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Abstract: The spatial patterns and processes of cities can be described with various entropy functions.
However, spatial entropy always depends on the scale of measurement, and it is difficult to find a
characteristic value for it. In contrast, fractal parameters can be employed to characterize scale-free
phenomena and reflect the local features of random multi-scaling structure. This paper is devoted to
exploring the similarities and differences between spatial entropy and fractal dimension in urban
description. Drawing an analogy between cities and growing fractals, we illustrate the definitions of
fractal dimension based on different entropy concepts. Three representative fractal dimensions in the
multifractal dimension set, capacity dimension, information dimension, and correlation dimension,
are utilized to make empirical analyses of the urban form of two Chinese cities, Beijing and Hangzhou.
The results show that the entropy values vary with the measurement scale, but the fractal dimension
value is stable is method and study area are fixed; if the linear size of boxes is small enough
(e.g., <1/25), the linear correlation between entropy and fractal dimension is significant (based on the
confidence level of 99%). Further empirical analysis indicates that fractal dimension is close to the
characteristic values of spatial entropy. This suggests that the physical meaning of fractal dimension
can be interpreted by the ideas from entropy and scaling and the conclusion is revealing for future
spatial analysis of cities.
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1. Introduction

No one is considered scientifically literate today who does not know what a Gaussian
distribution is or the meaning and scope of the concept of entropy. It is possible to believe
that no one will be considered scientifically literate tomorrow who is not equally familiar
with fractals.

—Attributed to John A. Wheeler (1983)

Entropy has been playing an important role for a long time in both spatial measurements
and mathematical modeling of urban studies. When mathematical methods were introduced into
geography from 1950s to 1970s, the ideas from system theory were also introduced into geographical
research. The mathematical methods lead to computational geography and further geo-computation
(GC) science, and the system methods result to geographical informatics and then geographical
information science (GISc). Along with system thinking, the concepts of entropy entered geographical
analysis [1], and the notion of spatial entropy came into being [2]. On the one hand, entropy as a
measurement can be used to make spatial analysis for urban and regional systems [2–5]; on the other,
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the entropy maximizing method (EMM) can be employed to constitute postulates and make models
for human geography [6–13]. Unfortunately, the empirical values of spatial entropy often depend on
the scale of measurement, and it is difficult to find determinate results for given study area in many
cases. The uncertainty of spatial entropy seems to be associated with the well-known modifiable areal
unit problem (MAUP) [14–17]. The essence of geographical uncertainty such as MAUP rests with
the scaling invariance in geographical space. In short, the spatial measures of a Euclidean object is
independent of linear scales (scale-free), but urban measurements rely heavily on the corresponding
linear sizes of areal units (scale-dependent), and as a result, we cannot obtain determinate values for
urban area and density [18,19].

One of the most efficient approaches to addressing scale-free problems is fractal geometry.
Many outstanding issues are now can be resolved due to the advent of the fractal theory [20].
Fractal geometry is a powerful tool in spatial analysis, showing a new way of looking at urban and
regional systems [21–23]. In a sense, fractal dimension is inherently associated with entropy. On the
one hand, the generalized fractal dimension is based on Renyi’s entropy [24]; on the other, it was
demonstrated that Hausdorff’s dimension is mathematically equivalent to Shannon’s entropy [25].
In urban studies, both entropy and fractal dimension can be adopted to measure the space filling extent
and spatial complexity of urban growth, and thus can be employed to characterize the compactness of
urban form or regularity of urban boundaries. If the entropy value is not determinate due to scale-free
distributions, it can be alternatively replaced by fractal dimension. However, in practice, thing is
complicated. When and where we should utilize entropy or fractal dimension to make spatial analysis
is pending. Preparatory theoretical and empirical studies should be made before clarifying the inner
links and essential differences between entropy and fractal dimension.

Geography is a science on spatial difference, and the reflection of difference in human brain
yields information. Information can be measured by entropy and fractal dimension. Based on the
numerical relations derived from observational data, this paper is devoted to exploring the similarities
and differences between entropy and fractal dimension in urban studies. In Section 2, a typical regular
growing fractal is taken as an archetype to reveal the connection and distinction between entropy
and fractional dimension. The fractal dimension is actually an entropy-based parameter. In Section 3,
two Chinese cities, Beijing and Hangzhou, are taken as examples to perform empirical analyses.
The linear correlation between entropy and fractal dimension is displayed for given scale and study
area. The results will show that the entropy values rely heavily on spatial scale of measurement,
but fractal dimension values are scale-free parameters. In Section 4, the main points of this work are
outlined, and the shortcomings of the case analyses are stated. Finally, the discussion is concluded by
summarizing the principal viewpoints of this study.

2. Theoretical Models

2.1. The Relation of Fractal Dimension to Entropy

Fractal dimension is a measurement of space-filling extent. For urban growth and form,
fractal dimension, including box dimension and radial dimension, can act as two indices. One is the
index of uniformity for spatial distribution, and the other is the index of space occupancy indicating
land use intensity and built-up extent. What is more, the box dimension is associated with spatial
entropy [26], and the radial dimension associated with the coefficient of spatial autocorrelation [27].
High fractal dimension suggests low spatial difference and strong spatial correlation between urban
parts. For simplicity, let’s see a typical growing fractal, which bear an analogy with urban form and
growth (Figure 1). This fractal was proposed by Jullien and Botet [28] and became well known due to
the work of Vicsek [29], and it is also termed Vicsek’s figure or box fractal. Geographers employed it
to symbolize fractal growth of cities [23,30–33]. Starting from an initiator, a point or a square, we can
generate the growing fractal by infinitely cumulating space filling or recursive subdivision of space.
It is convenient to compute the spatial entropy and fractal dimension of this kind of fractal objects.
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Figure 1. The growing fractals bearing an analogy with urban growth and regional agglomeration. 
This represents a prefractal pattern because only the first four steps are displayed. (a) A process of 
infinite space filling, which bears an analogy with urban growth; (b) A process of recursive spatial 
subdivision, which bears an analogy with regional agglomeration such as urbanization. 

The precondition of an index as an effective measurement is that it bears a determinate value 
and clear limits. Or else, facing uncertain calculation results, researchers will feel puzzled. However, 
for the systems without characteristic scale such as fractal cities, we cannot find a determinate entropy 
value to describe them. In order to compute the spatial entropy, we can use a set of proper grids, i.e., 
nothing more, nothing less, to cover a figure. This approach is similar to the box-counting method in 
fractal studies. A grid consists of a number of squares, which bear an analogy with the boxes for 
fractal dimension measurement. Sometimes, different types of grid lead to different evaluations. Let’s 
take the well-known box fractal as an example to illustrate the scale dependence of entropy value 
(Figure 1). If we use a grid comprising a square as a “box” to encompass the fractal object, the “box” 
just covers the fractal, nothing more, and nothing less. The size of the box is just the measure area of 
the fractal. In mathematics and fractal geometry, the so-called measure area is the area of the smallest 
circumscribed rectangle of a geometric shape. Thus, the macro state number and probability are N = 
P = 1, the spatial entropy is H = −Pln(P) = ln(N) = 0. If the square is averaged into nine parts, than we 
have a grid comprising nine small squares formed by crossed lines. This time, there are five nonempty 
“boxes”. The macro state number is N = 5, the spatial distribution probability is P = 1/N = 1/5, and the 
spatial entropy is H = −∑Pln(P) = ln(N) = ln(5) = 1.609 nat. Dividing the nine small squares into 81 
much smaller squares of the same size yields 25 nonempty “boxes”. Thus the spatial entropy is H = 2 
× ln(5) = 3.219 nat, and so on. In short, for the monofractal object, the information entropy equals the 
corresponding macro state entropy. For the fractal copies with a linear size of ε = 1/3m−1, we have: 
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exponent of scale. This suggests that the spatial entropy H(ε) values depend on the scale of 
measurement ε. However, if we examine the relationship between the scale series ε = 1, 1/3, 1/9, …, 
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ε−D, where the scaling exponent D = ln(5)/ln(3) = 1.465. This exponent value is foreign to the scale 3m−1. 
The scaling exponent is just the fractal dimension of the box fractal. The entropy values are 
indeterminate, but the fractal dimension value is one and only (Table 1). 
  

Figure 1. The growing fractals bearing an analogy with urban growth and regional agglomeration.
This represents a prefractal pattern because only the first four steps are displayed. (a) A process of
infinite space filling, which bears an analogy with urban growth; (b) A process of recursive spatial
subdivision, which bears an analogy with regional agglomeration such as urbanization.

The precondition of an index as an effective measurement is that it bears a determinate value
and clear limits. Or else, facing uncertain calculation results, researchers will feel puzzled. However,
for the systems without characteristic scale such as fractal cities, we cannot find a determinate entropy
value to describe them. In order to compute the spatial entropy, we can use a set of proper grids,
i.e., nothing more, nothing less, to cover a figure. This approach is similar to the box-counting method
in fractal studies. A grid consists of a number of squares, which bear an analogy with the boxes
for fractal dimension measurement. Sometimes, different types of grid lead to different evaluations.
Let’s take the well-known box fractal as an example to illustrate the scale dependence of entropy
value (Figure 1). If we use a grid comprising a square as a “box” to encompass the fractal object,
the “box” just covers the fractal, nothing more, and nothing less. The size of the box is just the measure
area of the fractal. In mathematics and fractal geometry, the so-called measure area is the area of the
smallest circumscribed rectangle of a geometric shape. Thus, the macro state number and probability
are N = P = 1, the spatial entropy is H = −Pln(P) = ln(N) = 0. If the square is averaged into nine
parts, than we have a grid comprising nine small squares formed by crossed lines. This time, there
are five nonempty “boxes”. The macro state number is N = 5, the spatial distribution probability
is P = 1/N = 1/5, and the spatial entropy is H = −∑Pln(P) = ln(N) = ln(5) = 1.609 nat. Dividing
the nine small squares into 81 much smaller squares of the same size yields 25 nonempty “boxes”.
Thus the spatial entropy is H = 2 × ln(5) = 3.219 nat, and so on. In short, for the monofractal object,
the information entropy equals the corresponding macro state entropy. For the fractal copies with a
linear size of ε = 1/3m−1, we have:

He(1/3m−1) = −5m−1 × 1
5m−1 × ln(

1
5m−1 ) = (m− 1) ln(5) (nat)

in which m represents the step numbering of fractal generation (m = 1, 2, 3, . . . ), and m − 1 denotes
the exponent of scale. This suggests that the spatial entropy H(ε) values depend on the scale of
measurement ε. However, if we examine the relationship between the scale series ε = 1, 1/3, 1/9, . . . ,
1/3m−1 and nonempty box number series N(ε) = 1, 5, 25, . . . , 5m−1, we will find a power function
N(ε) = ε−D, where the scaling exponent D = ln(5)/ln(3) = 1.465. This exponent value is foreign to the
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scale 3m−1. The scaling exponent is just the fractal dimension of the box fractal. The entropy values are
indeterminate, but the fractal dimension value is one and only (Table 1).

Table 1. Entropy and fractal dimension of the box fractal based on different scales of measurement.

Step
m

Linear Size of
Fractal Copies εm

Number of Fractal
Copies Nm(ε)

Entropy H
(nat)

Fractal Dimension
D

1 1/30 50 0.000 (0, or 2)
2 1/31 51 1.609 1.465
3 1/32 52 3.219 1.465
4 1/33 53 4.828 1.465
5 1/34 54 6.438 1.465
6 1/35 55 8.047 1.465
7 1/36 56 9.657 1.465
8 1/37 57 11.266 1.465
9 1/38 58 12.876 1.465

10 1/39 59 14.485 1.465
. . . . . . . . . . . . . . .
m 1/3m−1 5m−1 (m − 1)ln(5) ln(5)/ln(3)

As indicated above, for a simple fractal object, the macro state entropy based on fractal copy
number is equal to the information entropy based on growth probability. The fractal dimension can be
defined by the ratio of the state entropy to the logarithm of the linear size of fractal copies. Given a
linear size of fractal copies ε and the number of fractal copies N(ε), Shannon’s information entropy is:

H(ε) = −
N(ε)

∑
i=1

Pi(ε) ln Pi(ε) (1)

where N(ε) denotes the number of fractal copies with linear size ε, Pi(ε) refers to the probability of
growth of the i-th fractal copy. For the simple regular fractals, the growth probabilities of different
fractal copies are equal to one another, i.e., Pi(ε) = 1/N(ε). Therefore, the macro state entropy equals
the information entropy, that is:

S(ε) = ln N(ε) = H(ε) (2)

in which S indicates the state entropy of urban form. The capacity dimension of fractals is defined
based on the state entropy such as:

D0 =
S(ε)

ln(1/ε)
= − ln N(ε)

ln ε
, (3)

where D0 denotes the capacity dimension. However, for a complex multifractal object, the information
entropy is less than the macro state entropy. Based on the information entropy, the information
dimension is defined by:

D1 =
H(ε)

ln(1/ε)
= −

N(ε)

∑
i=1

Pi(ε) ln Pi(ε)

ln(1/ε)
(4)

where D1 refers to the information dimension.
The state entropy and information entropy can be unified formally. Generalizing varied entropy

functions, Renyi [34] proposed a universal formula to define entropy, which can be expressed as:

Mq =
1

1− q
log

N(ε)

∑
i=1

Pq
i , (5)
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where q denotes the order of moments. If q = 0, M0 = S represents macro state entropy; If q = 1,
M1 = H represents Shannon information entropy; if q = 2, M2 denotes correlation entropy. As a
spatial measure, Renyi entropy has been successfully applied to the studies on regional land use
and urban sprawl [35,36], and the results are revealing for geographers. In fact, different types of
fractal dimension can be integrated into an expression by Renyi’s entropy. Based on Equation (5),
the generalized correlation dimension can be defined in the following form [24,37,38]:

Dq = −lim
ε→0

Hq(ε)

log ε
=

1
q− 1

lim
ε→0

log
N(ε)

∑
i=1

Pq
i

log ε
, (6)

where Dq is the generalized dimension of order q. If q = 0, Dq = D0 refers to capacity dimension, if q = 1,
Dq = D1 refers to information dimension, and if q = 2, Dq = D2 refers to correlation dimension [39].
In theory, q ∈ (−∞, +∞). Thus we get a multifractal spectrum based on q. For the monofractal
phenomena, D0 = D1 = D2, but for the multifractal systems, D0 > D1 > D2.

2.2. Entropy and Fractal Dimension Indicating Geo-Spatial Development

Fractal theory suggests a new way of mathematical modeling, especially in geographical analysis.
In future science, culture, and education, fractal concepts will play an important role and will become
as common as entropy and maps [40,41]. In fact, entropy can be associated with fractal dimension
by both mathematical forms and physical meaning. For a given linear scale ε, the fractal dimension
is equivalent to the corresponding entropy. The generic conclusion was drawn by Ryabko [25],
who argued that the Shannon’s entropy is equivalent in mathematics to the Hausdorff dimension.
Both entropy and fractal dimension can be employed to describe urban form and growth, reflecting
space filling extent and spatial uniformity. Fractal dimension changes can reflect spatial concentration
and diffusion. As mentioned above, we have two typical approaches to constructing the deterministic
fractals. One is to use an iteration procedure, and the other is by subsequent divisions of the original
square [29]. The former process bears an analogy with urban growth, while the latter process has an
analogy to regional agglomeration (Figure 1). The same goal can be reached by different routes. That is,
the final results are the same with each other, and the fractal dimension is D = ln(5)/ln(3) = 1.465.
Now, let’s examine the processes of a fractal development rather than its final result. For the fractal
process in Figure 1a, the initiator is a point with dimension D = 0, corresponding to the information
entropy H = 0, but the final dimension is D = 1.465, corresponding to the information entropy H = 1.609.
The dimension value and information entropy go up (from 0 to 1.465, 0 to 1.609). For the fractal process
in Figure 1b, the initiator is a square with dimension D = 2, corresponding to the information entropy
H = 2.197, but the final dimension is D = 1.465. The dimension value and information entropy go down
(from 2 to 1.465, 2.197 to 1.609). Figure 1a suggests a process of spatial spread, while Figure 1b implies
a process of spatial concentration. In order to reveal the numerical relation between spatial entropy
and fractal dimension, we can investigate real urban systems which are more complicated than the
regular fractal shown above.

3. Materials and Methods

3.1. Study Area, Data, and Approaches

The spatial entropy and fractal parameters can be employed to make empirical analyses of the
urban form and growth. One example is Beijing, the national capital of China, and the other example
is Hangzhou, the provincial capital of Zhejiang, China. The datasets of Beijing city are involved
with five years, that is, 1988, 1992, 1999, 2006, and 2009 (Figure 2). The original data are extracted
from the remote sensing images, including three Landsat TM images and two Landsat ETM+ images.
The ground resolution of these images is 30 m [42]. The functional box-counting method can be used
to measure the spatial entropy and fractal dimension (Figure 3). This method was originally adopted
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by Lovejoy et al. [43] to analyze radar rain data, and Chen [26] improved this method in urban studies
by replacing the largest box (the first level box) with arbitrary area with the largest box with a measure
area of an urban system. In fact, the functional box-counting method can be termed Rectangle Space
Subdivision (RSS) method [42,44]. The geometrical basis of RSS is the recursive subdivision of space
and the cascade structure of hierarchies [30,45]. Its mathematical basis is the logical relationship
between the exponential laws based on translational symmetry and the power laws based on dilation
symmetry [9]. This method can better reflect the cascade structure of a fractal city, and thus better
estimate its fractal dimension.
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3.2. Results and Findings Based on Fixed Box Method

Applying the functional box method above-illustrated to Beijing metropolitan area yields the
datasets of the spatial distribution of urban land use in five years. Two types of box counting can
be applied to fractal dimension estimation of cities [31,42]: one is to fix the largest box [46], and the
other is to unfix the largest box [44]. In the former way, the size and shape of the first level box do
no change for different years; in the latter way, the size and shape of the largest box change with
urban growth in different years. For comparability, the box size is fixed for the five years. The area
of the largest box equals the measure area of the metropolis in 2009. Using the datasets, we can
calculate state entropy, information entropy, and Renyi entropy (Table 2). The relationships between



Entropy 2017, 19, 600 7 of 18

the logarithms of the linear size of box (scale) and the entropy values (measurements) take on a linear
trend (Figure 4). The slopes of the trend lines give the capacity dimension D0, information dimension
D1, and correlation dimension D2. As indicated above, D0 is based on macro state entropy (Boltzmann
entropy), D1 is based on information entropy (Shannon entropy), and D2 is based on generalized
entropy (Renyi entropy). The standard errors of all the fractal dimension values are less than 0.04.
According to Benguigui et al. [46], whose fractal discriminant criterion is standard error σ < 0.04,
the fractal structure of Beijing’s urban form is significant because the errors of fractal dimension values
are less than 0.1 (Table 3).Entropy 2017, 19, 600 8 of 18 
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(2006). (a) Capacity dimension (q = 0, D0); (b) Information dimension (q = 1, D1); (c) Correlation
dimension (q = 2, D2).
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Table 2. The state entropy, information entropy, and Renyi entropy of Beijing’s urban form.

Scale
(ε)

Three Types of Entropy Values (Mq)

1988 1992 1999 2006 2009

M0 (q = 0) M1 (q = 1) M2 (q = 2) M0 (q = 0) M1 (q = 1) M2 (q = 2) M0 (q = 0) M1 (q = 1) M2 (q = 2) M0 (q = 0) M1 (q = 1) M2 (q = 2) M0 (q = 0) M1 (q = 1) M2 (q = 2)

1/20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1/21 2.0000 1.9672 1.9364 2.0000 1.9775 1.9569 2.0000 1.9650 1.9279 2.0000 1.9964 1.9928 2.0000 1.9942 1.9886
1/22 4.0000 3.5770 3.2749 4.0000 3.4693 3.1363 4.0000 3.6850 3.4668 4.0000 3.8306 3.6976 4.0000 3.9231 3.8617
1/23 6.0000 5.3986 5.0152 6.0000 5.2657 4.8831 6.0000 5.5608 5.2991 6.0000 5.7431 5.5816 6.0000 5.8783 5.7959
1/24 7.9944 7.2654 6.8736 7.9887 7.1303 6.7571 7.9887 7.4614 7.1875 7.9887 7.6778 7.5024 7.9944 7.8342 7.7421
1/25 9.9233 9.1260 8.7581 9.9672 9.0084 8.6618 9.9556 9.3590 9.0951 9.9672 9.6112 9.4351 9.9701 9.7897 9.6896
1/26 11.7224 10.9502 10.6430 11.8986 10.8623 10.5656 11.8431 11.2301 10.9973 11.8986 11.5117 11.3460 11.9263 11.7163 11.6131
1/27 13.3201 12.7152 12.4926 13.7249 12.6723 12.4488 13.5868 13.0592 12.8761 13.7249 13.3678 13.2316 13.8404 13.6112 13.5160
1/28 14.9124 14.4897 14.3423 15.5017 14.4859 14.3320 15.2798 14.8915 14.7582 15.5017 15.2185 15.1195 15.7081 15.4972 15.4202
1/29 16.5871 16.3073 16.2155 17.2877 16.3234 16.2255 17.0079 16.7416 16.6532 17.2877 17.0879 17.0245 17.5632 17.3994 17.3428

Note: The base of the logarithm is 2, thus the unit of information quantity is bit. If a calculation is based on natural base of logarithm, all these values should be multiplied by ln(2).

Table 3. The capacity dimension, information dimension, and correlation dimension of Beijing’s urban form and the related statistics.

Type Parameter/Statistic 1988 1992 1999 2006 2009

Capacity
dimension D0

Parameter D0 1.8507 1.8584 1.8998 1.9297 1.9575
Standard error δ 0.0310 0.0299 0.0222 0.0160 0.0095

R Square R2 0.9978 0.9979 0.9989 0.9995 0.9998

Information
dimension D1

Parameter D1 1.8099 1.8130 1.8602 1.8986 1.9335
Standard error δ 0.0070 0.0114 0.0050 0.0053 0.0051

R Square R2 0.9999 0.9997 0.9999 0.9999 0.9999

Correlation
dimension D2

Parameter D2 1.8039 1.8071 1.8530 1.8909 1.9259
Standard error δ 0.0201 0.0271 0.0130 0.0065 0.0027

R Square R2 0.9990 0.9982 0.9996 0.9999 1.0000

Note: These fractal parameters represent three typical fractal dimensions in a global multifractal dimension spectrum [24]. The R2 values reflect the correlation between the natural
logarithm of the linear sizes, ln(ε), and the corresponding Renyi entropy.
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The calculation results of entropy and fractal dimension reflect the following characteristics.
First, the entropy and fractal dimension increased monotonically from 1988 to 2009. This suggests
that the city had been growing and its urban space was constantly filled. Second, entropy and
fractal dimension rose in parallel in these years. The entropy values and fractal dimension curves
can be modeled by quadratic logistic function, which indicates the replacement dynamics of fast
growth. Third, the capacity value of the fractal dimension in the quadratic logistic models are
Dmax = 2. This suggests that the urban space of Beijing’s metropolitan area will be over filled. Normally,
the capacity parameter Dmax < 2. Otherwise, the city will have not enough vacant land and open
space in future. The empirical results support the above-shown theoretical inference based on regular
fractals. For the urban agglomeration of Beijing, the spatial entropy values depend on the scale of
measurements. When the linear size of boxes becomes smaller and smaller, the entropy values become
larger and larger. No characteristic entropy value can be found for spatial description. However,
there is a determinate relation between the linear sizes of boxes and the corresponding entropy values.
By this relation, a number of entropy values can be transformed into a fractal dimension value. In other
words, we cannot find a characteristic scale for entropy measurement, but we can use fractal dimension
as an alternative characteristic parameter to reflect urban spatial structure.

Now, let’s examine the correlation relationships between three types of entropy and the corresponding
fractal dimensions. As indicated above, for given moment orders (q), based on different linear sizes
of boxes (ε), we have different entropy values, but the corresponding fractal dimension value does
not depend on the linear sizes. Using the datasets of entropy and fractal dimension values, we can
calculate the square of correlation coefficients (R squared). The squared R is known as goodness of fit
or determination coefficient in linear regression analysis (Table 4). The results show three characters.
First, the smaller the linear sizes of boxes, the higher the squared correlation coefficient values; second,
the closer to q = 1 the moment order, the higher the squared correlation coefficient values tend to be;
third, there seems to be a limit for the smallest linear size of boxes (Figure 5). The relation between
entropy (Mq) and fractal dimension (Dq) can be expressed as Dq = a + bMq, where a and b are constants.
This suggests that the fractal dimension of cities includes the meaning of spatial entropy. If the linear
size of spatial measurement is small enough, the entropy and fractal dimension can be replaced with
one another in theory, and supplement each other in practice.

Table 4. The squared coefficients of correlation between fractal dimension values and the corresponding
entropy values of Beijing’s urban form (1988–2009).

Moment Order
q

Correlation Coefficient Square (R2)

ε = 1/21 ε = 1/22 ε = 1/23 ε = 1/24 ε = 1/25 ε = 1/26 ε = 1/27 ε = 1/28 ε = 1/29

q = 0 – – – 0.0095 0.9330 0.9786 0.9963 1.0000 0.9990
q = 1 0.5909 0.9460 0.9549 0.9641 0.9768 0.9877 0.9963 0.9994 0.9999
q = 2 0.5460 0.9640 0.9780 0.9846 0.9893 0.9925 0.9966 0.9989 0.9996

Note: If q = 0, the first three square correlation coefficient values cannot be calculated.

3.3. Observational Evidences and Findings Based on Unfixed Box Method

More empirical evidence can be found to attest the numerical relationships between spatial
entropy and fractal dimension. The city of Hangzhou is another typical example. The spatial patterns
of Hangzhou’s urban land use bear fractal structure, and can be characterized with fractal dimension
(Figure 6). Using the functional box-counting method, Feng and Chen [44] once calculated the capacity
dimension of Hangzhou’s urban form in four different years (1949, 1959, 1980, and 1996). Different
from the case of Beijing city, the variable boxes were employed to make spatial measurement for suiting
city sizes in different years. Unfortunately, owing to the limitations of data, information dimension
and correlation dimension cannot be calculated for Hangzhou’s urban form.
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Figure 5. The linear relationships between fractal dimension values and the corresponding entropy 
values (based on the linear size 1/29) of Beijing’s urban form (1988–2009). (a) Capacity dimension D0 
and macro state entropy S = M0; (b) Information dimension D1 and Shannon entropy H = M1; (c) 
Correlation dimension D2 and the second order Renyi entropy M2. 
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Figure 5. The linear relationships between fractal dimension values and the corresponding entropy
values (based on the linear size 1/29) of Beijing’s urban form (1988–2009). (a) Capacity dimension
D0 and macro state entropy S = M0; (b) Information dimension D1 and Shannon entropy H = M1;
(c) Correlation dimension D2 and the second order Renyi entropy M2.
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(b) Urban pattern in 1996.
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The analytical process is similar to that is made for Beijing city. The difference lies in that the
largest box is adjusted to suit the city size in different years. Based on the published datasets by
Feng and Chen [44], the macro state entropy can be computed and the coefficient of correlation
between state entropy and capacity dimension values can be worked out (Table 5). The conclusions
from the calculation results of Hangzhou are similar to those of Beijing. The difference lie the sigmoid
curves of entropy and fractal dimension increase. The data can be fitted by the common logistic
function, which represents the spatial replacement dynamics of natural growth [31]. The capacity
parameter of the logistic model of the fractal dimension curve is about Dmax = 1.95 < 2. This implies
that Hangzhou’s urban space will not be completely filled in future. Positive analysis for urban
evolution is not the main topic of this work. According to the results, when the linear sizes of boxes
become smaller and smaller, the linear relationships between entropy and fractal dimension become
clearer and clearer. For the large size of boxes, the regularity does not appear; if the box sizes become
small enough, the linear fit of fractal dimension to entropy is close to perfection (Figure 7).

Table 5. The macro state entropy, capacity dimension, and the squared coefficient of correlation
between the fractal dimension and entropy of Hangzhou’s urban form (1949–1996).

Type Box Size
Parameter and Statistic

R Square R2

1949 1959 1980 1996

Entropy

1/21 1.3863 1.3863 1.3863 1.3863 –
1/22 2.7081 2.7081 2.7726 2.7726 0.8992
1/23 3.6376 3.7842 4.1431 4.1431 0.9812
1/24 4.3820 4.7536 5.4161 5.4765 0.9943
1/25 5.3132 5.8201 6.6631 6.7979 0.9981
1/26 6.3244 6.9048 7.8793 8.0983 0.9997
1/27 7.3896 8.0446 9.1344 9.2927 0.9975
1/28 8.5704 9.2595 10.3984 10.6780 0.9999
1/29 9.8901 10.5666 11.6846 11.9757 0.9999

Capacity
dimension

Parameter D0 1.5013 1.6379 1.8581 1.9115
R Square R2 0.9953 0.9983 0.9995 0.9997

Standard error δ 0.0365 0.0236 0.0148 0.0112

Eigen
entropy

Parameter b 0.6630 0.6095 0.5379 0.5230
R Square R2 0.9953 0.9983 0.9995 0.9997
Entropy 1/b 1.5084 1.6406 1.8591 1.9120

Note: In the last column, the values of R2 refer to the squared coefficient of correlation between fractal dimension
and entropy based on different linear sizes of boxes; in the last sixth rows, the values of R2 denote the goodness of
fit for estimating the fractal dimension. Differing from Feng and Chen [44], the scaling range is not considered for
fractal dimension evaluation in this paper.

In statistics, if R2 = 1, the regression effect is termed perfect fit. The relation between entropy (S)
and fractal dimension (D0) can be written as D0 = a + bS, where a and b are parameters. This case lends
further support the inference that there is potential equivalence of fractal dimension to entropy under
certain condition, for example, the box-counting method is employ to make spatial measurement.
The smaller the boxes, the closer the entropy value is to the fractal dimension. However, the urban
density of population distribution in Hangzhou can be described with spatial entropy rather than
fractal dimension. Urban population density follows Clark’s law [47], which suggests a characteristic
scale by radius length [48]. Clark’s law can be expressed as a negative exponential function:

ρ(r) = ρ0e−r/r0 , (7)

where ρ(r) denotes the population density at the distance r from the center of city (r = 0). As for
the parameters, ρ0 refers to the urban central density ρ(0), and r0 to the characteristic radius of the
population distribution [3,48]. The negative exponent distribution differs from the inverse power-law
distribution. The former bears characteristic scale r0, while the latter possesses no characteristic
scale. For the distribution with characteristic scale, we cannot calculate fractal dimension, but we can
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compute the spatial entropy using the urban density data. If we want to describe the urban population
density using fractal parameters, we must generalize the fractal measure to develop new multifractal
indicators. However, by means of the example of urban population distribution, we can illustrate
the concept of eigen entropy, which is approximately equal to the corresponding fractal dimension
value. The population density data of Hangzhou city based on four years of census (1964, 1980, 1990,
and 2000) was processed by Feng [49]. Using these data sets, we can evaluate the spatial information
entropy of urban density distribution (Table 6). The characteristic parameter is the average radius of
population distribution (r0), which can be estimated with Equation (7). This radius indicates that the
central density is associated with the maximum entropy [8].
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Figure 7. The linear relationships between capacity dimension values and the macro state entropy
values (based on the linear size 1/29) of Hangzhou’s urban form (1949–1996). (a) The linear size of box
is too large, i.e., ε = 1/21, so the statistical correlation cannot appear; (b) The box size is small enough,
i.e., ε = 1/29, and the linear correlation becomes very clear.

Table 6. The information entropy of urban population density and the related measurements of
Hangzhou (1964–2000).

Year Average Density (ρ) Characteristic Radius (r0) Entropy (H) Entropy Ratio (H/Hmax)

1964 4721.3643 3.5644 2.4593 0.7548
1982 5702.7587 3.6713 2.4843 0.7625
1990 6774.3742 3.6285 2.5486 0.7822
2000 8411.6099 3.9457 2.7251 0.8364

In fact, urban form has no characteristic scale, but spatial entropy bear characteristic values.
In other words, despite that spatial entropy values depend on measurement scales, but entropy itself
has a characteristic scale. It can be demonstrated that the characteristic value is just the corresponding
fractal dimension. This can be understood by analogy with Clark’s law above mentioned. In the
formulae of fractal dimensions, entropy is a logarithmic function of spatial scales. The inverse function
is just exponential function, which bears an analogy with Equation (7). In fact, from Equation (6)
it follows:

ε(q) = e−Mq/Dq = ae−bMq , (8)

in which a refers to proportionality coefficient, and b = 1/Dq represents the decay parameter.
Equation (8) is identical in form to Equation (7). Comparing Equation (8) with Equation (7) suggests
that fractal dimension Dq is just the characteristic value of general entropy Mq relative to the linear
scale ε. This judgment can be verified by the observational data of Beijing city. Taking logarithm of
Equation (8) gives a linear equation such as ln(ε) = ln(a) + b × Mq. Suppose that Mq serves for an
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independent variable and ln(ε) acts as an dependent variable. The least squares calculations based on
the linear relation and the data sets in Table 2 yield a series of regression coefficients. The reciprocals
of these regression coefficients, 1/b, indicate the characteristic scales of spatial entropy H0, H1, and H2

(Table 7). The characteristic values of spatial entropy are very close to the fractal dimension values,
which are displayed in Tables 3 and 7. The similar method can be applied to the datasets of Hangzhou
city, and the results are added to the last three lines of Table 5. The reciprocal values of the parameter b
is close to the values of the corresponding fractal dimension D0. These results are important for us to
understand and interpret fractal dimension by means of spatial entropy.

Table 7. The characteristic values of spatial entropy (1/b) and the corresponding fractal dimension
values (Dq).

Year a b R2 1/b Dq

1988
1.1183 0.5391 0.9978 1.8549 1.8507
1.0132 0.5525 0.9999 1.8101 1.8099
0.9367 0.5538 0.9990 1.8057 1.8039

1992
1.1122 0.5370 0.9979 1.8622 1.8584
0.9842 0.5514 0.9997 1.8136 1.8130
0.9088 0.5524 0.9982 1.8103 1.8071

1999
1.0787 0.5258 0.9989 1.9018 1.8998
1.0089 0.5375 0.9999 1.8603 1.8602
0.9577 0.5395 0.9996 1.8537 1.8530

2006
1.0547 0.5179 0.9995 1.9308 1.9297
1.0222 0.5267 0.9999 1.8987 1.8986
0.9938 0.5288 0.9999 1.8911 1.8909

2009
1.0324 0.5108 0.9998 1.9578 1.9575
1.0229 0.5172 0.9999 1.9336 1.9335
1.0109 0.5192 1.0000 1.9260 1.9259

Note: Before making the least squares regression, all the entropy values on the base of 2 in Table 2 have been
transformed into the entropy values on the natural base, e. The characteristic values of spatial entropy, 1/b, is close
to the fractal dimension values, Dq.

4. Discussion

In terms of the empirical analysis on fractal cities, the relations and differences between entropy
and fractal dimension can be brought to light. In theory, the fractal parameters are defined on the
base of entropy functions. The capacity dimension is based on Boltzmann’s macro state entropy,
the information dimension is based on Shannon’s information entropy, and the correlation dimension
is based on the second order Renyi’s entropy. Both entropy values and fractal dimensions depend
on measurement method and the scope (size, central location) of study area (Figure 1 and Table 1).
Along with urban growth, all the entropy values increase, and accordingly, fractal dimension values
ascend (Tables 2 and 3). This suggests that both entropy and fractal dimension can be used to describe
space filling pattern in the process of city development. Despite the association and similarity, there is
significant distinction between spatial entropy and fractal dimension. In urban studies, the entropy
values depend on the scale of measurement, and thus we need a set of numbers to characterize a
state of urban form. The fractal parameters are based on the concept of scaling, we can use a fractal
dimension value to substitute for a number of entropy values. In this sense, fractal theory can provide
a simpler approach to spatial analysis of cities. According to the empirical analyses, for a given linear
scale ε, the numerical relationship between entropy and fractal dimension can be expressed as a linear
function such as Dq = a + bMq, where a and b are two parameters. Where Beijing is concerned, a ≈ 0,
b ≈ 1/9; where Hangzhou is concerned, a ≈ 0.1970, b ≈ −0.4456. In fact, the spatial entropy and fractal
dimension of Beijing’s urban form were measured with fixed boxes. That is to say, the largest boxes in
different years are the same with one another [42]. However, the state entropy and capacity dimension
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of Hangzhou city were measured by using variable boxes. The size of the largest boxes changed along
with city size in each year [44]. This suggests that the methods of spatial measurement impact on the
regression coefficients, but the linear relation between entropy and fractal dimension is identifiable.

The value of entropy is related to the state number of a system. The number and distribution of
elements in a system determine the entropy value. Thus entropy can reflect the diversity of elements
in the system. In literature, entropy is often employed to indicate complexity of systems [50–53].
In fact, entropy is a criterion rather than an index for complex systems. For the distributions with
characteristic scale (characteristic length can be found), e.g., urban population density [47], lognormal
distribution of city sizes [54], and link degree distribution of traffic networks [55], entropy is an effective
measurement for diversity and complexity degree; however, for the distributions without characteristic
scale (characteristic length cannot be found), e.g., urban land use pattern [30], spatial distributions of
urban traffic networks [30,56], and Zipf’s distribution of city sizes [9,10,30,54], a single entropy value is
not enough to measure complexity. In other words, if a system satisfies normal distribution (at least its
probability distributions comply with central limit theorem), it can be effectively measured by entropy.
In contrast, if a system satisfies scaling law such as power-law distribution (its probability distribution
violates central limit theorem), it cannot be easily measured with entropy. In this case, the entropy
should be replaced by fractal dimension. A comparison can be drawn as follows (Table 8).

Table 8. A comparison between entropy meaning and fractal dimension meaning.

Type Entropy Fractal Dimension

Distribution Gaussian (normal) distribution Pareto-Mandelbrot (power-law) distribution

Scale Based on characteristic scale Based on scaling (scale-free)

System Determinate systems Complex systems

Symmetry Spatio-temporal translational
symmetry

Scaling symmetry (invariance under
contraction or dilation)

Variation Different types of entropy Different types of fractal dimension

State Order or chaos Edge of chaos

Spatial
measurement

The results depend on the method,
the scope of the study area, and

the linear size

The results depend on the method and the
scope of the study area, but not on the

linear size

Sphere of
application

(1) The patterns and processes
with characteristic scale

(determinate length, size, mean,
eigen value ); (2) Global analysis

(1) The patterns and processes without
characteristic scale (indeterminate length, size,

mean, eigen value ); (2) Both global and
local analysis.

Example 1 Urban population density (Table 6) Urban land use pattern (Tables 4 and 5)

Example 2 Size distributions of road lengths Urban traffic network

Example 3 Lognormal distribution of city size Power-law distribution of city size

Another important difference between entropy and fractal dimension lies in global and local
analyses. Entropy is mainly used to make global analysis of a complex system, while fractal parameters
can be utilized to make both global and local analysis for cities. However, if we want to deeply explore
the local features of different parts in a complex system such as urban form, entropy will be limited.
In this case, fractal dimensions will play an irreplaceable role. One of basic properties of fractals is
entropy conservation in different spatial parts. For a given level of a given fractal object (monofractals,
multifractals), the entropy values of different units are the same. Thus, we cannot reveal the local
feature by the spatial analysis of entropy. For the monofractal object with one scaling process, the fractal
dimension values of different units are equal to one another. However, for the multifractal object with
more than one scaling process, different units bear different fractal dimension values, which depend on
unit sizes and the probability values of element growth or distribution. Thus, we can adopt multifractal
dimensions to characterize the local spatial feature of urban form. A multifractal spectrum based on
moment orders can be treated as the result of local scanning and sorting for a complex system [57].
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An important question should be discussed here to lessen some possible misunderstanding on
fractal dimension estimation of cities from readers. To make or use a mathematical model, we must
find an effective algorithm to determine its parameter values. A number of measurement methods
are proposed in literature to estimate fractal dimension values [20,24,48]. For urban studies, we have
various spatial measurements and fractal parameters [23,30]. Generally speaking, different methods are
applied to different directions (different aspects or properties). Sometimes, several different methods
can be applied to the same aspect of cities. But unfortunately, different methods often lead to different
fractal dimension estimation results, and in many cases, the numerical differences are significant and
cannot be ignored. Even for a given method, a fractal dimension value often depends on the size and
central location of study area. However, in theory, for a given aspect of a city, we should have a unique
fractal dimension value. This is involved with the uncertainty of fractal dimension calculation, which
puzzles many fractal scientists. Under this circumstances, how can we understand the advantage
of fractal dimension relative to spatial entropy for complex urban phenomena? Our viewpoints are
as follows:

(1) The problem of methods. It is hard to find solutions to this kind of problem. In fact, for a random
system or based on random variables, it is unlikely to find the true parameter values for a
mathematical model. Even for the simplest linear regression model, it is impossible to evaluate
the real parameters by empirical analysis. A number of algorithms such as least squares method,
maximum likelihood method, major axis, and reduced major axis can be used to estimate the
regression coefficients, but different methods result in different parameter values. Scientists then
look for comparable parameter values instead of real parameter values.

(2) The problems of fractal objects. The real fractals in geometry are just like the high-dimensional
spaces in linear algebra, which can be imagined but can never be observed. All the fractal images
we encounter in books and articles represent prefractals rather than real fractals. A real fractal has
infinite levels, but a prefractal is a limited hierarchy. The basic property of a random prefractal
object is that its scaling is limited. For a given aspect (area or boundary) of a regular monofractal,
its fractal dimension value is unique, and the real fractal dimension can be calculated through its
prefractal structure. However, for a regular multifractal object, different parts have different local
fractal dimension values, and the real fractal dimension values cannot be computed by applying
a geometric method to its prefractal structure. We can compute its actual fractal parameter values
by finding the numerical solutions to its multifractal transcendental equation. A city in the real
world is actually a complex random multifractal system with prefractal structure. Different
sizes of study area bear different global fractal dimensions, and different parts bear different
local fractal dimensions. As a result, changing the scope or central location of study area will
yield different fractal parameter values. We never know the real fractal dimension value set.
Fortunately, as indicated above, we need comparable parameter values rather than real parameter
values, and we can utilize multifractal dimension spectrums to make global and local analyses
for complex urban morphology.

The shortcomings of this study lie in three aspects. First, the length of the sample paths of entropy
and fractal dimension is short. The number of data points of the two Chinese cities, Beijing and
Hangzhou, is only four or five. Fortunately, this is not a critical defect. The short sample path leads
to the variability instead of bias. In fact, the well-known Moore’s law, which asserts that the number
of components in an integrated circuit doubles approximately every two years [58], was put forward
by means of five observational data points and four ratios. Subsequently this law is consolidated
by a greater number of large datasets [59]. A scientific judgment should be given by confidence
statement, which comprises level of confidence and margin of error [60]. The confidence level depends
on degree of freedom rather than sample size. The smaller the sample size, the lower the degree of
freedom, and the higher the statistical criterion. Second, only the relationships between entropy and
box dimension are investigated. As mentioned above, besides box-counting method, the common
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methods leading to the fractal dimension of urban area include area-radius scaling, density-radius
scaling, sandbox method, and wave spectrum scaling. Among these methods, sandbox is a good
approach to calculate multifractal parameters [61], and maybe this method can be employed to research
entropy and fractal dimension from a new angle of view. Third, multifractal parameters based on
Renyi entropy is not discussed in depth. Although three global multifractal parameters are involved in
this work, but the problems of deep structure are bypassed owing to the limitation of space. Anyway,
this article is just a beginning, and subsequent studies will be reported in succession.

5. Conclusions

The significance of fractal dimension can be puzzled out by resolving the problems of entropy,
and both entropy and fractal dimension can be used to make spatial analysis of cities. The two
measurements can be associated with one another, but there is significant difference. Clarifying the
similarities and differences between them is helpful to the appropriate application of entropy and
fractal theories in urban studies. The main conclusions of this paper can be reached as follows. First,
the similarities and differences between spatial entropy and fractal dimension of urban form can
be partially revealed by box-counting method. Fractal dimension formulae are based on entropy
formulate, and both entropy and fractal dimension can be employed to characterize the spatial
complexity of cities. The box-counting method provides a convenient approach to examining the
relations and differences between entropy and fractal dimension. Using this method, we can find linear
relationships between the two measurements. For the simple structure of monofractal cities, the spatial
entropy is equivalent in theory to fractal dimension; for the complex structure of multifractal cities,
the description based on entropy parameters is complicated, but the fractal dimension description is
simple and clear. The advantages of fractal dimension over entropy rest two aspects: fractal dimension
values are independent of the scales of measurement, and multifractal parameter can be used to reveal
the local feature of urban form. Second, spatial entropy and fractal dimension have different scopes of
applications in empirical studies on cities. Due to the similarities above-mentioned, spatial entropy
and fractal dimension can be replaced with each other if the ways of measurements are same and the
scale effect of spatial measurement is eliminated. However, because of the differences between each
other, entropy and fractal dimension have their own directions and scopes of application in urban
research. Entropy is suitable for the urban aspects with characteristic scales such as urban population
density, while fractal dimension is suitable for the urban aspects without characteristic scales such
as urban land use form and traffic network density distributions. Entropy is mainly used to make
global analyses and scale analyses for urban structure and function, while fractal dimension can be
employed to make global, local, and especially, scaling analyses for the spatial patterns and processes
of urban evolution.
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