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Abstract: Secret sharing is a cryptographic discipline in which the goal is to distribute information
about a secret over a set of participants in such a way that only specific authorized combinations
of participants together can reconstruct the secret. Thus, secret sharing schemes are systems
of variables in which it is very clearly specified which subsets have information about the secret.
As such, they provide perfect model systems for information decompositions. However, following this
intuition too far leads to an information decomposition with negative partial information terms,
which are difficult to interpret. One possible explanation is that the partial information lattice
proposed by Williams and Beer is incomplete and has to be extended to incorporate terms
corresponding to higher-order redundancy. These results put bounds on information decompositions
that follow the partial information framework, and they hint at where the partial information lattice
needs to be improved.
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1. Introduction

Williams and Beer [1] have proposed a general framework to decompose the multivariate mutual
information I(S; X1, . . . , Xn) between a target random variable S and predictor random variables
X1, . . . , Xn into different terms (called partial information terms) according to different ways in which
combinations of the variables X1, . . . , Xn provide unique, shared, or synergistic information about S.
Williams and Beer argue that such a decomposition can be based on a measure of shared information.
The underlying idea is that any information can be classified according to “who knows what”. However,
is this true?

A situation where the question “who knows what?” is easy to answer very precisely is secret
sharing—a part of cryptography in which the goal is to distribute information (the secret) over
a set of participants such that the secret can only be reconstructed if certain authorized combinations
of participants join their information (see [2] for a survey). The set of authorized combinations is called
the access structure. Formally, the secret is modelled as a random variable S, and a secret sharing scheme
assigns a random variable Xi to each participant i in such a way that if {i1, . . . , ik} is an authorized
set of participants, then S is a function of Xi1 , . . . , Xik ; that is, H(S|Xi1 , . . . , Xik ) = 0; and, conversely,
if {i1, . . . , ik} is not authorized, then H(S|Xi1 , . . . , Xik ) > 0. It is assumed that the participants know the
scheme, and so any authorized combination of participants can reconstruct the secret if they join their
information. A secret sharing scheme is perfect if non-authorized sets of participants know nothing
about the secret; i.e., H(S|Xi1 , . . . , Xik ) = H(S). Thus, in a perfect secret sharing scheme, it is very
clearly specified “who knows what”. In this sense, perfect secret sharing schemes provide model
systems for which it should be easy to write down an information decomposition.

One connection between secret sharing and information decompositions is that the set of access
structures of secret sharing schemes with n participants is in one-to-one correspondence with the partial
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information terms of Williams and Beer. This correspondence makes it possible to give another
interpretation to all partial information terms: namely, the partial information term is a measure of how
similar a given system of random variables is to a secret sharing scheme with a given access structure.

This correspondence also allows the introduction of the secret sharing property that makes the above
intuition precise: An information decomposition satisfies this property if and only if any perfect
secret sharing scheme has just a single partial information term (which corresponds to its access
structure). Lemma 2 states that the secret sharing property is implied by the Williams and Beer axioms,
which shows that the secret sharing property plays well together with the ideas of Williams and Beer.
Proposition 1 shows that in an information decomposition that satisfies a natural generalization of this
property, it is possible to prescribe arbitrary nonnegative values to all partial information terms.

These results suggest that perfect secret sharing schemes fit well together with the ideas
of Williams and Beer. However, following this intuition too far leads to inconsistencies. As Theorem 4
shows, extending the secret sharing property to pairs of perfect secret sharing schemes leads to negative
partial information terms. While other authors have started to build an intuition for negative partial
terms and argue that they may be unavoidable in information decompositions, the concluding section
collects arguments against such claims and proposes as another possible solutions that the Williams
and Beer framework is incomplete and is missing nodes that represent higher-order redundancy.

Cryptography, where the goal is not only to transport information (as in coding theory)
but also to keep it concealed from unauthorized parties, has initiated many interesting developments
in information theory; for example, by introducing new information measures and re-interpreting
older ones (see, for example, [3,4]). This manuscript focuses on another contribution of cryptography:
probabilistic systems with well-defined distribution of information.

The remainder of this article is organized as follows: Section 2 summarizes definitions and results
of secret sharing schemes. Section 3 introduces different secret sharing properties that fix the values
that a measure of shared information assigns to perfect secret sharing schemes and combinations
thereof. The main result of Section 4 is that the pairwise secret sharing property leads to negative
partial information terms. Section 5 discusses the implications of this incompatibility result.

2. Perfect Secret Sharing Schemes

We consider n participants among whom we want to distribute information about a secret in such
a way that we can control which subsets of participants together can decrypt the secret.

Definition 1. An access structure A is a family of subsets of {1, . . . , n}, closed to taking supersets.
Elements of A are called authorized sets.

A secret sharing scheme with access structure A is a family of random variables S, X1, . . . , Xn such that:

• H(XA, S) = H(XA), whenever A ∈ A.

Here, XA = (Xi)i∈A for all subsets A ⊆ {1, . . . , n}. A secret sharing scheme is perfect if

• H(XA, S) = H(XA) + H(S), whenever A /∈ A.

The condition for perfection is equivalent to H(S|XA) = H(S). See [2] for a survey on
secret sharing.

Theorem 1. For any access structure A and any h > 0, there exists a perfect secret sharing scheme with access
structure A for which the entropy of the secret S equals H(S) = h.

Proof. Perfect secret sharing schemes for arbitrary access structures were first constructed
by Ito et al. [5]. In this construction, the entropy of the secret equals 1 bit. Combining n copies of
such a secret sharing scheme gives a secret sharing scheme with a secret of n bit. As explained
in [2] (Claim 1), the distribution of the secret may be perturbed arbitrarily (as long as the support
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of the distribution remains the same). In this way it is possible to prescribe the entropy of the secret
in a perfect secret sharing scheme.

Example 1. Let Y1, Y2, Y3, S be independent uniform binary random variables, and let A = (Y1, Y2 ⊕ S),
B = (Y2, Y3 ⊕ S), C = (Y3, Y1 ⊕ S), where ⊕ denotes addition modulo 2 (or the XOR operation).
Then (S, A, B, C) is a perfect secret sharing scheme with access structure

{A, B}, {A, C}, {B, C}, {A, B, C}.

It may be of little surprise that integer addition modulo k is an important building block in many
secret sharing schemes.

While the existence of perfect secret sharing schemes is solved, there remains the problem of
finding efficient secret sharing schemes in the sense that the variables X1, . . . , Xn should be as small as
possible (in the sense of a small entropy), given a fixed entropy of the secret. For instance, in Example 1,
H(Xi)/H(S) = 2 for all i (see [2] for a survey).

Since an access structure A is closed to taking supersets, it is uniquely determined by its
inclusion-minimal elements

A :=
{

A ∈ A : if B ⊆ A and B 6= A, then B /∈ A
}

.

For instance, in Example 1, the first three elements belong to A. The set A has the property
that no element of A is a subset of another element of A. Such a collection of sets is called
an antichain. Conversely, any such antichain equals the set of inclusion-minimal elements of a unique
access structure.

The antichains have a natural lattice structure, which was used by Williams and Beer to order
the different values of shared information and organize them into what they call the partial information
lattice. The same lattice also has a description in terms of secret sharing.

Definition 2. Let (A1, . . . , Ak) and (B1, . . . , Bl) be antichains. Then

(A1, . . . , Ak) � (B1, . . . , Bl) :⇐⇒ for any Bi there exists Aj with Aj ⊆ Bi.

The partial information lattice for the case n = 3 is depicted in Figure 1.

{123} : 2

{12} : 2 {13} : 2 {23} : 2

{12}{13} : 2 {12}{23} : 2 {13}{23} : 2

{1} : 1 {2} : 1 {3} : 1 {12}{13}{23} : ?

{1}{23} : 1 {2}{13} : 1 {3}{12} : 1

{1}{2} : 0 {1}{3} : 0 {2}{3} : 0

{1}{2}{3} : ?

Figure 1. The partial information lattice for n = 3. Each node is indexed by an antichain. The values
(in bit) of the shared information in the XOR example from the proof of Theorem 2 according
to the pairwise secret sharing property are given after the colon.
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Lemma 1. LetA be an access structure on {1, . . . , n}, and let (B1, . . . , Bl) be an antichain. Then B1, . . . , Bl are
all authorized for A if and only if A � (B1, . . . , Bl).

Proof. The statement directly follows from the definitions.

3. Information Decompositions of Secret Sharing Schemes

Williams and Beer [1] proposed to decompose the total mutual information I(S; X1, . . . , Xn)

between a target random variable S and predictor random variables X1, . . . , Xn according to different
ways in which combinations of the variables X1, . . . , Xn provide unique, shared, or synergistic
information about S. One of their main ideas is to base such a decomposition on a single measure
of shared information I∩, which is a function I(S; Y1, . . . , Yk) that takes as arguments a list of random
variables, of which the first, S, takes a special role. To arrive at a decomposition of I(S; X1, . . . , Xn),
the variables Y1, . . . , Yk are taken to be combinations XA = (Xi)i∈A of X1, . . . , Xn, corresponding
to subsets A of {1, . . . , n}. For simplicity, I∩(S; XA1 , . . . , XAk ) is denoted by I∩(S; A1, . . . , Ak) for all
A1, . . . , Ak ⊆ {1, . . . , n}.

Williams and Beer proposed a list of axioms that such a measure I∩ should satisfy. It follows
from these axioms that it suffices to consider the function I∩(S; A1, . . . , Ak) in the case that (A1, . . . , Ak)

is an antichain. Moreover, I∩(S; ·) is a monotone function on the partial information lattice
(Definition 2).

Thus, it is natural to write each value I∩(S; A1, . . . , Ak) on the lattice as a sum of local terms I∂

corresponding to the antichains that lie below (A1, . . . , Ak) in the lattice:

I∩(S; A1, . . . , Ak) = ∑
(B1,...,Bl)�(A1,...,Ak)

I∂(S; B1, . . . , Bl).

The terms I∂ are called partial information terms. This representation always exists, and the partial
information terms are uniquely defined (using a Möbius inversion). However, it is not guaranteed that
I∂ is always nonnegative. If I∂ is nonnegative, then I∩ is called locally positive.

Williams and Beer also defined a function denoted by Imin that satisfies their axioms and that
is locally positive. While the framework is intriguing and has attracted a lot of further research
(as this special issue illustrates), the function Imin has been criticized as not measuring the right thing.
The difficulty of finding a reasonable measure of shared information that is locally positive [6,7]
has led some to argue that maybe local positivity is not a necessary requirement for an information
decomposition. This issue is discussed further in Section 5.

The goal of this section is to present additional natural properties for a measure of shared
information that relate secret sharing with the intuition behind information decompositions.
In a perfect secret sharing scheme, any combination of participants knows either nothing or everything
about S. This motivates the following definition:

Definition 3. A measure of shared information I∩ has the secret sharing property if and only if for any access
structure A and any perfect secret sharing scheme (X1, . . . , Xn, S) with access structure A, the following holds:

I∩(S; A1, . . . , Ak) =

{
H(S), if A1, . . . , Ak are all authorized,

0, otherwise,
for all A1, . . . , Ak ⊆ {1, . . . , n}.

Lemma 2. The secret sharing property is implied by the Williams and Beer axioms.

Proof. The Williams and Beer axioms imply that

I∩(S; A1, . . . , Ak) ≤ I(S; Ai) = 0
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whenever Ai is not authorized. On the other hand, when A1, . . . , Ak are all authorized, then the
monotonicity axiom implies

I∩(S; A1, . . . , Ak) ≥ I∩(S; A1, . . . , Ak, S) = I∩(S; S) = H(S).

Perfect secret sharing schemes lead to information decompositions with a single nonzero partial
information term:

Lemma 3. If I∩ has the secret sharing property and if (X1, . . . , Xn, S) is a perfect secret sharing scheme with
access structure A, then

I∂(S; A1, . . . , Ak) =

{
H(S), if A = {A1, . . . , Ak},
0, otherwise,

for all A1, . . . , Ak ⊆ {1, . . . , n}. (1)

Proof. Suppose thatA = {A′1, . . . , A′k′}, and let J∂(S; A1, . . . , Ak) be the right hand side of Equation (1).
We need to show that I∂ = J∂. Since the Möbius inversion is unique, it suffices to show that J∩ = I∩, where

J∩(S; A1, . . . , Ak) = ∑
(B1,...,Bl)�(A1,...,Ak)

J∂(S; B1, . . . , Bl).

By Lemma 1,

J∩(S; A1, . . . , Ak) =

{
H(S), if A1, . . . , Ak are all authorized,

0, otherwise,

for any A1, . . . , Ak ⊆ {X1, . . . , Xn}, from which the claim follows.

What happens when we have several secret sharing schemes involving the same participants?
In order to have a clear intuition, assume that the secret sharing schemes satisfy the following definition:

Definition 4. Let A1, . . . ,Al be access structures on {1, . . . , n}. A combination of (perfect) secret sharing
schemes with access structures A1, . . . ,Al consists of random variables S1, . . . , Sl , X1, . . . , Xn such that
(Si, X1, . . . , Xn) is a (perfect) secret sharing scheme with access structure Ai for i = 1, . . . , l and such that

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) = H(Si) if A /∈ Ai.

This definition ensures that the secrets are independent in the sense that knowing some
of the secrets provides no information about the other secrets. Formally, one can see that the secrets are
probabilistically independent as follows: For any A /∈ Ai (for example, A = ∅),

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl) ≥ H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) = H(Si).

In Definition 4, if two access structures Ai,Aj are identical, then we can replace Si and Sj by a
single random variable (Si, Sj) and obtain a smaller combination of (perfect) secret sharing schemes.

In a combination of perfect secret sharing schemes, it is very clear who knows what: Namely,
a group of participants knows all secrets for which it is authorized, while it knows nothing
about the remaining secrets. This motivates the following definition:

Definition 5. A measure of shared information I∩ has the combined secret sharing property if and only if
for any combination of perfect secret sharing schemes with access structures A1, . . . ,Al ,

I∩
(
(S1, . . . , Sl); A1, . . . , Ak

)
= H

(
{Si : A1, . . . , Ak ∈ Ai}

)
(2)
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(the entropy of those secrets for which A1, . . . , Ak are all authorized). I∩ has the pairwise secret sharing
property if and only if the same holds true in the special case l = 2.

The combined secret sharing property implies the pairwise secret sharing property. The pairwise
secret sharing property does not follow from the Williams and Beer axioms. For example, Imin satisfies
the Williams and Beer axioms, but not the pairwise secret sharing property (as will become apparent
in Theorem 2). So one can ask whether the pairwise and combined secret sharing properties are
compatible with the Williams and Beer axioms. This question is difficult to answer, since currently
there are only two proposed measures of shared information that satisfy the Williams and Beer axioms,
namely Imin and the minimum of mutual informations [8]:

IMMI(S; A1, . . . , Ak) := min
i=1,...,k

I(S; Ai).

Both measures do not satisfy the pairwise secret sharing property.
While there has been no further proposal for a function that satisfies the Williams and Beer

axioms for arbitrarily many arguments, several measures have been proposed for the “bivariate case”
k = 2, notably Ired of Harder et al. [9] and S̃I of [10]. The appendix shows that S̃I at least satisfies
the combined secret sharing property “as far as possible”.

Combinations of l perfect secret sharing schemes lead to information decompositions with at most
l nonzero partial information terms.

Lemma 4. Assume that I∩ has the combined secret sharing property. If (S1, . . . , Sl , X1, . . . , Xn) is a
combination of perfect secret sharing schemes with pairwise different access structures A1, . . . ,Al , then

I∂

(
(S1, . . . , Sl); A1, . . . , Ak

)
=

{
H(Si), if Ai = {A1, . . . , Ak} for some i ∈ {1, . . . , l},
0, otherwise,

for any A1, . . . , Ak ⊆ {X1, . . . , Xn}.

The proof is similar to the proof of Lemma 3 and is omitted.
The combined secret sharing property implies that any combination of nonnegative values can be

prescribed as partial information values.

Proposition 1. Suppose that a nonnegative number hA is given for any antichainA. For any measure of shared
information that satisfies the combined secret sharing property, there exist random variables S, X1, . . . , Xn

such that the corresponding partial measure I∂ satisfies I∂(S; A1, . . . , Ak) = hA1,...,Ak for all antichains
A = (A1, . . . , Ak).

Proof. By Theorem 1, for each antichain A there exists a perfect secret sharing scheme SA,
X1,A, . . . , Xn,A with H(SA) = hA. Combine independent copies of these perfect secret sharing schemes
and let

S = (SA)A, X1 = (X1,A)A, . . . , Xn = (Xn,A)A,

where A runs over all antichains. Then S, X1, . . . , Xn is an independent combination of perfect secret
sharing schemes, and the statement follows from Lemma 4.

Unfortunately, not every random variable S can be decomposed in such a way as a combination
of secret sharing schemes. However, Proposition 1 suggests that, given a measure I∩ of shared
information that satisfies the combined secret sharing property, I∂(S;A) can informally be interpreted
as a measure that quantifies how much (X1, . . . , Xn, S) looks like a perfect secret sharing scheme
with access structure A.
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Lemma 5. Suppose that I∩ is a measure of shared information that satisfies the pairwise secret sharing property.
If X1 and X2 are independent, then I∩

(
(X1, X2); X1, X2

)
= 0.

In the language of [11], the lemma says that the pairwise secret sharing property implies
the independent identity property.

Proof. Let S1 = X1, S2 = X2. Then S1, S2, X1, X2 is a pair of perfect secret sharing schemes with access
structures A1 =

{
{1}

}
and A2 =

{
{2}

}
. The statement follows from Definition 5, since X1 is not

authorized for A2 and X2 is not authorized for A1.

4. Incompatibility with Local Positivity

Unfortunately, although the combined secret sharing property very much fits the intuition
behind the axioms of Williams and Beer, it is incompatible with a nonnegative decomposition according
to the partial information lattice:

Theorem 2. Let I∩ be a measure of shared information that satisfies the Williams–Beer axioms and has
the pairwise secret sharing property. Then, I∂ is not nonnegative.

Proof. The XOR example, which was already used by Bertschinger et al. [6] and Rauh et al. [7] to
prove incompatibility results for properties of information decompositions, can also be used here.

Let X1, X2 be independent binary uniform random variables, let X3 = X1 ⊕ X2, and let S =

(X1, X2, X3). Observe that the situation is symmetric in X1, X2, X3. In particular, X2, X3 are also
independent, and X1 = X2 ⊕ X3. The following values of I∩ can be computed from the assumptions:

• I∩
(
S; X1, (X2X3)

)
= I∩

(
S; X1, (X1X2X3)

)
= I∩(S; X1) = 1 bit, since X1 is a function of (X2, X3)

and by the monotonicity axiom.
• I∩(S; X1, X2) = I∩

(
(X1X2X3); X1, X2

)
= I∩

(
(X1X2); X1, X2

)
= 0 by Lemma 5.

By monotonicity, I∩(S; X1, X2, X3) = 0. Moreover, I∩
(
S; (X1X2), (X1X3), (X2X3)

)
≤ 2 bit,

since 2 bit is the total entropy in the system. Then, however,

I∂

(
S; (X1X2), (X1X3), (X2X3)

)
= I∩

(
S; (X1X2), (X1X3), (X2X3)

)
− I∩

(
S; X1, (X2X3)

)
− I∩

(
S; X2, (X1X3)

)
− I∩

(
S; X3, (X1X2)

)
± 0

≤ 2 bit− 3 bit = −1 bit,

where ±0 denotes values of I∩ that vanish. Thus, I∂ is not nonnegative.

Note that the random variables (S = (X1, X2, X3), X1, X2, X3) from the proof of Theorem 2 form
three perfect secret sharing schemes that do not satisfy the definition of a combination of perfect secret
sharing schemes. The three secrets X1, X2, X3 are not independent, but they are pair-wise independent
(and so Lemma 4 does not apply).

Remark 1. The XOR example from the proof of Theorem 2 (which was already used by Bertschinger et al. [6]
and Rauh et al. [7]) was criticized by Chicharro and Panzeri [12] on the grounds that it involves random variables
that stand in a deterministic functional relation (in the sense that X3 = X1 ⊕ X2). Chicharro and Panzeri
argue that in such a case it is not appropriate to use the full partial information lattice. Instead, the functional
relationship should be used to eliminate (or identify) nodes from the lattice. Thus, while the monotonicity
axiom of Williams and Beer implies I∩(S; X3, (X2, X3)) = I∩(S; X3) (and so {3; 23} is not part of the partial
information lattice), the same axiom also implies that I∩(S; X3, (X1, X2)) = I∩(S; X3) in the XOR example,
and so {3; 12} should similarly be excluded from the lattice when analyzing this particular example. Note,
however, that the first argument is a formal argument that is valid for all joint distributions of S, X1, X2, X3,
while the second argument takes into account the particular underlying distribution.
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It is easy to work around this objection. The deterministic relationship disappears when an arbitrarily
small stochastic noise is added to the joint distribution. To be precise, let X1, X2 be independent binary random
variables, and let X3 be binary with

P(X3 = x3|X1 = x1, X2 = x2) =

{
1− ε, if x3 = x1 ⊕ x2,

ε, otherwise,

for 0 ≤ ε ≤ 1. For ε = 0, the example from the proof is recovered. Assuming that the partial information terms
depend continuously on this joint distribution, the partial information term I∂

(
S; (X1X2), (X1X3), (X2X3)

)
will still be negative for small ε > 0. Thus, assuming continuity, the conclusion of Theorem 2 still holds
true when the information decomposition according to the full partial information lattice is only considered
for random variables that do not satisfy any functional deterministic constraint.

Remark 2. Analyzing the proof of Theorem 2, one sees that the independent identity axiom (Lemma 5) is
the main ingredient to arrive at the contradiction. The same property also arises in the other uses of the XOR
example [6,7].

5. Discussion

Perfect secret sharing schemes correspond to systems of random variables in which it is very
clearly specified “who knows what”. In such a system, it is easy to assign intuitive values to the shared
information nodes in the partial information lattice, and one may conjecture that the intuition
behind this assignment is the same intuition that underlies the Williams and Beer axioms, which define
the partial information lattice. Moreover, following the same intuition, independent combinations
of perfect secret sharing schemes can be used as a tool to construct systems of random variables
with prescribable (nonnegative) values of partial information.

Unfortunately, this extension to independent combinations of perfect secret sharing schemes is
not without problems: By Theorem 2, it leads to decompositions with negative partial information
terms. What does it mean, however, that the examples derived from the same intuition as the Williams
and Beer axioms contradict the same axioms in this way? Is this an indication that the whole idea
of information decomposition does not work (and that the question posed in the first paragraph
of the introduction cannot be answered affirmatively)?

There are several ways out of this dilemma. The first solution is to assign different values
to combinations of perfect secret sharing schemes. This solution will not be pursued further
in this text, as it would change the interpretation of the information decomposition as measuring
“who knows what”.

The second solution is to accept negative partial values in the information decomposition.
It has been argued that negative values of information can be given an intuitive interpretation
in terms of confusing or misleading information. For event-wise (also called “local”) information
quantities, such as the event-wise mutual information i(s; x) = log(p(s)/p(s|x)), this interpretation
goes back to the early days of information theory [13]. Sometimes, this phenomenon is called
“misinformation” [11,14]. However, in the usual language, misinformation refers to “false or incorrect
information, especially when it is intended to trick someone” [15], which is not the effect that is
modelled here. Thus, the word misinformation should be avoided, in order not to mislead the reader
into the wrong intuition.

While negative event-wise information quantities are well-understood, the situation is more
problematic for average quantities. When an agent receives side-information in the form of the value
x of a relevant random variable X, she changes her strategy. While the prior strategy should be
based on the prior distribution p(S), the new strategy should be based on the posterior p(S|X = x).
Clearly, in a probabilistic setting, any change of strategy can lead to a better or worse result in a single
instance. On average, though, side-information never hurts (and it is never advantageous on average
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to ignore side-information), which is why the mutual information is never negative. Similarly, it is
natural to expect non-negativity of other information quantities. It is difficult to imagine how correct
side-information (or an aspect thereof) can be misleading on average. The situation is different
for incorrect information, where the interpretation of a negative value is much easier.

More conceptually, I would suspect that an (averaged) information quantity that may change
its sign actually conflates different aspects of information, just as the interaction information (or
co-information) conflates synergy and redundancy [1] (and one can argue whether the same should be
true for event-wise quantities; cf. [16]).

In any case, allowing negative partial values alters the interpretation of an information
decomposition to a point where it is questionable whether the word “decomposition” is still
appropriate. When decomposing an object into parts, the parts should in some reasonable way
be sub-objects. For example, in a Fourier decomposition of a function, the Fourier components are
never larger than the function (in the sense of the L2-norm), and the sum of the squared L2-norms
of the Fourier coefficients equals the squared L2-norm of the original function. As another example,
given a (positive) amount of money and two investment options, it may indeed be possible to invest
a negative share of the total amount into one of the two options in order to increase the funds that
can be invested in the second option. However, such short selling is regulated in many countries
with much stronger rules than ordinary trading.

I do not claim that an information decomposition with negative partial information terms cannot
possibly make sense. However, it has to be made clear precisely how to interpret negative terms,
and it is important to distinguish between correct information that leads to a suboptimal decision
due to unlikely events happening (“bad luck”) and incorrect information that leads to decisions being
based on the wrong posterior probabilities (as opposed to the “correct” conditional probabilities).

A third solution is to change the underlying lattice structure of the decomposition. A first
step in this direction was done by Chicharro and Panzeri [12], who propose to decompose mutual
information according to subsets of the partial information lattice. However, it is also conceivable that
the lattice has to be enlarged.

Williams and Beer derived the partial information lattice from their axioms together with the
assumption that everything can be expressed in terms of shared information (that is, according to
“who knows what”). Shared information is sometimes equivalently called redundant information, but it
may be necessary to distinguish the two. Information that is shared by several random variables is
information that is accessible to each single random variable, but redundancy can also arise at higher
orders. An example is the infamous XOR example from the proof of Theorem 2: In this example,
each pair Xi, Xj is independent and contains of two bits, but the total system X1, X2, X3 has only two
bits. Therefore, there is one bit of redundancy. However, this redundancy bit is not located anywhere
specifically: It is not contained in either of X1, X2, X3, and thus it is not shared information. Since the
redundant bit is not part of X1, it is not “shared” by X1 in this sense. This phenomenon corresponds to
the fact that random variables can be pairwise independent without being independent.

This kind of higher-order redundancy does not have a place in the partial information lattice, so it
may be that nodes corresponding to higher-order redundancy have to be added. When the lattice
is enlarged in this way, the structure of the Möbius inversion is changed, and it is possible that
the resulting lattice leads to nonnegative partial information terms, without changing those cumulative
information values that are already present in the original lattice. If this approach succeeds, the answer
to the question from the introduction will be negative: Simply classifying information according
to “who knows what” (i.e., shared information) does not work, since it does not capture higher-order
redundancy. The analysis of extensions of the partial information lattice is the scope of future work.
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Appendix A. Combined Secret Sharing Properties for Small k

This section discusses the defining Equation (2) of the combined secret sharing property for k = 1
and k = 2. The case k = 1 is incorporated in the definition of a combination of perfect secret
sharing schemes: The following lemma implies that any measure of shared information that satisfies
self-redundancy satisfies Equation (2) for k = 1. Recall that Williams and Beer’s self-redundancy
axiom implies that I∩(S; XA) = I(S; XA).

Lemma A1. Let (S1, . . . , Sl , X1, . . . , Xn) be a combination of perfect secret sharing schemes with access
structures A1, . . . ,Al . Then

I
(
(S1, . . . , Sl); XA

)
= H

(
{Si : A ∈ Ai}

)
.

Proof. Suppose that the secret for which A is authorized are S1, . . . , Sm. Then

H(S1, . . . , Sl |XA) = H(S1, . . . , Sm|XA) + H(Sm+1, . . . , Sl |S1, . . . , Sm, XA)

= H(Sm+1, . . . , Sl |S1, . . . , Sm, XA) ≤ H(Sm+1, . . . , Sl) ≤
l

∑
i=m+1

H(Si).

On the other hand,

H(Sm+1, . . . , Sl |S1, . . . , Sm, XA) =
l

∑
i=m+1

H(Si|S1, . . . , Si−1, XA)

≥
l

∑
i=m+1

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) =
l

∑
i=m+1

H(Si).

By independence (remark after Definition 4), ∑l
i=m+1 H(Si) = H(Sm+1, . . . , Sl) and ∑m

i=1 H(Si) =

H(S1, . . . , Sm). Thus,

I
(
(S1, . . . , Sl); XA

)
= H(S1, . . . , Sl)− H(S1, . . . , Sl |XA) = H(S1, . . . , Sm).

The next result shows that the bivariate measure of shared information S̃I(S; X, Y) proposed by
Bertschinger et al. [10] satisfies Equation (2) for k ≤ 2. The reader is referred to loc. cit. for definitions
and elementary properties of S̃I.

Proposition A1. Let (S1, . . . , Sl , X1, . . . , Xn) be a combination of perfect secret sharing schemes with access
structures A1, . . . ,Al , Then

S̃I
(
(S1, . . . , Sl); XA1 , XA2

)
= H

(
{Si : A ∈ A1 ∩A2}

)
.

Proof. For given A1, A2, suppose that S1, . . . , Sm are the secrets for which at least one of A1 or A2 is
authorized and that Sm+1, . . . , Sl are the secrets for which neither A1 nor A2 is authorized alone.

Let P be the joint distribution of S1, . . . , Sl , XA1 , XA2 . Let ∆P be the set of alternative joint
distributions for S1, . . . , Sl , XA1 , XA2 that have the same marginal distributions as P on the subsets
(S1, . . . , Sl , XA1) and (S1, . . . , Sl , XA2). According to the definition of S̃I, we need to compare
P with the elements of ∆P and find the maximum of HQ

(
(S1, . . . , Sl)

∣∣XA1 , XA2

)
over Q ∈ ∆P,

where the subscript to H indicates with respect to which of these joint distributions the conditional
entropy is evaluated.
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Define a distribution Q∗ for S1, . . . , Sl , XA1 , XA2 by

Q∗(s1, . . . , sl , x1, x2) = P(s1, . . . , sl)P(xA1 = x1|s1, . . . , sl)P(xA2 = x2|s1, . . . , sl).

Then Q∗ ∈ ∆P. Under P, the secrets Sm+1, . . . , Sl are independent of XA1 (marginally)
and independent of XA2 , and so Sm+1, . . . , Sl are independent of the pair (XA1 , XA2) under Q∗.
On the other hand, S1, . . . , Sm are a function of either XA1 or XA2 under P, and so S1, . . . , Sm is
a function of (XA1 , XA2) under Q∗. Thus,

HQ∗(S1, . . . , Sl |XA1 , XA2) = HQ∗(Sm+1, . . . , Sl) = HP(Sm+1, . . . , Sl).

On the other hand, under any joint distribution Q ∈ ∆P, the secrets S1, . . . , Sm are functions
of XA1 , XA2 , whence

HQ(S1, . . . , Sl |XA1 , XA2) ≤ HQ(Sm+1, . . . , Sl) = HP(Sm+1, . . . , Sl).

It follows that Q∗ solves the optimization problem in the definition of S̃I.
Suppose that the secrets for which XA1 is authorized are S1, . . . , Sr and that the secrets for which

XA2 is authorized are Ss, . . . , Sm (with 1 ≤ r, s ≤ m). One computes

IQ∗
(
(S1, . . . , Sl); XA1

∣∣XA2

)
= H(S1, . . . , Ss−1) =

s−1

∑
i=1

H(Si) and

IQ∗
(
(S1, . . . , Sl); XA1

)
= H(S1, . . . , Sr) =

r

∑
i=1

H(Si),

whence

S̃I
(
(S1, . . . , Sl); XA1 , XA2

)
= IQ∗

(
(S1, . . . , Sl); XA1

)
− IQ∗

(
(S1, . . . , Sl); XA1

∣∣XA2

)
=

r

∑
i=s

H(Si) = H(Ss, . . . , Sr).
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