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Abstract: Compressive sensing theory has attracted widespread attention in recent years and sparse
signal reconstruction has been widely used in signal processing and communication. This paper
addresses the problem of sparse signal recovery especially with non-Gaussian noise. The main
contribution of this paper is the proposal of an algorithm where the negentropy and reweighted
schemes represent the core of an approach to the solution of the problem. The signal reconstruction
problem is formalized as a constrained minimization problem, where the objective function is
the sum of a measurement of error statistical characteristic term, the negentropy, and a sparse
regularization term, `p-norm, for 0 < p < 1. The `p-norm, however, leads to a non-convex optimization
problem which is difficult to solve efficiently. Herein we treat the `p-norm as a serious of weighted
`1-norms so that the sub-problems become convex. We propose an optimized algorithm that combines
forward-backward splitting. The algorithm is fast and succeeds in exactly recovering sparse signals
with Gaussian and non-Gaussian noise. Several numerical experiments and comparisons demonstrate
the superiority of the proposed algorithm.

Keywords: compressed sensing; negentropy; `p-norm; weighted `1-norm; convex optimization
problem; sparse signal reconstruction

1. Introduction

Sparse signal reconstruction, or compressed sensing, is an emerging field in signal processing
and communication [1–6]. The problem of recovering a sparse signal from a very low number of
linear measurements arises in many real application fields, ranging from error correction and lost data
recovery, to image acquisition and reconstruction. In general, an N-dimensional sparse signal can
be described by M < N significant coefficients in an appropriate transform domain. In some cases,
a signal which is non-sparse in time domain can be classified as a sparse one, as it shows sparsity
in spatial domain or some appropriate transform domain, such as the frequency domain and Gabor
transformed domain.

In this paper, the signals will be treated as real-valued functions having domains that are either
continuous or discrete, and either infinite or finite. We will typically be concerned with normed
vector spaces. In the case of a discrete, finite domain, the signals can be viewed as vectors in an
n-dimensional Euclidean space, denoted by Rn. According to the compressed sensing theory, sparse
signal reconstruction problem can be formalized as a constrained minimization problem, where the
objective function defines the sparsity. The basic mathematical model is:

x = As + e (1)
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where A ∈ RM×N is a known measurement matrix with M < N and needs to satisfy the RIP condition.
Any M columns vectors are linearly independent [7]. x ∈ RM×1 is an available measurement vector.
e ∈ RM×1 is an unknown noise vector. The sparse reconstruction problem can be cast as: given the
M× N measurement matrix A, find the vector s ∈ RN×1, whose nonzero components are only , with
K � N (such a vector will be called K-sparse vector), from the measurements x, by solving:

min
s∈RN×1

F(s) subject to x = As + e (2)

The most natural choice for F(s) is given by F(s) = ‖s‖0, where ‖s‖0 denotes the `0-norm, which
counts the number of non-zero components in s. With F(s) = ‖s‖0, however, the problem in (2)
becomes a combinatorial optimization and is proven to be non-deterministic polynomial (NP)-hard [8].
Recent results have shown that the use of different sparsity inducing functions allows us to exactly
and efficiently recover a sparse signal from a lower number of measurements [9–11]. For instance,
`p-norm is introduced as a relaxation of the `0-norm, and the problem can be formulated by applying
constraints on the signal model and introducing a cost function:

min
s∈RN×1

‖x−As‖2 + λ‖s‖p (3)

where ‖s‖p =

(
M
∑

i=1
|si|p

)1/p

is the `p-norm of s, with 0 < p < 1. λ > 0 is the regularizing parameter

which controls the sparsity.
Many algorithms have been developed to solve the problem in (3) in the literature [12–20], where

the mean square error (MSE) [21] criterion based on second-order statistics has been employed for
these algorithms, which show their optimality when e is Gaussian noise. In practical applications,
however the transmitted signals are distorted by not only Gaussian noise, but also other kinds of
noise, such as burst noise and high noise. Burst noise is a type of discrete noise and consists of sudden
interruptions. High noise has high energy, frequency or power. These noises have non-Gaussian
characteristics. In such cases, the MSE criterion becomes less robust.

In this work, we focus on the problem of sparse signal reconstruction especially with non-Gaussian
noise. This problem is formalized as a constrained minimization problem and verified by simulation.
We propose a sparse coding algorithm in which the sparse signal is recovered by applying the
negentropy [22] as the error measurement and `p-norm as the sparsity regularization. The `p-norm as
sparsity constraint is not very commonly used due to its non-convexity. To solve the corresponding
non-convex minimization problems, we treat `p-norm as a serious of weighted `1-norm and convert it
to a series of convex optimizations. The negentropy, rather than the MSE, is used because of two folds
of reasons. First, in the square error (SE) case, the minimization is on the cost function of the form MSE
+ `p-norm like Equation (3). Since SE is required to be as small as possible while the `1-norm is lower
bounded by a finite value, the optimization cannot reach a very small SE value, so that leads a biased
solution. In our case, the cost is negentropy + (weighted) `1-norm, the negentropy is required to be
maximized and have finite value in the optimal state, so that an unbiased solution can be obtained.
Second, negentropy can tolerate bigger, non-Gaussian noise on the zero-valued components so that
the estimation for non-zero-valued components becomes more accurate. For efficient optimization, we
propose an algorithm with two main steps: first we use the gradient-based maximization only to the
negentropy; then we find a sparser solution within the neighborhood of what has been obtained in the
gradient-based maximization. Such a strategy was termed in the literature as the forward-backward
splitting (FOBOS) algorithm [23].
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The proposed algorithm is distinguished from other related works in that we present a novel
objective function for sparse signal recovery. The sparse signals can be estimated by applying the
negentropy as the error measurement and weighted `1-norm as the sparsity regularization. An effective
algorithm is provided, which has improved accuracy and convergence rate.

This paper is organized as follows: in Section 2 we recall the least absolute shrinkage and selection
operator (LASSO) algorithm which is developed to solve the problem in Equation (3) and we propose a
new one. The formulation of our algorithm is presented and the details about the targeted minimization
problem are described. Then we propose to use negentropy and weighted `1-norm as the core of our
algorithm. Numerical results which show the effectiveness of the proposed algorithm are presented in
Section 3. Section 4 concludes this paper.

2. Materials and Methods

2.1. Least Absolute Shrinkage and Selection Operator

Although the `p-norm, with 0 < p < 1, seem to be the natural choice for sparsity regularization,
the fact that it is not convex makes the optimization process hard. The `1-norm is the one that is
“closest” to it yet `1-norm retains the computationally attractive property of convexity and has been
used for such problem in Equation (3) for a long time. Here, the LASSO, which is the hot research topic
in statistical society, is discussed to solve the problem. We intend to recover the original signal s from
(1). s̃ is the sparse reconstruction of the original signal by optimizing the following function as the
LASSO [24,25]:

s̃ = argmin
s∈RN×1

{1
2
‖x−As‖2

2 + λ‖s‖1} (4)

One cause is the loss function based on MSE criterion, which makes it necessary to reduce the
rest error as much as possible. The other clause is a regularization function which uses the `1-norm
to obtain a sparse solution. This algorithm is likely to be sparse to coefficient vector obtained as the
estimation results by use as constraints of the `1-norm. Therefore, only the main part of the signal
can be approximated by a linear combination of the basis set, s̃ can be reconstructed by sparse coding
and the noise can be removed. However, the MSE criterion has little robustness when the signal
reconstruction process involves non-Gaussian noise. We want to improve Equation (4) in order to
tolerate bigger, non-Gaussian noise and obtain the sparser solution.

2.2. Proposed Minimization Formulation

In this section we describe a novel and effective proposal for the constrained minimization
problem in Equation (3). With complex noise and more sparsity, a challenging optimization problem
has to be solved. The proposed algorithm is based on the signal model in Equation (1) presented
in Figure 1, where s = [s(0), s(1), · · · , s(N − 1)]T ∈ RN×1 is sparse enough so that the non-zero
components, K, in s is less than M. For the model, the measurement matrix A and measurement vector
x are known, while the vector s is to be estimated and reconstructed, under the assumption that s is
K-sparse. s̃ = [s̃(0), s̃(1), · · · , s̃(N − 1)]T ∈ RN×1 denotes the estimated sparse vector.

For quantizing the fidelity of the estimation, one can measure a kind of distance between x and
x̃ = As̃. In the most situations, the root of mean square error is used usually for such purpose. If the
error is Gaussian distributed, MSE is optimal, since the first and second moments incorporate all
statistical characteristics. However, if the error is not Gaussian distributed, such as audio signal, image,
communication signal, MSE will not be optimal. Considering the application to such cases, in this
paper, we use the non-Gaussianity of error. As a sparse measure we use `p-norm. Therefore, the
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sparse vector s can be estimated by minimizing the following objective function and formulate the
optimization problem as follows

s̃ = argmin
s∈RN×1

J(s)

= argmin
s∈RN×1

{−Jn(x−As) + λ‖s‖p
p}

= argmin
s∈RN×1

{−Jn(e) + λ‖s‖p
p}

(5)

where Jn(·) denotes the negentropy, ‖·‖p is `p-norm and λ is the regularizing parameter. Note that,
algorithms based on MSE criterion have also proven to be weaker in the performances of convergence
and accuracy.
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Figure 1. Signal model with K = 3.

Here, we apply the negentropy and `p-norm to construct the objective function, where the
measurement of e is negentropy and the sparsity constraint is for sparse-promoting. The small error
on the zero components can be tolerated in exchange for high accuracy of the non-zero components
in order to retain all significantly large components, so s̃ can be more exact and the performance of
sparse signal reconstruction can be observably improved.

2.3. Algorithm

2.3.1. Negentropy Maximization

In the information theory, Gaussian variables have maximum entropy in all random variables
which have the same variance. Therefore, one can use entropy to measure non-Gaussian noise.
A modified form of entropy is negentropy which is used as the error measurement in the proposed
algorithm. Negentropy can tolerate non-Gaussian noise on the signal so that the estimation of sparse
signal becomes more accurate. The negentropy is defined as Jn(e) = H(egauss)− H(e), where H(·) is
the differential entropy and H(e) = −

∫
pe(ξ) log pe(ξ)dξ, egauss is the Gaussian random variable which

has the same variance with e. When e is Gaussian, Jn(e) = 0. Jn(e) gets larger while e becomes more
non-Gaussian. Jn(e) reflects the non-Gaussian level of e. When we apply the negentropy to the sparse
signal reconstruction, the probability density distribution of variables is considered to be known. It is
unpractical for the noise e. Here, approximately, the negentropy is given by [E{G(e)} − E{G(egauss)}]2.
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Assume e is super-Gaussian, which is non-Gaussian and the kurtosis value is greater than zero. This is
true in most realistic situations, we can just use:

Jn(e) = E{G(e)} − E{G(egauss)} (6)

where E{·} denotes the statistical expectation. G(·) is the nonlinear function, such as G(e) = e3,
G(e) = e· exp(−e2/2) and G(e) = tanh(c·e) [22]. In this paper, as an instance, the function is as
follows:

G(e) =
1
c

log(cosh(ce)) (7)

where c is constant. This nonlinear function is smooth and differentiable. When c � 1, G(e) is
approximately equal to |e|. Then, the gradient of Jn(e) can be calculated in order to maximize the
negentropy so that −Jn(e) can be minimized. It is an effective method to solve the optimization
problem. The gradient of Jn(e) is calculated as:

∂Jn(e)
∂s

= −AT g(e) (8)

where g(e) is the derivative of G(e) and g(e) = tanh(ce).
The sparse signal s can be iteratively updated as follows:

sk+ 1
2 ← sk + µn

∂Jn(e)
∂sk (9)

where k represents the number of iterations and µn ≥ 0 is the step size.

2.3.2. Weighted `1-norm and FOBOS

Considering the `p regulation, we find a sparse solution in the neighborhood of sk+ 1
2 . That is we

solve the problem as follows:

sk+1 = arg min
s∈RN×1

{1
2
‖s− sk+ 1

2 ‖
2
2 + λ‖s‖p

p} (10)

where sk+ 1
2 is the updated vector from (9). Based on the understanding that the sparsity constraint

‖s‖p
p resulting in sparser results when p is closer to zero, we tend to choose value of p between 0 and

1. However, this choice makes the optimization problem a concave one. To reform a convex sparsity
constraint, we propose to approximate the `p-norm sparsity constraint with a weighted `1-norm. Thus,
Equation (10) is rewritten as follows:

sk+1 = argmin
s∈RN×1

{ 1
2‖s− sk+ 1

2 ‖
2
2 + λw‖s‖1}

= arg∑
i

min
si∈R
{ 1

2‖si − si
k+ 1

2 ‖
2
2 + λwi|si|}

(11)

where w ∈ RN×1 is weight. Since ‖s‖p
p = ∑N

i=1|si|
p ≈ ∑N

i=1 (|si|+ δ)p−1|si| and δ is close to 0,

wi
k+1 = (

∣∣∣sk
i

∣∣∣+ δ)
p−1

. Then, we update each component of sk+ 1
2 by a FOBOS-like algorithm as:

si
k+1 = sign(si

k+ 1
2 )max{0, (

∣∣∣si
k+ 1

2

∣∣∣− λwi
k+ 1

2 )} (12)

where si
k+ 1

2 denotes the ith component of sk+ 1
2 . When

∣∣∣si
k+ 1

2

∣∣∣ ≤ λwk+ 1
2

i , si
k+1 = 0.

To summarize, the method proposed in this paper is presented in Algorithm 1.
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Algorithm 1: Proposed algorithm for sparse signal reconstruction with negentropy and weighted `1-norm

Task: Estimate the sparse signal s by minimizing J(s) = −Jn(e) + λ‖s‖p
p

Initialization: input signal matrix A, system noise e and proper c, λ, µn, p and δ. Initialize s0 and w0.
Main iteration:

1. Calculate gradient of Jn(e) and update s, sk+ 1
2 ← sk + µn

∂Jn(e)
∂sk

2. Update each component of sk+1 by weighted `1 regulation in a FOBOS style,

si
k+1 = sign(si

k+ 1
2 )max{0, (

∣∣∣si
k+ 1

2

∣∣∣− λwi
k+ 1

2 )}

3. If the stop condition is satisfied, algorithm ends, otherwise goes to step 1.

Output: s̃

The stop condition can be the desired accuracy, convergence or a maximal iteration number.

3. Results and Discussions

In this section, we analyze the performance of the proposed algorithm for sparse signal
reconstruction with negentropy and weighted `1-norm described in Section 2. In order to perform the
numerical analysis, we present our experiment results to show whether the algorithm can recover
the true sparse signal sorig or not. The original sparse signal sorig was sized as a 100 × 1 vector and
generated by drawing value randomly from a normal distribution N(0, 1). In each sparse vector,
there were several non-zero values, which were also picked and located randomly. The measurement
matrix A was sized as 40 × 100. Correspondingly, xorig had 40 sample size and was generated
by A and sorig using the equation xorig = Asorig + e. The noise vectors e were added based on
Gaussian and non-Gaussian random entries with various signal to noise ratios (SNR). The other
parameters were set as below, c = 7, λ = 1.57× 10−2, µn = 6.1× 10−3, p = 0.9, δ = 10−7. In order
to evaluate the performance of the proposed algorithm, we use the normalized `2-error as a criteria
to measure reconstruction accuracy for sparse signals, where the normalized `2-error is defined as
‖s̃− sorg‖2

2/‖s‖2
2.

3.1. The Reconstructed Signal Comparison between MSE Criterion and Proposed Algorithms

As discussed in Section 2.1, in the algorithm based on the MSE criterion, the objective function is:

J(s) = E{‖x−As‖2
2}+ λ‖s‖1 = E{‖e‖2

2}+ λ‖s‖1 (13)

The measurement of e in Equation (13) is a Frobenius norm which is the common model of
error [26]. As described in Section 2, we apply the negentropy and weighted `1-norm to form the
objective function, where the measurement of e is negentropy and the sparsity constraint can result in
sparser results. Here, we compare the proposed algorithm with the MSE algorithm from the recovery
and original signals images.

Figure 2 shows the reconstructed and original signal comparison between MSE and proposed
algorithm. From Figure 2, it is clearly that MSE algorithm does not work well since it does not exploit
the sparsity availably and is based on the assumption that noise has Gaussian characteristic. The zero
components of sorig is estimated exactly with the proposed algorithm, but is partly not zero with
MSE algorithm. Furthermore, the non-zero components of sorig is recovered more precisely with the
proposed algorithm, where s̃ has better sparse characteristics.



Entropy 2017, 19, 599 7 of 11

Entropy 2017, 19, 599  7 of 11 

 

Figure 2 shows the reconstructed and original signal comparison between MSE and proposed 
algorithm. From Figure 2, it is clearly that MSE algorithm does not work well since it does not exploit 
the sparsity availably and is based on the assumption that noise has Gaussian characteristic. The zero 
components of origs  is estimated exactly with the proposed algorithm, but is partly not zero with 

MSE algorithm. Furthermore, the non-zero components of origs  is recovered more precisely with the 

proposed algorithm, where s  has better sparse characteristics. 

 
(a) (b) 

 
(c) (d) 

Figure 2. Reconstructed signal s  and original signal origs  comparison between MSE and proposed 

algorithms. (a) MSE algorithm with Gaussian noise; (b) proposed algorithm with Gaussian noise; (c) 
MSE algorithm with non-Gaussian noise; (d) proposed algorithm with non-Gaussian noise. 

3.2. The Accuracy Performance Comparison of the Algorithms 

For a more complete description on how the performance is affected by noise, the normalized 
2 -error of s  is plotted under different SNR in Figure 3. The results demonstrate the significant 

reduction of normalized 2 -error as SNR is increased. More specifically, the proposed algorithm has 
better performance that is at 10−2 order, compared with the MSE algorithm that is at 10−1 order. 
Therefore, the proposed algorithm has higher accuracy as expected and is more suitable for sparse 
signal reconstruction with complex noise. 

0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

sample

m
ag

ni
tu

de

 

 

Recovery
Original

0 20 40 60 80 100
sample

-0.5

0

0.5

1

Recovery
Original

m
ag
ni
tu
de

m
ag
ni
tu
de
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algorithms. (a) MSE algorithm with Gaussian noise; (b) proposed algorithm with Gaussian noise;
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3.2. The Accuracy Performance Comparison of the Algorithms

For a more complete description on how the performance is affected by noise, the normalized
`2-error of s̃ is plotted under different SNR in Figure 3. The results demonstrate the significant
reduction of normalized `2-error as SNR is increased. More specifically, the proposed algorithm has
better performance that is at 10−2 order, compared with the MSE algorithm that is at 10−1 order.
Therefore, the proposed algorithm has higher accuracy as expected and is more suitable for sparse
signal reconstruction with complex noise.
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3.3. The Convergence Performance Comparison of the Algorithms

To illustrate the convergence of the algorithm, we present the performance of normalized `2-error
with the iterations in Figure 4 in the same non-Gaussian noise circumstance. As the number of
iterations increases, the relative error of reconstructed sparse signal decreases, and becomes stable at a
certain error value where the convergence is reached. Figure 4 shows that the number of iterations
for convergence of the proposed algorithm is smaller than that of MSE. It can be seen that the
proposed algorithm converged faster. Novel loss function and FOBOS-like algorithm lead to the
better performance in convergence rate. Besides, the stable normalized `2-error is lower compared
to that of MSE seen in Figure 4. With respect to the performance of reconstructing sparse signals,
the recovery ratios are shown in Figure 5. The recovery ratio of the proposed algorithm can reach
100% with the smaller number of iterations than that of MSE. Therefore, the proposed algorithm has
significant advantages in computational complexity and specially in recovery ratio.
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Figure 5. Recovery ratios of s versus iteration number.

Figure 6 presents the normalized `2-error with the sparsity level which is the number of non-zero
components in all components. We consider a randomly generated K-sparse signal s of length
N = 100 and K = 5, 10, 15, 20 non-zero components. It is apparent that for different sparse signals, the
normalized `2-error is reduced through decreasing the number of non-zero components. Therefore,
when implementing the proposed strategy in practice, it is important to consider the sparsity of signals.
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Figure 6. Normalized `2-error performance versus iteration number for different sparse signal with
the proposed algorithm.

4. Conclusions

We have presented an effective algorithm for reconstructing sparse signals, which is based on a
convex optimization problem upon the proposed objective function. The objective function includes the
negentropy as the fitting error measurement and `p-norm, which is treated as the weighted `1-norm, as
the sparse-promotion. Furthermore, the proposed algorithm includes two main steps in each iteration:
(1) gradient based maximization to the negentroy; (2) a soft thresholding to the result of (1), for sparsity
promotion. Experiments show that the proposed algorithm has improved accuracy and convergence
rate, especially when the noise is non-Gaussian in the information transmission. In our future research,
the algorithm will be optimized for complexity and the real-world applications in signal processing
and communication fields will also be considered.
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