separability of classes which
include the minimized sum of error distance by linear programming, the error rate of linear classifier by linear
programming, the fraction of points on class boundary, the fraction of points on the class boundary, and the
error rate of the 1 nearest neighbor classifier; and Group 3 contains measures of geometry, topology, and
density of manifolds containing nonlineality of linear classifiers by linear programming and the fraction
of points with associated adherence subsets retained. These measures are then compared using three
artificially designed datasets and three classifiers: kNN, C4.5, and SVM, and indicate which measure
is suitable to which classifier. Recently, in [54] authors suggested the generalization of meta-feature



Entropy 2017, 19, 583 7 of 25

construction by defining a framework which covers all of already known meta-descriptors. It is based
on defining three elements of the so-called objects: the source of meta-data (e.g., the dataset, the simple
model, etc.); the meta-function (the element extracted from the object); and a post processing operation
(the aggregation function). An integrated approach which joins all popular types of meta-features is
available in the Pattern Recognition Engineering (PaREn) system [55] (recently renamed to MLWizard).
It was used in the experiments discussed in Section 5 as a reference solution (the list of meta-features
extracted by PaREn is available in Table 1).

Table 1. Description of the meta-features extracted by the PaREn meta-learning system. The aggregation
function column describes the function used to aggregate a list of values. If multiple functions are
provided, the final metaset contains a separate feature for each aggregation function.

Description Aggregation Function

The number of samples none

The number of attributes none

The number of classes none

The number of numerical attributes none

The number of nominal attributes none

The ratio of the number of numerical features to the number of all features none

The ratio of the number of nominal features to the number of all features none

The ratio of the number of samples to the number of attributes none

The collection of the number of symbols in nominal attributes min, max, mean, deviation

The collection of entropy of each attribute min, max, mean, deviation

The collection of conditional entropies for each attribute min, max, mean, deviation

The collection of the mutual informations for each attribute min, max, mean, deviation

The class label entropy none

The ratio of the class entropy and the average mutual information none

The noise to signal ratio: the difference between mean entropy
and mean mutual information divided by the mean mutual information none

The kurtosis of attributes min, max, mean, deviation

The skewness of the attributes min, max, mean, deviation

The landmark: the naive-Bayes performance none

The landmark: the 1NN performance none

The landmark: the accuracy of the DecisionStump model trained
on the best attribute according to information gain criteria none

The landmark: the average accuracy of the DesisionStump models trained
on a single attribute none

The landmark: the accuracy of the DecisionStump model trained
on the worst attribute according to information gain criteria none

The landmark: the number of nodes none

The landmark: the number of leaves in an unpruned tree none

The landmark: the collection of lengths of the tree branches min, max, mean, deviation

The landmark: the collection of the number of branches which reached a given depth min, max, mean, deviation

The landmark: the tribute usage statistics
(counts how often each attribute was used to construct the tree) min, max, mean, deviation

In many cases we are not exactly interested in estimating prediction accuracy but rather in
ranking the top classifiers. This problem was studied by Brazdil et al. [44] who suggested use of a kNN
algorithm to naturally rank results according to distances in the meta-feature space. This approach was



Entropy 2017, 19, 583 8 of 25

further extended. For example, Sun and Pfahringer proposed the forest of the approximate ranking
tree which is trained on pairwise comparisons of the base models and the metaset [56].

An alternative approach to meta-learning was proposed by Grąbczewski and Jankowski in [57,58].
It focuses on so called machine unification, such that the already-trained machines (a machine is a
prediction model or data transformer) are cached and re-used when needed. This concept allows us to
cache parts of the models and utilize them inside other complex machines. The proposed solution also
ranks models according to the execution time such that the most promising machines are evaluated
first. Note that this concept applies to both stages (2) and (3) of the data mining process.

For more details on meta-learning methods the readers are referred to [59].

4. The Relationship between Dataset Compression and Prediction Accuracy

In Section 2 we distinguished two basic types of instance selection objectives called Type-I and
Type-II and also defined a third group constituting a mixture of these two. These types are important
because the relation between compression and accuracy behaves differently. Considering Type-I,
for kNN regularization methods, intuitively, when the dataset is clean without any noisy samples or
outliers there is no need to remove any instances. The heuristics built into the algorithm may treat
only some of the border instances as noise and remove them. As a result the compression is low.
When the level of noise in the data increases (for example by mislabeling) or the decision boundary
becomes jagged, the number of instances which are removed increases, and the compression grows.
Now considering the prediction system, when the dataset is clean and the decision boundary is smooth
and simple then the classification accuracy will be high. In the opposite situation the classification
accuracy will drop, therefore intuitively we expect these two values (compression and accuracy) to
remain in an inverse relation.

For Type-II methods, which are aimed at compacting training data, when the decision boundary is
smooth the dataset can be easily compacted and many instances can be removed, so the compression
is then high. The noise in the data or a complex and jagged decision boundary reduce the compression
as there are less regularities. In this case we expect an inverse relation in comparison to Type-I methods,
so increasing compression should reflect the increase in prediction accuracy. In [9] we have evaluated
this relation empirically on artificial and real-world datasets for kNN classifier and two methods: CNN
and ENN. Now we want to extend this work, and evaluate other more advanced instance selection
methods which use more advanced heuristics to determine the final set P as discussed in the Section 2.
Note that some of the methods, such as the Drop family or ICF, combine both Type-I and Type-II.
That means that the resulting compression rates may incorrectly reflect the complexity of the data set,
since the relation between compression and accuracy for Type-I and Type-II remains in contradiction.

In order to solve this problem, we carried out a number of experiments on real-world datasets
to verify which instance selection methods preserve strong correlation between compression and
prediction accuracy. Because in instance selection applications two scenarios are possible (one in which
the prediction model is trained on the entire training set without compression, and one in which the
dataset used to train the predictor is already filtered by the instance selection), we evaluate both of
them, and call them respectively Case A and Case B.

4.1. The Experimental Setup

Both experiments were carried out on 80 real-world datasets obtained from the Keel repository [60]
and UCI repository [61]

Note that some of the datasets in both repositories have the same name but they have different
content (different number of attributes or different number of instances). The Src column in Table 2
indicates the source repository of given dataset, and the datasets are also available in the supplementary
materials. In the study we compare 11 instance selection methods described in Section 2 and for Drop
methods we also evaluated two additional parameters resulting in a total of 13 methods. The datasets
used in the experiments represent a broad spectrum of classification problems from small ones such



Entropy 2017, 19, 583 9 of 25

as appendicitis which has 106 samples, up to larger ones such as the shuttle dataset which has almost
58,000 samples. The datasets also contains different types of attributes, from simple, all-numerical
features, through to mixed type features, to all-nominal features. The basic information about these
datasets is provided in Table 2, where the column Src indicates the source of the dataset.

For all of the symbolic attributes in any dataset, the Value Difference Metric (VDM) [62] was used,
or more precisely, the heterogeneous version HVDM [63], but instead of direct application of VDM
metric each symbolic attribute a was encoded on c attributes (c is the number class labels), where each
new attribute represents conditional probability that the output class y = sj, (s ∈ s1, s2, ..., sc) given
attribute a has value vi, where vi is one of the symbols of attribute a. As shown in [64], this type of
conversion is equivalent to the HVDM metric and is more accurate than the binary coding of symbolic
attributes (the Hamming distance). After the feature type conversion, all attributes were normalized to
the [0, 1] range and then the 10-fold cross-validation test was used to evaluate the prediction accuracy.

Earlier it was mentioned that the experiments were split into two scenarios. In the first one, denoted
as Case A presented in Figure 3a, the instance selection was performed outside the cross-validation,
and the prediction model was built on an uncompressed dataset such that instance selection did not
affect the training set. This experiment mimics a real use-case where instance selection is executed once
to estimate compression to assess the dataset properties and the cross-validation procedure is used to
estimate the prediction accuracy of a given base model—a typical meta-learning scenario. Note that
in all experiments hyper-parameters of instance selection were not optimized, and only the default
values were used (see Table 3), but the hyper-parameters of the prediction model were optimized to
maximize prediction accuracy. For each setting of the classifier an independent model was built and
only the best obtained results were recorded for the investigation.

Table 2. Datasets used in the experiments with basic statistics. Column Src indicates source of the
dataset, where K denotes the Keel project and U denotes the UCI repository.

ID Dataset (T) Src Samples Attr Classes ID Dataset (T) Src Samples Attr Classes

1 anneal U 898 38 5 41 newthyroid K 215 5 3
2 appendicitis K 106 7 2 42 optdigits K 5620 64 10
3 balance K 625 4 3 43 page-blocks K 5472 10 5
4 banana K 5300 2 2 44 penbased K 10,992 16 10
5 bands K 365 19 2 45 phoneme K 5404 5 2
6 bupa K 345 6 2 46 pima K 768 8 2
7 car U 1728 6 4 47 ring K 7400 20 2
8 cleveland K 297 13 5 48 satimage K 6435 36 6
9 cmc U 1473 9 3 49 segment K 2310 19 7

10 coil2000 K 9822 85 2 50 shuttle K 57,999 9 7
11 ecoli U 336 7 8 51 sonar K 208 60 2
12 flags U 194 29 194 52 spambase K 4597 57 2
13 glass U 214 9 6 53 spectfheart K 267 44 2
14 glass K 214 9 6 54 spectrometer U 531 102 48
15 haberman U 306 3 2 55 tae K 151 5 3
16 haberman K 306 3 2 56 texture K 5500 40 11
17 hayes-roth K 160 4 3 57 thyroid K 7200 21 3
18 heart K 270 13 2 58 tic-tac-toe U 958 9 2
19 hepatitis K 80 19 2 59 titanic K 2201 3 2
20 ionosphere K 351 33 2 60 twonorm K 7400 20 2
21 iris K 150 4 3 61 vehicle K 846 18 4
22 kr-vs-kp U 3196 36 2 62 vowel K 990 13 11
23 led7digit K 500 7 10 63 waveform-5000 U 5000 40 3
24 letter K 20,000 16 26 64 wdbc K 569 30 2
25 liver-disorders U 345 6 2 65 wine K 178 13 3
26 lymph U 148 18 4 66 wisconsin K 683 9 2
27 magic K 19,020 10 2 67 yeast K 1484 8 10
28 mammographic K 830 5 2 68 abalone K 4174 8 28
29 marketing K 6876 13 9 69 automobile K 159 25 6
30 mfeat-factors U 2000 216 10 70 breast K 277 9 2
31 mfeat-fourier U 2000 76 10 71 chess K 3196 36 2
32 mfeat-karhunen U 2000 64 10 72 crx K 653 15 2
33 mfeat-morphological U 2000 6 10 73 flare K 1066 11 6
34 mfeat-pixel U 2000 240 10 74 german K 1000 20 2
35 mfeat-zernike U 2000 47 10 75 housevotes K 232 16 2
36 promoters U 106 58 2 76 mushroom K 5644 22 2
37 monk-2 K 432 6 2 77 nursery K 12,960 8 5
38 monks-problems-1 U 556 6 2 78 saheart K 462 9 2
39 monks-problems-3 U 554 6 2 79 splice K 3190 60 3
40 movement_libras K 360 90 15 80 zoo K 101 16 7



Entropy 2017, 19, 583 10 of 25

The second experiment, called Case B (presented in Figure 3b), was aimed at repeating the
previous one but in this case the prediction model was built using training set filtered out by the
instance selection method. This experiment mimics a typical instance selection use-case where the
prediction model is built on the dataset initially compressed by the instance selection algorithm. Again,
hyper-parameters of instance selection were not tuned; only the prediction model was optimized to
achieve the highest accuracy.

In all the conducted experiments all datasets were initially randomly divided into 10 subsets
(preserving class frequency—a so-called stratified sampling) and these subsets were used in the
cross-validation test.

(a) Case A

(b) Case B

Figure 3. Two experimental scenarios were used to analyze the compression–accuracy relationship
for each individual instance selection method and a given prediction model. The first scenario (a),
represents situation where the training model was constructed using entire training set available
in given validation. In the scenario (b), the training set was first filtered out using the instance
selection method.



Entropy 2017, 19, 583 11 of 25

Table 3. The parameter settings of the instance selection methods. CNN: condensed nearest neighbor
rule; GGE: Gabriel graph editing; RNGE: relative neighbor graph editing; ENN: edited nearest neighbor;
RENN: repeated ENN; ICF: iterative case filtering; MSS: modified selective subset; IB2: instance-based
learning type 2; Drop: decremental reduction optimization procedure.

Instance Selection Parameter Range

CNN k 1
IB2 k 1

GGE k 1
RNGE k 1
ENN k 3

RENN k 3

All-kNN kmin 3
kmax 5

Drop 1 (k1) k 1
Drop 1 (k3) k 3
Drop 5 (k1) k 1
Drop 5 (k3) k 3

ICF k 3
MSS k 1

In the experiments the state-of-the-art and the most robust and commonly used prediction models
were used, such as SVM [65–67] and random forest [68–70], as well as the kNN model. All the
experiments were executed using RapidMiner software as a shell system [71]. Instance selection
was performed with the Information Selection extension [72] developed by the author, which includes
the Instance Selection Weka plug-in created by Arnaiz-González and García-Osorio [26]. The SVM
implementation was based on LibSVM library, and random forest was used from the Weka suite.
For each prediction model the meta parameters such as k for kNN, C and γ for SVM, and number of
trees of random forest were optimized using the greed procedure. In the final results only the highest
average accuracy was reported. Hyperparameters evaluated in the experiments are shown in Table 4,
and RapidMiner processes representing the experiments are available in supplementary materials.

Table 4. The parameter settings of the prediction methods.

Model Parameter Range

kNN k [1, 2, . . . , 40]

SVM C [0.001, 0.01, 0.1, 1, 10, 100]
γ [0.05, 0.1, . . . , 0.6]

Random Forest # trees [10, 20, 30, . . . , 100]

4.2. Compression-Accuracy Relation for the Case A Scenario

As stated in the previous section, Case A assumes that compression and prediction accuracy are
evaluated independently, and the goal of the experiments is to verify a typical meta-learning use-case
where compression is used as a landmark and does not affect the training set. For that purpose for
each of the datasets presented in Table 2, compression as well as prediction accuracy were measured
(labeled respectively as CmpTi and AccA

Ti
± σA

Ti
, where Ti denotes i’th dataset, and the A superscript

is used to distinguish the values recorded in Case A). The experimental process is described in the
scheme presented in Figure 3a and the results were collected for all instance selection methods and the
all above-described classifiers.

To measure the relation between Cmp and Acc we used three different measures. These were the
Pearsons correlation coefficient r(Cmp, AccA), root- mean-square error (RMSE) of the linear model,
and the coefficient of determination (R2) of the same model. The correlation measure was evaluated
with a confidence level of 0.05, and results are shown in Table 5.



Entropy 2017, 19, 583 12 of 25

Table 5. The relationship between compression and classifier accuracy for different instance selection
methods and classifiers. The relationship is measured using Pearsons linear correlation (r(·)), for which
both the value of correlation (corr.) and p-value are provided, the root-mean-square error (RMSE),
and the coefficient of determination (R2) of linear regression model for the Case A scenario. The best
results for each classifier are marked in bold.

Method

kNN SVM Random Forest
r (Cmp, Acc)

RMSE R2 r (Cmp, Acc)
RMSE R2 r (Cmp, Acc)

RMSE R2
Corr. p-Value Corr. p-Value Corr. p-Value

CNN 0.937 0.000 0.051 0.878 0.902 0.000 0.063 0.814 0.900 0.000 0.063 0.810
ENN −0.965 0.000 0.038 0.930 −0.924 0.000 0.056 0.854 −0.917 0.000 0.058 0.842

RENN −0.974 0.000 0.033 0.949 −0.912 0.000 0.060 0.832 −0.904 0.000 0.062 0.817
All-kNN −0.885 0.000 0.068 0.783 −0.841 0.000 0.079 0.707 −0.857 0.000 0.075 0.734

IB2 0.955 0.000 0.043 0.912 0.916 0.000 0.058 0.839 0.920 0.000 0.057 0.847
GGE 0.333 0.003 0.137 0.111 0.232 0.040 0.142 0.054 0.288 0.010 0.139 0.083

RNGE 0.634 0.000 0.112 0.403 0.560 0.000 0.120 0.313 0.586 0.000 0.118 0.344
Drop 1 (k = 3) 0.520 0.000 0.124 0.271 0.459 0.000 0.129 0.210 0.481 0.000 0.128 0.231
Drop 1 (k = 1) 0.463 0.000 0.129 0.215 0.421 0.000 0.132 0.177 0.444 0.000 0.130 0.197
Drop 5 (k = 3) 0.550 0.000 0.122 0.302 0.486 0.000 0.127 0.236 0.488 0.000 0.127 0.238
Drop 5 (k = 1) 0.526 0.000 0.124 0.277 0.460 0.000 0.129 0.212 0.475 0.000 0.128 0.226

ICF −0.023 0.838 0.145 0.001 −0.043 0.703 0.145 0.002 0.019 0.869 0.145 0.000
MSS 0.787 0.000 0.090 0.620 0.718 0.000 0.101 0.516 0.721 0.000 0.101 0.520

These results indicate that compression is significantly correlated with accuracy, at least for the
majority of the analyzed compression methods. For the four methods CNN, IB2, ENN, and RENN
the absolute value of correlation for all classifiers is above 0.9. For one it is almost 0.9 (the All-kNN),
and for the remaining ones it is above 0.5. The exception is ICF, for which the correlation is very low
and close to 0. The ENN, RENN, All-kNN, and ICF have negative values of correlation coefficients,
and this is consistent with the above-described interpretation of Type-I and Type-II methods.

Likewise, the other measures show similar behavior, although the RMSE between the true and
the estimated accuracy clearly indicates that for half of the instance selection methods (Drop, RNGE,
GGE and ICF) the error is almost four times higher compared to the best result. Also noticeable is the
difference between the RMSE obtained when estimating the accuracy of the kNN classifier and the
remaining base-models, where the RMSEkNN is approximately 1.7 times smaller than the RMSESVM

and RMSERandom Forest. Also, the R2 measure drops by 10% between best results obtained for kNN and
the other classifiers. This is reasonable as instance selection methods internally use kNN to determine
which instances should be removed or kept, so that it better reflects the performance of kNN classifier.

Of the collected results for three instance selection methods: RENN, IB2 and ICF, we drew figures
representing the CmpT-AccT relation (see Figure 4). These methods represent the highest correlation
for the Type-I method, the highest correlation for the Type-II method, and the worst results. In the
figures the X-axis represents CmpT and the Y-axis represents AccT ; each data-point is marked with a
number i and represents a pair of < CmpTi , AccA

Ti
> obtained for i-th dataset (see ID column in Table 2).

The blue line shows the linear regression (LR) model Acc = a · Cmp + b for which the RMSE and R2

were measured.
The first two rows of Figure 4 confirm a strong linear relation between accuracy and compression.

Interestingly, comparing results of IB2 and RENN for SVM (but also for random forest) some of the
outlying data points represent different datasets. For example, in Figure 4e the most outlying dataset is
number 47 which is not easy to recognize (it is almost in line with the others) in Figure 4b. This property
is desired, as compression of these two methods partially complements each other.

The third row shows the ICF compression in relation to the performance of the classifiers. Here we
can not see any relation; the data points are randomly distributed around (1,1) coordinates. For some
datasets which have a very low compression we observe a very high performance (for example for the
spectrometer dataset (id = 54)). Also, for datasets for which compression is high, the performance is
very low (as for the marketing (id = 29) or abalon datasets (ID= 68)). The explanation of these results
will be presented in Section 4.4.



Entropy 2017, 19, 583 13 of 25

(a) IB2- kNN (b) IB2- SVM (c) IB2- Random Forest

(d) RENN- kNN (e) RENN- SVM (f) RENN- Random Forest

(g) ICF- kNN (h) ICF- SVM (i) ICF- Random Forest

Figure 4. Relation between compression and prediction accuracy for three selected instance selection
methods and three classifiers for the Case A scenario. Rows represent three instance selection methods,
respectively ENN (the best Type-I method), CNN (the best Type-II method), and ICF (the method for
which the worst results were obtained). Columns represent three classifiers, respectively kNN, SVM,
and random forest.

4.3. Compression–Accuracy Relation for the Case B Scenario

The Case B experiment (Figure 3b) was designed to evaluate the compression–accuracy relation
for scenario where the prediction model is built on a compressed dataset. In this case the experiment
returned an average accuracy denoted as AccB

Ti
± σB

Ti
(here we use the B superscript to distinguish

accuracy obtained in this scenarios) and compression CmpTi . The results are presented in the identical
form to Case A and the same quality measures are used (see Table 6). The main difference is in the
accuracy of classifiers. The RMSE, R2, and the correlation r were calculated between 〈CmpTi , AccB

Ti
〉.

Note that in Case B we used compression identical to that used in Case A (calculated in Case A, hence
without cross-validation), to make the results of Case A and Case B comparable.



Entropy 2017, 19, 583 14 of 25

Table 6. Relation between compression and classifier accuracy for different instance selection methods
and classifiers. The relation is measured using the Pearson linear correlation (r(·)), for which both
the value of correlation (corr.) and p-value are provided, the RMSE error, and the coefficient of
determination (R2) of the linear regression model for the Case B scenario. The nest results for each
classifier are marked in bold.

Method

kNN SVM Random Forest
r (Cmp, Acc)

RMSE R2 r (Cmp, Acc)
RMSE R2 r (Cmp, Acc)

RMSE R2
Corr. p-Value Corr. p-Value Corr. p-Value

CNN 0.939 0.000 0.053 0.882 0.859 0.000 0.081 0.738 0.883 0.000 0.077 0.780
ENN −0.949 0.000 0.051 0.900 −0.927 0.000 0.059 0.859 −0.937 0.000 0.054 0.878
RENN −0.966 0.000 0.044 0.934 −0.953 0.000 0.050 0.908 −0.974 0.000 0.037 0.948
All-kNN −0.909 0.000 0.068 0.826 −0.893 0.000 0.072 0.798 −0.904 0.000 0.068 0.816
IB2 0.950 0.000 0.048 0.903 0.871 0.000 0.078 0.758 0.875 0.000 0.080 0.766
GGE 0.430 0.001 0.138 0.185 0.255 0.058 0.153 0.065 0.374 0.005 0.144 0.140
RNGE 0.657 0.000 0.113 0.431 0.562 0.000 0.131 0.316 0.615 0.000 0.122 0.378
Drop 1 (k = 3) 0.526 0.000 0.139 0.277 0.419 0.001 0.154 0.175 0.388 0.003 0.156 0.150
Drop 1 (k = 1) 0.463 0.000 0.136 0.214 0.407 0.002 0.148 0.165 0.317 0.016 0.155 0.100
Drop 5 (k = 3) 0.580 0.000 0.133 0.336 0.512 0.000 0.137 0.262 0.465 0.000 0.143 0.216
Drop 5 (k = 1) 0.506 0.000 0.140 0.256 0.430 0.001 0.149 0.185 0.442 0.001 0.142 0.195
ICF 0.063 0.641 0.170 0.004 0.017 0.898 0.172 0.000 −0.014 0.918 0.172 0.000
MSS 0.569 0.000 0.141 0.324 0.520 0.000 0.147 0.271 0.561 0.000 0.144 0.315

Again, the obtained results indicate a significant relationship between compression and accuracy,
but not in all of the cases, as in Case A. The strongest relationship was observed for the same methods,
which are: CNN, IB2, ENN, RENN, and All-kNN. The other methods have also similar values; only the
correlation sign of ICF changed, but this may be a result of numerical artifacts because the value is
also close to 0. The plots are also presented for RENN, IB2, and ICF to make them comparable to the
previous results. Obtained results are shown in Figure 5, where each row represents an individual
instance selection algorithm, columns represent different classifiers, and the blue line in each plot is
the linear regression model.

The plots are very similar to those of Case A. Again, the compression of Type-I (ENN, RENN,
All-kNN) methods shows a linear relation to the accuracy, and increasing compression leads to a drop
in accuracy. For Type-II methods (CNN, IB2, GGE, RNGE, MSS), an increase of compression correlates
with an increase of accuracy. The mixture methods such as the Drop family or ICF do both, and display
low correlation.

Comparing results from Case A and Case B, especially for the SVM and random forest, in Case B
we observe a smaller RMSE, and higher R2 and correlation values. This results from the dataset
compression process which adjusted the datasets to the kNN classifier. For example, this can be
observed for the dataset with ID 47, which is in line in Figure 5e of Case B, while in Case A (Figure 4e) it
significantly increases the error.



Entropy 2017, 19, 583 15 of 25

(a) IB2- kNN (b) IB2- SVM (c) IB2- Random Forest

(d) RENN- kNN (e) RENN- SVM (f) RENN- Random Forest

(g) ICF- kNN (h) ICF- SVM (i) ICF- Random Forest

Figure 5. Relation between compression and prediction accuracy for three selected instance selection
methods and three classifiers for the Case B scenario. Rows represent three instance selection methods,
respectively ENN (the best Type-I method), CNN (the best Type-II method), and ICF (the method for
which the worst results were obtained). Columns represent three classifiers, respectively kNN, SVM,
and random forest.

4.4. Discussion of the Results Obtained in Case A and Case B

In the previous sections we indicated that ENN RENN and All-kNN are representative of Type-I
methods and for all of them we recorded very high levels of correlation between accuracy and
compression. The minus sign of the correlation indicates that compression is inversely proportional
to the accuracy, and this phenomenon was explained in the beginning of this chapter. The RENN
and All-kNN are modifications of the basic ENN algorithm, so it is not surprising that all these
methods behave similarly. The analysis of the code of ENN algorithm points out that its compression
is equivalent to the leave-one-out estimation of the error rate of the kNN (k = 3) classifier, as all
incorrectly classified samples by kNN (k = 3) are removed.

The RENN method repeats the ENN procedure until no instance is removed, so it often removes more
samples than the basic ENN procedure. This imitates to some extent the kNN classifier with higher values of
k (see Table 4), which explains why the correlation of RENN is higher than the one of ENN. The All-kNN rule
also repeats the ENN step, but for a set of k = [3− 5] values (these settings were used in our calculations).
Thus, it could not reflect as accurately the performance of the kNN classifier. It becomes especially noticeable



Entropy 2017, 19, 583 16 of 25

when the best performance is obtained for large k (k = 35 or k = 40). Considering the computational
complexity of these three algorithms where the ENN has the lowest (O(n2)), followed by All-kNN, and the
complexity of RENN reaches O(n3), the last two are definitely too high for the requirements of meta-learning
systems. In this case we recommend the use of ENN instance selection as a landmark.

In case of condensation methods (Type-II) we analyzed the CNN, IB2, RNGE, GGE and MSS
algorithms. The highest level of relation was obtained for IB2 and CNN, which are very similar algorithms.
In CNN the IB2 procedure is repeated until all samples of the training set T are correctly classified by
the 1NN classifier trained on P. Hence, it uses the resubstitution error to determine P. In other words,
both these methods try to maintain the performance of 1NN classifier but we can not give any simple
intuitive explanation as to why compression of these two methods is so significantly correlated to the
prediction accuracy of the classifiers. The GGE and RNGE methods keep the border instances but using
different criteria, as described in Section 2. The compression of these methods directly reflects the
complexity of the decision boundary, or indicates how many instances have a neighbor from the opposite
class. These types of measures were also discussed and analyzed by Cano in [53] who distinguished a
special type in his analysis called Fraction of Points on Class Boundary, but unlike our analysis he used
a minimum spanning tree to distinguish the fraction of border samples. He indicated that this type of
measure has a clear relation with classifier performance. We also noticed this property but in our analysis
the compression of IB2 and CNN were much more informative than the number of border samples.
With respect to IB2 and CNN, the the former algorithm is more favorable, as it has higher correlation and
lower computational complexity, which in the worst case can reach O(n2).

The Drop family as well as ICF did not reach such significant results. They are both designed
to perform dataset cleansing as well as a condensation procedure. The compression does not reflect
correctly the accuracy, because these two procedures are contradictory, as the cleansing methods
have a high negative correlation while the condensation methods have a positive correlation. This is
especially significant for the ICF algorithm, which directly applies the ENN algorithm (for which small
compression corresponds to high accuracy) before condensation (high accuracy corresponds to high
compression) which results in correlation almost equal to 0. In Drop the condensation dominates so
it has positive correlation. The computational complexity of these two methods is also very high,
reaching O(n3) so it also limits their possible applications to meta-learning.

5. Meta-Learning Applications Using Compression-Based Meta-Data

Previous experiments were focused on the analysis of individual relation between compression
and accuracy for each instance selection method and classifier. The obtained results pointed out some
limitations, which are related on one hand to a low correlation between compression and accuracy
as in ICF, and on the other hand to computational complexity issues. Now, the question arises as to
how compression-based meta-features work in real meta-learning problems. For this purpose we
conducted another set of experiments as described below.

5.1. Experiment Setup

The experiments were designed to investigate the impact of the compression-based meta-features
on the prediction quality of the meta-model. For that purpose four sets of meta-features were designed:

Set 1 State-of-the-art descriptors. This is the reference solution, which consists of 54 meta-features
described in detail in Table 1.

Set 2 Compression-based descriptors. These include the compression of all instance selection
methods, in total 13 meta-features.

Set 3 Compression-based descriptors. These include only the compression of the two methods
suggested in the previous section, namely ENN and IB2.

Set 1+3 Combination of Set 1 and Set 3 descriptors. These are descriptors described in Set 1 and Set 3
to analyze the influence of compression-based meta-features on the state-of-the-art solution.



Entropy 2017, 19, 583 17 of 25

These sets on one hand provide a base rate, Set 1, and on the other hand analyze various scenarios
of applications of compression-based meta-features.

The meta-model used in the experiments should take into account two properties:

• it should be an accurate nonlinear regression model, which can be applied to each of the metasets.
• it should return the feature importance indicator which would allow for assessment of the impact

of each of the meta-features on the final results.

In order to satisfy the above properties we used bagging of the regression trees implemented in the
Matlab Statistical and Machine Learning Toolbox. It is a very accurate regression model, which takes
advantage of the regression trees, for which the feature importance index can be easily calculated. It is
obtained by summing changes in the mean squared error resulting from the splits on every attribute,
and dividing the sum by the number of branch nodes. The final index is aggregated over the ensemble.

The scheme of the experiments follows the one presented in Figure 2, except that it is embedded
into the five times-repeated 10-fold cross-validation process. The detailed view of the test procedure is
shown in Figure 6. The process starts by creating the metaset using 80 datasets described in Table 2.
First for each of the datasets contained in the repository meat-features are extracted and every new
meta-instance is labeled with the highest accuracy obtained for a given base-model (the so-called
true performance). Then starts the five-times repeated cross-validation procedure which returns
the root-mean-square error (RMSE). The error is calculated between the performance obtained for a
given dataset contained in the repository estimated before the cross-validation procedure (the true
performance) and the one returned by the meta-model. In the experiments we used the same set of the
base-models which were used in the previous experiments, namely kNN, SVM, and random forest,
with the same parameter settings (see Table 4). In total the process was executed 12 times (4 sets of
descriptors × 3 types of base classifiers). Finally, the obtained results were evaluated using paired
t-test to verify statistical significance of the difference between the results obtained from the reference
Set 1 and the remaining sets of descriptors containing compression-based meta-features. The default
significance level (α = 0.05) was used.

Figure 6. The scheme of the process used to compare the performances of the four metasets.

5.2. Results and Discussion

The obtained results presenting the minimum RMSE of the meta-model are shown in Table 7.
The best results are marked in bold, and next to the results the p-value of the statistical test is reported.



Entropy 2017, 19, 583 18 of 25

Table 7. RMSE of accuracy estimation of the meta-model obtained for the four analyzed metasets and
three classifiers kNN, SVM, and random forest. The best results are marked in bold.

Meta Features
kNN SVM Random Forest

RMSE ± std p-Value RMSE ± std p-Value RMSE ± std p-Value

Set 1 0.0671 ± 0.0343 0.0740 ± 0.0353 0.0760 ± 0.0382

Set 2 0.0394 ± 0.0288 3× 10−11 0.0580 ± 0.0302 3× 10−04 0.0622 ± 0.0311 3× 10−03

Set 3 0.0431 ± 0.0305 5× 10−05 0.0586 ± 0.0294 1× 10−03 0.0628 ± 0.0292 4× 10−03

Set 1 + 3 0.0466 ± 0.0345 3× 10−06 0.0602 ± 0.0329 7× 10−05 0.0604 ± 0.0351 1× 10−04

The error rates indicate that the most accurate metasets according to the meta-model are those
containing compression-based meta-features, which in all cases performed significantly better than the
reference Set 1. Among metasets comprising compression-based descriptors, for the kNN classifier
the most accurate system was obtained for Set 2. It is not surprising as the instance selection methods
internally use the kNN classifier. The second most accurate system was obtained for Set 3 and the
third was obtained for Set 1+3. Similar results are obtained for SVM, here again the best set is Set 2
followed by Set 3 and Set 1+3, but the difference between Set 2 and Set 3 is very small. For random
forest, the situation changes, and now the best is Set 1+3, in second place is Set 2, and Set 3 takes
third place.

The detailed view of the obtained results (from the five-times repeated cross-validation procedure)
is also plotted in Figure 7. It shows 12 plots, where each represents performance estimated from the
meta-model as a function of true performance for each of the 80 datasets denoted using the x mark
(these values are averaged over five runs of cross-validation tests). The rows of Figure 7 represent
results obtained for meta-model trained using different metasets. They are, respectively, row 1: Set 1;
row 2: Set 2; row 3: Set 3; and row 4: Set 1+3. Columns represent different base classifiers, column 1:
kNN; column 2: SVM; and column 3: random forest.

These results indicate that for all base classifiers every meta-model overestimates results for
the datasets with poor accuracy (below 60%), but this effect is less apparent for datasets containing
compression-based meta-descriptors where the estimated performances are closer to the red line.
Similarly, for high performances (close to 1) for all base classifiers trained on Set 1 (first row) the
performance is underestimated—see the blue cloud of points close to (1, 1) coordinates which are
under the red line. This effect does not appear for the remaining rows, that is for metasets containing
compression-based meta-features. The red line in the plots indicates perfect match between true and
estimated performances.

To analyze which of the meta-features are the most significant for the meta-model we trained
12 meta-models (for each metaset and for each classifier) on the entire metaset (without splitting
the training and test part), then we extracted the feature importance index. The indexes were then
aggregated by averaging their values and plotted, as a result of which we obtained one figure per
metaset (see Figure 8). The averaging process was required because for Set 1 and Set 1+3 we noticed
small changes in order according to the classifier, such that, for example, for SVM the dev. attr. < avg.
skewness and for kNN the opposite relation occurred with dev. attr. > avg. skewness without significant
differences in the value of the indicators. For Set 1 and Set 1+3 only the top 22 features were shown in
figures to make it readable.



Entropy 2017, 19, 583 19 of 25

(a) kNN with Set 1 (b) SVM with Set 1 (c) Random Forest with Set 1

(d) kNN with Set 2 (e) SVM with Set 2 (f) Random Forest with Set 2

(g) kNN with Set 3 (h) SVM with Set 3 (i) Random Forest with Set 3

(j) kNN with Set 1+3 (k) SVM with Set 1+3 (l) Random Forest with Set 1+3

Figure 7. Comparison of true performance (X-axis) with performance estimated using a meta-model
trained on three different metasets (Y-axis) for all base classifiers. Each x represents a single
dataset, which is an average of the results obtained out of test sets of the cross-validation procedure
(average over five repetitions).



Entropy 2017, 19, 583 20 of 25

(a) Set 1: Reference descriptors

(b) Set 2: All compression-based descriptors (c) Set 3: Selected
compression-based
descriptors

(d) Set 1+3: Combined Set 1 and Set 3

Figure 8. Meta-features importance indicators obtained from decision tree for each of the four analyzed
sets of meta descriptors.

Meta-feature importance indicators gathered for Set 1 point out that the most valuable attribute is
the performance of kNN, which is over two times more important than the naive Bayes-based landmark
and over six times more important than the minimal conditional entropy. For Set 2 the most important
were compressions obtained by IB2, ENN, CNN, and RENN which had approximately equal indexes,
followed by MSS and All-kNN. The remaining ones have indicators very close to 0. Note that Set 2 was
used just for comparison, and because of computational complexity it is not applicable ina real live
scenario, despite the fact that it allowed the best results for kNN and SVM.



Entropy 2017, 19, 583 21 of 25

In case of Set 3, both meta-features were almost equally important. Finally, for the Set 1+3 the
indexes for kNN, ENN, and IB2 were all the most important, followed by naive Bayes, which had a four
times smaller index than any of the top three. The next one was min. conditional entropy, similarly to
Set 1, with the rest being almost equal 0.

The obtained results show the validity of compression-based meta-features in application to
meta-learning problems. In particular, the collections of meta-features described in Set 3 and Set 1+3
are important, as these two are applicable in real live scenarios. The two meta-features recommended
in Section 4, which are based on compression of ENN and IB2 work sufficiently well to accurately
estimate the accuracy. The obtained error rates were in all cases at least 20% better than the results of
the state-of-the-art solution with comparable computational complexity.

6. Conclusions

Model selection is a challenging problem in all machine learning tasks, and meta-learning has
emerged as a tool to solve it. However, it requires good meta-data descriptors, which on one hand
should have predictive power and on the other hand should be calculated very efficiently—much
faster than the real prediction model. In this paper we investigated the use of compression of instance
selection methods as a landmark for meta-learning systems. These type of meta-descriptors have a
great advantage, because compression can be obtained for free as the instance selection is commonly
used as a preprocessing step in many applications, and if not it can be calculated with at most O(n2).

The first part of the conducted experiments confirms that not all instance selection methods can be
used as landmarks, and the relation between compression and accuracy depends on the type of instance
selection. All methods denoted as Type-I are noise filters characterized with a negative correlation,
while Type-II—the condensation methods—indicated positive correlation. Thus, the compression of the
mixture of these two usually has a poor relation with accuracy, as illustrated by ICF algorithm. In this
part of the research we distinguished the most promising instance selection algorithms, such as CNN,
IB2, ENN, RENN, and All-kNN. Further analysis of these algorithms taking into account theoretical
analysis of computational complexity indicated some limitations, which are reflected by a too-long
execution time, limiting the most promising group just to two algorithms: the IB2 and ENN.

The further research on real meta-learning applications indicates that compression of the
proposed two instance selection methods (IB2 and ENN) complement the state-of-the-art meta-data
descriptors very well, and allow the user to achieve much lower error rates in estimating prediction
accuracy of kNN, SVM, and random forest. These results were also confirmed by the analysis of the
attribute importance index extracted from the meta-model which in all analyzed cases emphasized
compression-based meta-features. This allows us to state that the compression-based meta-features
should be used as a complement to traditional meta-learning systems, and confirms the thesis stated
in the introduction.

The topic of the influence of the datasets already compressed by any of the instance selection
methods on the values of compression-based meta-data descriptors was not covered in this research,
but in the most of the cases it can be assumed that the data were not edited before meta-learning
analysis. If this assumption is not valid, then it influences not only the compression-based descriptors
but also all other meta-features, including information theory and other landmark methods. However,
further analysis and research on this subject would be interesting.

Supplementary Materials: All of the datasets and RapidMiner scripts used to perform the experiments are
available online at www.mdpi.com/1099-4300/19/11/583/s1.

Acknowledgments: I would like to acknowledge Mirek Kordos for his comments and help in the preparation of
this manuscript.

Conflicts of Interest: The author declares no conflict of interest.

www.mdpi.com/1099-4300/19/11/583/s1


Entropy 2017, 19, 583 22 of 25

Abbreviations

The following abbreviations are used in this manuscript:

CNN condensed nearest neighbor
IB2 instance-based learning type 2
GGE Gabriel graph editting
kNN k-nearest neighbors
SVM support vector machine
ENN edited nearest neighbor
RENN repeated edited nearest neighbor
ICF incremental case filtering
Drop decremental reduction optimization procedure
RNGE relative neighbor graph editing
MSS modified selective subset

References

1. Abellán, J.; Castellano, J.G. Improving the Naive Bayes Classifier via a Quick Variable Selection Method
Using Maximum of Entropy. Entropy 2017, 19, 247.

2. Grzymala-Busse, J.W.; Mroczek, T. A comparison of four approaches to discretization based on entropy.
Entropy 2016, 18, 69.

3. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques;
Morgan Kaufmann Publishers: San Francisco, CA, USA, 2016.

4. Zegers, P.; Frieden, B.R.; Alarcón, C.; Fuentes, A. Information Theoretical Measures for Achieving Robust
Learning Machines. Entropy 2016, 18, 295.

5. Vilalta, R.; Giraud-Carrier, C.G.; Brazdil, P.; Soares, C. Using Meta-Learning to Support Data Mining. IJCSA
2004, 1, 31–45.

6. Castiello, C.; Castellano, G.; Fanelli, A. Meta-data: Characterization of Input Features for Meta-learning.
In Modeling Decisions for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3558,
pp. 457–468.

7. Fuernkranz, J.; Petrak, J. An Evaluation of Landmarking Variants. Available online: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.21.3221 (accessed on 27 October 2017).

8. Garcia, S.; Derrac, J.; Cano, J.R.; Herrera, F. Prototype selection for nearest neighbor classification: Taxonomy
and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435.

9. Blachnik, M. On the Relation Between kNN Accuracy and Dataset Compression Level. LNAI 2016, 9692, 541–551.
10. Haussler, D.; Kearns, M.; Schapire, R.E. Bounds on the sample complexity of Bayesian learning using

information theory and the VC dimension. Mach. Learn. 1994, 14, 83–113.
11. Hart, P. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 16, 515–516.
12. Aha, D.; Kibler, D.; Albert, M. Instance-Based Learning Algorithms. Mach. Learn. 1991, 6, 37–66.
13. Bhattacharya, B.; Poulsen, R.; Toussaint, G. Application of Proximity Graphs to Editing Nearest

Neighbor Decision Rules. Available online: http://www-cgrl.cs.mcgill.ca/~godfried/teaching/mir-reading-
assignments/Nearest-Neighbor-Editing.pdf (accessed on 27 October 2017).

14. Wilson, D. Assymptotic properties of nearest neighbour rules using edited data. IEEE Trans. Syst Man Cybern.
1972, SMC-2, 408–421.

15. Tomek, I. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976,
6, 448–452.

16. Wilson, D.; Martinez, T. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000,
38, 257–268.

17. Brighton, H.; Mellish, C. Advances in instance selection for instance-based learning algorithms. Data Min.
Knowl. Discov. 2002, 6, 153–172.

18. Barandela, R.; Ferri, F.J.; Sánchez, J.S. Decision boundary preserving prototype selection for nearest neighbor
classification. Int. J. Pattern Recognit. Artif. Intell. 2005, 19, 787–806.

19. Ritter, G.; Woodruff, H.; Lowry, S.; Isenhour, T. An algorithm for a selective nearest neighbor decision rule.
IEEE Trans. Inf. Theory 1975, 21, 665–669.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3221
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3221
http://www-cgrl.cs.mcgill.ca/~godfried/teaching/mir-reading-assignments/Nearest-Neighbor-Editing.pdf
http://www-cgrl.cs.mcgill.ca/~godfried/teaching/mir-reading-assignments/Nearest-Neighbor-Editing.pdf


Entropy 2017, 19, 583 23 of 25

20. Wang, X.Z.; Wu, B.; He, Y.L.; Pei, X.H. Nrmcs: Noise removing based on the mcs. In Proceedings of the
2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008;
pp. 89–93.

21. Marchiori, E. Class conditional nearest neighbor for large margin instance selection. IEEE Trans. Pattern
Anal. Mach. Intell. 2010, 32, 364–370.

22. Jankowski, N.; Grochowski, M. Comparison of Instance Selection Algorithms. I. Algorithms Survey.
Lect. Notes Comput. Sci. 2004, 3070, 598–603.

23. Grochowski, M.; Jankowski, N. Comparison of Instance Selection Algorithms. II. Results and Comments.
LNCS 2004, 3070, 580–585.

24. Olvera-López, J.A.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.; Kittler, J. A review of instance selection
methods. Artif. Intell. Rev. 2010, 34, 133–143.

25. Arnaiz-González, Á.; Díez-Pastor, J.; Rodríguez, J.J.; García-Osorio, C.I. Instance selection for regression:
Adapting DROP. Neurocomputing 2016, 201, 66–81.

26. Arnaiz-González, Á.; Díez-Pastor, J.; Rodríguez, J.J.; García-Osorio, C.I. Instance selection for regression by
discretization. Expert Syst. Appl. 2016, 54, 340–350.

27. Rodríguez-Fdez, I.; Mucientes, M.; Bugarín, A. An instance selection algorithm for regression and its
application in variance reduction. In Proceedings of the 2013 IEEE International Conference on Fuzzy
Systems (FUZZ), Hyderabad, India, 7–10 July 2013; doi:10.1109/FUZZ-IEEE.2013.6622486.

28. Kordos, M.; Blachnik, M.; Białka, S. Instance Selection in Logical Rule Extraction for Regression Problems.
LNAI 2013, 7895, 167–175.

29. Kordos, M.; Blachnik, M. Instance Selection with Neural Networks for Regression Problems. LNCS 2012,
7553, 263–270.

30. Abdulali, A.; Hassan, W.; Jeon, S. Stimuli-Magnitude-Adaptive Sample Selection for Data-Driven Haptic
Modeling. Entropy 2016, 18, 222.

31. Shaker, A.; Hüllermeier, E. IBLStreams: A system for instance-based classification and regression on data
streams. Evol. Syst. 2012, 3, 235–249.

32. Czarnowski, I.; Jędrzejowicz, P. Ensemble online classifier based on the one-class base classifiers for mining
data streams. Cybern. Syst. 2015, 46, 51–68.

33. Beringer, J.; Hüllermeier, E. Efficient instance-based learning on data streams. Intell. Data Anal. 2007,
11, 627–650.

34. Buza, K.; Nanopoulos, A.; Schmidt-Thieme, L. Insight: Efficient and effective instance selection for time-series
classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 149–160.

35. Xi, X.; Keogh, E.; Shelton, C.; Wei, L.; Ratanamahatana, C.A. Fast time series classification using numerosity
reduction. In Proceedings of the 23rd international conference on Machine learning, Pittsburgh, PA, USA,
25–29 June 2006; pp. 1033–1040.

36. Arnaiz-González, Á.; Blachnik, M.; Kordos, M.; García-Osorio, C. Fusion of Instance Selection Methods in
Regression Tasks. Inf. Fusion 2016, 30, 69–79.

37. García-Osorio, C.; de Haro-García, A.; García-Pedrajas, N. Democratic instance selection: A linear complexity
instance selection algorithm based on classifier ensemble concepts. Artif. Intell. 2010, 174, 410–441.

38. Blachnik, M. Ensembles of Instance Selection Methods Based on Feature Subset. IEEE Proc. Comput. Sci.
2014, 35, 388–396.

39. Garcia-Pedrajas, N. Constructing Ensembles of Classifiers by means of Weighted Instance Selection.
IEEE Trans. Neural Netw. 2009, 20, 258–277.

40. Blachnik, M.; Kordos, M. Bagging of Instance Selection Algorithms. LNAI 2014, 8468, 40–51.
41. Leyva, E.; González, A.; Pérez, R. Knowledge-based instance selection: A compromise between efficiency

and versatility. Knowl. Based Syst. 2013, 47, 65–76.
42. Leyva, E.; Caises, Y.; González, A.; Pérez, R. On the use of meta-learning for instance selection: An architecture

and an experimental study. Inf. Sci. 2014, 266, 16–30.
43. Bensusan, H.; Kalousis, A. Estimating the Predictive Accuracy of a Classifier. InPrinciples of Data Mining.

Undergraduate Topics in Computer Science; Springer: London, UK, 2013.
44. Brazdil, P.; Soares, C.; Pinto da Costa, J. Ranking Learning Algorithms: Using IBL and Meta-Learning on

Accuracy and Time Results. Mach. Learn. 2003, 50, 251–277.



Entropy 2017, 19, 583 24 of 25

45. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter
optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 847–855.

46. Mantovani, R.G.; Rossi, A.L.; Vanschoren, J.; Bischl, B.; Carvalho, A.C. To tune or not to tune: recommending
when to adjust SVM hyper-parameters via meta-learning. In Proceedings of the 2015 International Joint
Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; doi:10.1109/IJCNN.2015.7280644.

47. Rendell, L.; Seshu, R.; Tcheng, D.L. Concept-Learning and Dynamically-variable Bias Management.
In Proceedings of the 10th International Joint Conference on Articial Intelligence, Milan, Italy,
23–29 August 1987; pp. 308–314.

48. Sohn, S. Meta Analysis of Classication Algorithms for Pattern Recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 1999, 21, 1137–1144.

49. Gama, J.; Brazdil, P. Characterization of classification algorithms. Prog. Artif. Intell. 1995, pp. 189–200.
50. Brazdil, P.; Gama, J.; Henery, B. Characterizing the applicability of classification algorithms using meta-level

learning. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1994;
pp. 83–102.

51. Pfahringer, B.; Bensusan, H.; Giraud-Carrier, C. Meta-learning by Landmarking Various Learning
Algorithms. In Proceedings of the 17th International Conference on Machine Learning, Stanford, CA,
USA, 29 June–2 July 2000; pp. 743–750.

52. Bensusan, H.; Giraud-Carrier, C.G.; Kennedy, C.J. A Higher-order Approach to Meta-learning. Available
online: http://www.cs.bris.ac.uk/publications/Papers/1000471.pdf (accessed on 27 October 2017).

53. Cano, J.R. Analysis of data complexity measures for classification. Expert Syst. Appl. 2013, 40, 4820–4831.
54. Pinto, F.; Soares, C.; Mendes-Moreira, J. Towards automatic generation of metafeatures. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining; Springer: Cham, Switzerland, 2016; pp. 215–226.
55. Reif, M.; Shafait, F.; Dengel, A. Meta-learning for evolutionary parameter optimization of classifiers.

Mach. Learn. 2012, 87, 357–380.
56. Sun, Q.; Pfahringer, B. Pairwise meta-rules for better meta-learning-based algorithm ranking. Mach. Learn.

2013, 93, 141–161.
57. Grąbczewski, K.; Jankowski, N. Saving time and memory in computational intelligence system with machine

unification and task spooling. Knowl. Based Syst. 2011, 24, 570–588.
58. Grabczewski, K.; Jankowski, N. Versatile and efficient meta-learning architecture: Knowledge representation

and management in computational intelligence. In Proceedings of the 2007 IEEE Symposium on Computational
Intelligence and Data Mining, Honolulu, HI, USA, 1 March–5 April 2007; pp. 51–58.

59. Jankowski, N.; Duch, W.; Grąbczewski, K. Meta-Learning in Computational Intelligence; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 358.

60. Alcalá, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. Keel data-mining software
tool: Data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued
Logic Soft Comput. 2010, 17, 255–287.

61. Asuncion, A.; Newman, D. UCI Machine Learning Repository. 2007. Available online: http://www.ics.uci.
edu/~mlearn/MLRepository.html (accessed on 31 October 2017).

62. Stanfill, C.; Waltz, D. Toward memory-based reasoning. Commun. ACM 1986, 29, 1213–1228.
63. Wilson, D.R.; Martinez, T.R. Improved Heterogeneous Distance Functions. arXiv 1997, arXiv:cs/9701101.
64. Grabczewski, K.; Jankowski, N. Transformations of symbolic data for continuous data oriented

models. In Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 359–366.

65. Burges, C.J.C. Support Vector Machines and Kernel Based Methods. Data Min. Knowl. Discov. 1998,
2, 121–167.

66. Bottou, L.; Lin, C.J. Support vector machine solvers. In Large Scale Kernel Machines ; The MIT Press:
Cambridge, MA, USA, 2007; pp. 301–320.

67. Blachnik, M.; Kordos, M. Simplnifying SVM with Weighted LVQ Algorithm. LNCS 2011, 6936, 212–219.
68. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32.
69. Gra̧bczewski, K.; Duch, W. Heterogeneous forests of decision trees. LNCS 2002, 2415, 504–509.

http://www.cs.bris.ac.uk/publications/Papers/1000471.pdf
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


Entropy 2017, 19, 583 25 of 25

70. Kordos, M.; Blachnik, M.; Perzyk, M.; Kozłowski, J.; Bystrzycki, O.; Gródek, M.; Byrdziak, A.; Motyka, Z.
A Hybrid System with Regression Trees in Steel-making Process. In Hybrid Artificial Intelligent Systems;
Corchado, E., Kurzyński, M., Woźniak, M., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6678.

71. Rapid-I. RapidMiner. Available online: http://www.rapid-i.com (accessed on 26 October 2017).
72. Blachnik, M.; Kordos, M. Information Selection and Data Compression RapidMiner Library. In Machine

Intelligence and Big Data in Industry; Springer: Cham, Switzerland, 2016; pp. 135–145.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.rapid-i.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Instance Selection Methods
	Meta-Learning
	The Relationship between Dataset Compression and Prediction Accuracy
	The Experimental Setup
	Compression-Accuracy Relation for the Case A Scenario
	Compression–Accuracy Relation for the Case B Scenario
	Discussion of the Results Obtained in Case A and Case B

	Meta-Learning Applications Using Compression-Based Meta-Data
	Experiment Setup
	Results and Discussion

	Conclusions
	References

