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Abstract: Traditional stochastic dominance rules are so strict and qualitative conditions that generally
a stochastic dominance relation between two alternatives does not exist. To solve the problem,
we firstly supplement the definitions of almost stochastic dominance (ASD). Then, we propose a
new definition of stochastic dominance degree (SDD) that is based on the idea of ASD. The new
definition takes both the objective mean and stakeholders’ subjective preference into account, and can
measure both standard and almost stochastic dominance degree. The new definition contains four
kinds of SDD corresponding to different stakeholders (rational investors, risk averters, risk seekers,
and prospect investors). The operator in the definition can also be changed to fit in with different
circumstances. On the basis of the new SDD definition, we present a method to solve stochastic
multiple criteria decision-making problem. The numerical experiment shows that the new method
could produce a more accurate result according to the utility situations of stakeholders. Moreover,
even when it is difficult to elicit the group utility distribution of stakeholders, or when the group
utility distribution is ambiguous, the method can still rank alternatives.

Keywords: stochastic dominance; almost stochastic dominance; stochastic dominance degree;
stochastic multiple criteria decision making

1. Introduction

In some real-life decision situations, such as some public projects, decision makers (DMs) are just
agents of all stakeholders. The decision should be made based on the preference of all stakeholders,
but not the agents’. In such cases, the elicitation of a unique probability or utility function may be
difficult and its use is questionable [1]. One well-regarded method for comparing two alternatives
with uncertain utility information is via the idea of stochastic dominance (SD). SD is based on the
comparison of the distribution functions that are associated to the alternatives, and can be given the
following interpretation: F �SD G means that the choice of F over G is rational, in the sense that
we prefer the alternative with a greater probability of providing a utility above a certain threshold
x, and this for all possible x [2]. SD rules are widely used to identify SD relations for pairwise
comparisons of alternatives under uncertain environment [3,4]. They are robust analytical tools for
solving decision making problems under uncertainty [1,5], and have been applied in economics and
finance [6,7] because of less restrictive assumptions.

As one method for comparing two alternatives with uncertain information, SD rules have many
advantages. It takes the difference of stakeholders’ utility function into account and compares the
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expected utility of alternatives pairwise, only makes the minimal assumption about the utility function,
and makes no assumptions at all with respect to the particular probability distributions of returns [8,9].
However, the disadvantages of this method are also obvious. Firstly, SD rules are often too strong [10],
where “strong” means that the stochastic dominance rules are too strict to satisfy. So, normally it is
difficult to obtain dominance relationships for all pairwise alternatives. Leshno and Levy [11] noticed
that such strict rules relate to “all” utility functions in a given class, including extreme ones that
presumably rarely represents stakeholders’ preference. They proved that SD rules may fail to show
dominance in cases where almost everyone would prefer one gamble to another. Secondly, SD relations
are qualitative rather than quantitative. Here, “qualitative” indicates that the stochastic dominance
rules can only be used to judge whether there is a dominance relation among pairwise alternatives,
but fail to measure the degree of this dominance relation. Only ordinal concepts are involved and the
degree that one alternative dominates another is unknown, although the SD relation is determined.
Nowak [12] believed that it is not reasonable to accept strict preference if the alternatives differ
insignificantly. The strict preference that is based on SD rules is groundless in many situations and
may cause problems in decision aid. He argued that the verification of SD relations is not sufficient to
accept strict preference. To better apply the SD rules, the method to measure the stochastic dominance
degree (SDD) is necessary [13].

To solve these problems, scholars have made many attempts. One possible solution is the
relaxation of SD rules. Leshno and Levy [11] defined the concept of almost stochastic dominance
(ASD). It is a form of SD that holds for most, but not all, of the utility functions in a given class. Some
utility functions are deemed “extreme”, and it is assumed that they do not represent the preferences of
any real-world stakeholder. They suggested that such utility functions should be ruled out. On the
other hand, some scholars paid their attention to the issue regarding the quantification of SD rules.
Several studies testing for SD have been carried out [14–16] based on different SDD definitions. Some
SDD definitions have been proposed [17–19]. For example, Zhang, Fan and Liu [17] introduced a
concept of stochastic dominance degree to describe the extent to which one alternative dominates
another when the SD relation for each pair of alternatives is determined, and a computation formula
of the SDD is given.

In this paper, we firstly review the existing SD and ASD rules, and supplement the definitions
of ASD (Section 2). Then, we propose a new SDD definition based on the idea of ASD (Section 3).
The new definition contains four kinds of SDDs corresponding to four risk preference styles. It can
measure the degree of SD and ASD, and has clear economic meaning. For an alternative, its SDD is
determined by its own performance and the support from the stakeholders, and varies with the utility
situations of stakeholder group. Furthermore, a SDD based method is proposed to solve stochastic
multiple criteria decision making (MCDM) problems (Section 4). Next, a numerical example and
comparative analysis are showed in Section 5. Finally, the paper is concluded in Section 6.

2. Stochastic Dominance and Almost Stochastic Dominance

In this section we briefly review the various SD rules analyzed in this paper. Then, following
Levy’s [20] and Tzeng’s [21] definitions of almost first degree stochastic dominance (AFSD) and almost
second degree stochastic dominance (ASSD), we further supplement the definitions of almost second
degree inverse stochastic dominance (ASISD), and almost prospect stochastic dominance (APSD).

2.1. Stochastic Dominance

Let us first define several sets of utility functions corresponding to the various SD rules
following Levy and Wiener [22]. In each case we assume the utility function to be continuous and
piecewise smooth.

• U1 is the set of increasing utility functions (rational investors).u ∈ U1 is equivalent to u′(x) ≥ 0
for all x.
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• U2 is the set of increasing and concave utility functions (risk averters).u ∈ U2 is equivalent to
u′(x) ≥ 0 and u′′ (x) ≤ 0 for all x.

• U∗2 is the set of increasing and convex utility functions (risk seekers). u ∈ U∗2 is equivalent to
u′(x) ≥ 0 and u′′ (x) ≥ 0 for all x.

• UP is the set of all S-shaped utility functions as suggested by Prospect Theory (prospect investors).
u ∈ UP is equivalent to u′(x) ≥ 0 for all x, and u′′ (x) ≤ 0 for all x > 0, and u′′ (x) ≥ 0 for all
x < 0. This means risk seeking for losses and risk aversion for gains.

In the following, the definition of SD rules is given following as [17,23].

Definition 1 [17,23]. Let X and Y be two random variables, F(x) and G(x) be the cumulative distribution
functions of X and Y, respectively, [a, b] (−∞ < a < b < ∞) be the finite support of cumulative distributions,
where a and b are the most extreme limits on our distributions of returns. Let EF and EG be the two expectations,
respectively. Let FSD, SSD, SISD and PSD denote first degree, second degree, second degree inverse and prospect
stochastic dominance, respectively. The SD rules are:

(1) F(x) �FSD G(x) if and only if

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U1 with strict inequality for some u, or
(ii) F(x) ≤ G(x) for all x ∈ [a, b] with strict inequality for some x;

(2) F(x) �SSD G(x) if and only if

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U2 with strict inequality for some u, or
(ii)

∫ x
a F(t)dt ≤

∫ x
a G(t)dt for all x ∈ [a, b] with strict inequality for some x;

(3) F(x) �SISD G(x) if and only if

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U∗2 with strict inequality for some u, or

(ii)
∫ b

x F(t)dt ≤
∫ b

x G(t)dt for all x ∈ [a, b] with strict inequality for some x;

(4) F(x) �PSD G(x) if and only if

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ UP with strict inequality for some u, or
(ii)

∫ y
x F(t)dt ≤

∫ y
x G(t)dt for all x ∈ [a, 0) and y ∈ (0, b] with strict inequality for some x and y.

There are in turn higher orders of SD, which might yield conclusive results when FSD, SSD, SISD,
and PSD do not. They were considered too complex for practical use and calculation. We will not
pursue them further here.

SD rules have proven extremely useful not only in financial economics and operations research,
but in many other areas of science [20,24]. However, SD rules suffer from a serious drawback. SD rules
are strong conditions and generally a SD relation between two alternatives does not exist. Such strict
rules relate to all utility functions in a given class, including extreme ones, which presumably rarely
represents stakeholders’ preference. While “most” stakeholders may prefer one uncertain alternative
over another, SD rules will not reveal this preference due to some extreme utility functions in the case
of even a very small violation of these rules.

2.2. Almost Stochastic Dominance

The Almost Stochastic Dominance rules have been developed as an extension of the standard
SD framework to solve such paradoxes. The core idea of ASD is to relax the strict restrictions on
distribution functions by eliminating some extreme utility functions, and to obtain the dominance
relation held by almost all stakeholders (those with reasonable preferences). Hence they were named
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Almost Stochastic Dominance. Leshno and Levy [11] firstly gave the definition of almost first degree
stochastic dominance (AFSD) in 2002.

Definition 2 [11]. Let X and Y be two random variables, F(x) and G(x) be the cumulative distribution
functions of X and Y, respectively, [a, b] (−∞ < a < b < ∞) be the finite support of cumulative distributions,
where a and b are the most extreme limits on our distributions of returns. For every 0 < ε1 < 0.5,
define: U1−almost(ε1) =

{
u
∣∣∣u ∈ U1, u′(x) ≤ inf{u′(x)}

[
1

ε1−1

]
, ∀x ∈ [a, b]

}
, F(x) ε1− almost first degree

stochastic dominance G(x) ( F(x) �ε1−AFSD G(x) ), if and only if,

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U1−almost(ε1), or
(ii)

∫
S1
[F(x)− G(x)]dx ≤ ε1‖F− G‖;

where S1(F, G) = {x ∈ [a, b] : F(x) < G(x)} and ‖F− G‖ =
∫ b

a |F(x)− G(x)|dx.

Note that we replaced original “S1(F, G) = {x ∈ [a, b] : F(t) > G(t)}” with “S1(F, G) =

{x ∈ [a, b] : F(t) < G(t)}” in this paper to facilitate next calculation.
Although Leshno and Levy [11] have proposed the definition of almost second-degree stochastic

dominance (ASSD) in 2002, Tzeng and Shih [21] as well as Huang et al. [25] proved that Levy’s [11]
definition is incorrect and gave the correctional definition of ASSD. Next, we follow Tzeng’s [21]
definition and further provide the definitions of ASISD and APSD.

First, let us define the sets of S2, S∗2 , Sp1 and Sp2 as:

S2(F, G) =
{

x ∈ [a, b] : F(2)(x) < G(2)(x)
}

;

S∗2(F, G) =
{

x ∈ [a, b] : F(2)∗(x) < G(2)∗(x)
}

;

Sp1(F, G) =
{

x ∈ [a, 0] : F(2)(x) < G(2)(x)
}

;

Sp2(F, G) =
{

x ∈ [0, b] : F(2)∗(x) < G(2)∗(x)
}

;

where F(2)(x) =
∫ x

a F(t)dt and G(2)(x) =
∫ x

a G(t)dt; F(2)∗(x) =
∫ b

x F(t)dt and G(2)∗(x) =
∫ b

x G(t)dt.
The sets of almost utility functions are defined as:

U2−almost(ε2) =

{
u
∣∣∣∣u ∈ U2,−u′′ (x) ≤ inf{−u′′ (x)}

[
ε2

1− ε2

]
, ∀x ∈ [a, b]

}
;

U2∗−almost(ε
∗
2) =

{
u
∣∣∣∣u ∈ U∗2 , u′′ (x) ≤ inf{u′′ (x)}

[
ε∗2

1− ε∗2

]
, ∀x ∈ [a, b]

}
;

Up−almost(εp) =

{
u
∣∣∣∣u ∈ Up, |u′′ (x)| ≤ inf{|u′′ (x)|}

[
εp

1− εp

]
, ∀x ∈ [a, b]

}
;

where 0.5 < ε < 1, ε =
{

ε2, ε∗2, εp
}

.
Tzeng’s ASSD was defined as follow:

Definition 3 [21]. For every 0.5 < ε2 < 1, F(x) ε2− almost second degree stochastic dominance G(x)
(F(x) �ε2−ASSD G(x)), if and only if,

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U2−almost(ε2), or

(ii)
∫

S2
[G(x)(2) − F(x)(2)]dx ≥ ε2‖F(2) − G(2)‖ and EF(X) ≥ EG(Y);

where ‖F(2) − G(2)‖ =
∫ b

a

∣∣∣F(x)(2) − G(x)(2)
∣∣∣dx.

Similarly, we define ASISD as follows.



Entropy 2017, 19, 606 5 of 16

Definition 4. For every 0.5 < ε∗2 < 1, F(x) ε∗2−almost second degree inverse stochastic dominance G(x)
(F(x) �ε∗2−ASISD G(x)), if and only if,

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ U2∗−almost(ε
∗
2), or

(ii)
∫

S∗2
[G(x)(2)∗ − F(x)(2)∗]dx ≥ ε∗2‖F(2)∗ − G(2)∗‖ and EF(X) ≥ EG(Y);

where ‖F(2)∗ − G(2)∗‖ =
∫ b

a

∣∣∣F(x)(2)∗ − G(x)(2)∗
∣∣∣dx.

Based on above definition, we propose the definition of APSD:

Definition 5. For every 0.5 < εp < 1, F(x) εp−almost prospect stochastic dominance G(x) (F(x) �εp−APSD
G(x)), if and only if,

(i) EF(u(X)) ≥ EG(u(Y)) for all u ∈ Up−almost(εp), or

(ii)
∫

Sp1
[G(x)(2) − F(x)(2)]dx ≥ εp‖F(p) − G(p)‖,

∫
Sp2

[G(x)(2)∗ − F(x)(2)∗]dx ≥ εp‖F(p)∗ − G(p)∗‖
and EF(X) ≥ EG(Y);

where ‖F(p) − G(p)‖ =
∫ 0

a

∣∣∣F(x)(2) − G(x)(2)
∣∣∣dx, ‖F(p)∗ − G(p)∗‖ =

∫ b
0

∣∣∣F(x)(2)∗ − G(x)(2)∗
∣∣∣dx.

In these definitions, the role of ε is such that, when it takes values closer to 1, the ASD relation does
not to hold for a wider range of distributions of the prospects X and Y. Of course, these distributions
are unknown in most practical applications and must be estimated. For a discussion of inference in
this case on SD and ASD relations, please refer to Post [14], Post and Potì [15] and Linton et al. [16].

Next, the definitions of SDD will be presented based on the ASD.

3. Stochastic Dominance Degree

According to Definition 2, we state the following proposition:

Proposition 1. Let ε1 =

∫
S1

[G(x)−F(x)]dx

‖F−G‖ , (0.5 ≤ ε1 ≤ 1), for the stakeholders whose utility function satisfy

u ∈ U1−almost(ε1) =
{

u
∣∣∣u′(x) ≥ 0, u′(x) ≤ inf{u′(x)}

[
ε1

1−ε1

]
, ∀x ∈ [a, b]

}
, it must be that EF(u(X)) ≥

EG(u(Y)), namely X dominate Y.

The value of ε1 reflects the number of people who hold X dominate Y. In practice, the more
people support X dominate Y, we should believe X better than Y. Therefore, we choose ε1 as an
indicator with respect to the dominance degree of alternatives.

On the other hand, mean is a simple and time-honored method taken from financial applications
to measure the value of uncertain number. Many methods, such as Mean-variance (MV) and
mean-semivariance, regard mean as an important indicator to judge the priority of alternatives [1].
Although the introduction of utility function makes expected utility and mean unequal. There is still
positive correlation between them. Especially when some extreme utility functions are excluded, then
the correlation increases further. Therefore, we choose the mean as the other indicator. The first degree
SDD are defined based on the two aspects.

Definition 6. If F(x) �FSD G(x) (either almost or standard), then the first degree SDD of F(x) �FSD G(x)
(noted as D(F(x) �ε1−SD G(x)) ) is given by

D(F(x) �ε1−SD G(x)) = p(ε1)⊗ [EF(X)− EG(X)] (1)

where ε1 =

∫
S1

[G(x)−F(x)]dx

‖F−G‖ and 0.5 ≤ ε1 ≤ 1, p : [0, 0.5]→ [0, 1] is a function having the
following properties:
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(a) p(x) ≥ p(y), if x > y;
(b) p(1) = 1.

The symbol ⊗ denotes an operator that is used to combine the two indicators, p(ε) and EF(X)−
EG(X). It can be multiplication (p(ε) · [EF(X) − EG(X)]), exponentiation ([EF(X)− EG(X)]p(ε)) or
other special rules defined by DMs. Parameters also can be introduced into it to adjust the weights of
two indicators. In practice, the function p reflects the group utility situation of stakeholders. That is
what percentage of stakeholders hold utility function u ∈ Ualmost(ε). The given conditions are implied
by the SD relations. Note that, when ε1 = 1, ASD is reduced to standard SD. D(F(x) �ε1−SD G(x)) =
EF(X)− EG(X).

Following the same argument used for first degree SDD, we obtain the SDD of the others (second
degree, second degree inverse and prospect). The universal definition of SDD is shown in the following:

Definition 7. If F(x) �SD G(x) (either almost or standard first degree, second degree, second degree inverse
and prospect SD), then the SDD of F(x) �SD G(x) (noted as D(F(x) �ε−SD G(x))) is given by

D(F(x) �ε−SD G(x)) = p(ε)⊗ [EF(X)− EG(X)] (2)

where ε =
{

ε1, ε2, ε∗2, εp
}

, and 0.5 ≤ ε ≤ 1.

ε1 =

∫
S1
[G(x)− F(x)]dx

‖F− G‖ ; ε2 =

∫
S2
[G(x)(2) − F(x)(2)]dx

‖F(2) − G(2)‖

ε∗2 =

∫
S∗2
[G(x)(2)∗ − F(x)(2)∗]dx

‖F(2)∗ − G(2)∗‖
;

εp =

∫
Sp1

[G(x)(2) − F(x)(2)]dx

‖F(p) − G(p)‖
∧

∫
Sp2

[G(x)(2)∗ − F(x)(2)∗]dx

‖F(p)∗ − G(p)∗‖
;

p : [0.5, 1]→ [0, 1] is a function having the following properties:

(a) p(x) ≥ p(y), if x > y;
(b) p(1) = 1.

When compared with determining every stakeholder’s utility function, constructing a group
utility situation function is much easier. Group utility situation is more stable than individual
utility [26]. Moreover, due to the monotonicity of function p, sometimes, we can obtain the
decision results directly, without determining the specific group utility situation function (e.g.,
following example).

The new SDDs take both objective mean and stakeholders’ subjective preferences into account
together. It can measure both SD and ASD degree, and correct for certain conditions where standard
SD yields results that are inconsistent with the common-sense preferences of most stakeholders. Next,
an example is given to investigate the superiority of the proposed SDDs further.

Suppose that ten experts evaluate three alternatives A1; A2; A3 on a scale of ten (1, the worst; 10,
the best), and evaluations of the alternatives are expressed in the form of probability distributions as
shown in Table 1. The decision analysis with the proposed SDD is shown as follow.
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Table 1. Distributional evaluations for three alternatives.

Scores
Alternatives

A1 A2 A3

1 - 1/10 2/10
2 5/10 - -
3 - - -
4 - 2/10 -
5 - - 6/10
6 1/10 - -
7 - 5/10 -
8 - - -
9 4/10 - -

10 - 2/10 2/10

According to the data in Table 1, the cumulative distribution functions of A1, A2, and A3 are
shown in Figure 1. In Figure 1, S1 denotes the area enclosed by the lines for A1 and A2 under the curve
for A1, and S2 denotes the area between the curves for A2 and A1 under the curve for A2. According
to Definition 6, we can get:

ε1(A2 � A1) =
S2

S1 + S2
=

1.7
0.5 + 1.7

= 0.773; ∆E(A2 � A1) = S2− S1 = 1.7− 0.5 = 1.2
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Similarly, the others SDD indicators are computed as shown in Table 2.

Table 2. The indicators of stochastic dominance degree (SDD) for three alternatives.

ε1 ε2 ε∗2 ∆E

A1 & A2 −0.773 −0.991 −0.968 −1.2
A1 & A3 0.5 −0.828 0.828 0
A2 & A3 0.929 1 1 1.2

Note: positives mean the former dominate the later; negatives mean the later dominate the former.

From Table 2, we can see that there are only a standard SSD relation and a standard SISD relation
between A2 and A3. Obviously, we cannot obtain the dominance relation according to standard SD
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rules. However, duo to the relaxation of restrictions on distribution functions, the proposed SDD
can obtain the dominance relation between alternatives more easily. According to the first degree
SDD indicators (ε1 and ∆E) in Table 2, we can confirm A2 � A1, A2 � A3 directly. Then, we obtain
A1 � A3, since ε1,A2�A1 < ε1,A2�A3 and ∆EA2�A1 = ∆EA2�A3.

Moreover, the decision results will change with stakeholders’ risk preference styles. This is
more reasonable. In Table 2, if we compare A1 with A3 without reference A2, we cannot distinguish
the two alternatives by the first degree SDD indicators. This is because the precondition of first
degree ASD just claims that U1 is an increasing utility functions set, but does not restrict the risk
preference styles of stakeholders. If we know stakeholders’ risk preference styles, we can use
corresponding higher degree SDDs (second degree for risk averters, second degree inverse for risk
seekers, prospect for prospect investors) to confirm dominance relation more accurately. In the above
example, we get ε2,A3�A1 = 0.828, hence risk averters will think A3 � A1. Whereas, for risk seekers,
ε∗2,A1�A3 = 0.828, hence A1 � A3. In practical decision making, the results derived from different
SDDs may be inconsistent. DMs should choose one kind of SDDs according to the risk preference
styles of stakeholders, rather than use several of them simultaneously. When we just know that
all of the stakeholders are rational investors (u ∈ U1), we should choose first degree SDD. If we
know stakeholders’ risk preference styles, we can use corresponding higher degree SDDs for more
precise results.

In addition, the new definition has clearing economic meaning and contributes to theory study.
The property of hierarchy, i.e., FSD implies SSD, which, in turn, implies that third degree stochastic
dominance (TSD) is an important property for SD rules. Guo, et al. [27] found that ASD rules do
not possess the property. But they did not explain the reason. Now, with the new SDD definition,
we can explain it clearly. That is because in the standard SD, U2, U∗2 , and Up are the subset of U1. If all
rational investors (u ∈ U1) hold a SD relation (i.e., FSD), all risk averters, risk seekers, and prospect
investors (u ∈ U2, U∗2 or Up) will hold the same SD relation. However, in ASD, when ε1 ≥ε2,
ε∗2, εp, the sets, U2−almost(ε2), U2∗−almost(ε

∗
2), and Up−almost(εp), may not be not included in the set

U1−almost(ε1)(shown in Figure 2). In other words, although all DMs holding u ∈ U1−almost(ε1) support
certain dominate relation, some DMs holding u ∈ U2−almost(ε2), U2∗−almost(ε

∗
2) or Up−almost(εp) may

still not support that dominate relation.Entropy 2017, 19, 606 9 of 16 
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(AHP) [28]. Suppose that [ ]ij ij m nR r ×=  is a decision matrix, where ijr  is a random variable with 
probability distribution function ( )ijf x , provided by DMs for the alternative iA  with respect to the 
attribute jC . The problem concerned in this paper is to rank alternatives or to select the most desirable 
alternatives among a finite set A  based on decision matrix ijR  and attribute weight vector w . 

To solve the stochastic MCDM problem mentioned above, we propose a decision analysis 
method based on SDD. A description of the method is given below. 

Step 1. Identify the SD or ASD relation for pairwise comparisons of alternatives with respect to each 
attribute, and then calculate the SDD that an alternative dominates another by Definition 7, 
set up SDD matrix D (D )j j

pq m m×=  for each attribute, where D j
pq  denote the SDD of 

alternative pA  dominates qA  with respect to the attribute jC . 

Step 2. According to SDD matrix D j , calculate relative dominant degree ( )j iAΨ  on each attribute 
with a PROMETHEE-II based method. Then construct relative dominant degree matrix 

( ) ( ( ))ij m n j i m nA× ×Ψ = Ψ = Ψ . 
Step 3. Normalize the relative dominant degree matrix ( )ij m n×Ψ = Ψ  into ( )ij m n×Φ = Φ . 

For benefit-type criteria:  
min

max min

ij j
ij

j j

Ψ − Ψ
Φ =

Ψ − Ψ
 (3) 

For cost-type criteria: 
max

max min

j ij
ij

j j

Ψ − Ψ
Φ =

Ψ − Ψ
 (4) 

Figure 2. Relationships among different utility function sets.
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4. A Method for Stochastic MCDM

Consider a stochastic MCDM problem. Let A = {A1, A2, · · · , Am}(m ≥ 2) be a discrete set of
alternatives, and C = {C1, C2, · · · , Cn} be the set of attributes, w = (w1, w2, · · ·wn)

T is the weight
vector of the attribute, with 0 ≤ wj ≤ 1 and ∑n

j=1 wj = 1. Usually, the weight vector can be obtained
either directly from the DMs or indirectly using existing procedures, such as Analytic Hierarchy
Process (AHP) [28]. Suppose that Rij = [rij]m×n is a decision matrix, where rij is a random variable
with probability distribution function fij(x), provided by DMs for the alternative Ai with respect to the
attribute Cj. The problem concerned in this paper is to rank alternatives or to select the most desirable
alternatives among a finite set A based on decision matrix Rij and attribute weight vector w.

To solve the stochastic MCDM problem mentioned above, we propose a decision analysis method
based on SDD. A description of the method is given below.

Step 1. Identify the SD or ASD relation for pairwise comparisons of alternatives with respect to each
attribute, and then calculate the SDD that an alternative dominates another by Definition 7,
set up SDD matrix Dj = (Dj

pq)m×m for each attribute, where Dj
pq denote the SDD of alternative

Ap dominates Aq with respect to the attribute Cj.

Step 2. According to SDD matrix Dj, calculate relative dominant degree Ψj(Ai) on each attribute
with a PROMETHEE-II based method. Then construct relative dominant degree matrix
Ψ = (Ψij)m×n = (Ψj(Ai))m×n.

Step 3. Normalize the relative dominant degree matrix Ψ = (Ψij)m×n into Φ = (Φij)m×n.

For benefit-type criteria:

Φij =
Ψij −Ψmin

j

Ψmax
j −Ψmin

j
(3)

For cost-type criteria:

Φij =
Ψmax

j −Ψij

Ψmax
j −Ψmin

j
(4)

Step 4. Calculate overall dominant degree matrix by Equation (5).

Z = Φ·w (5)

Step 5. Determine the ranking result of alternatives according to Z(Ai), i = 1, 2, · · · , m.

A brief description of the PROMETHEE-II based method in step 3 is given below.
Let Ψj(Ai)

+ be the dominant degree which is a measure that alternative Ai is dominating the
other alternatives on attribute Cj, and Ψj(Ai)

− be the non-dominant degree, which is a measure that
alternative Ai is dominated by the other alternatives on attribute Cj. Here, Ψj(Ai)

+ and Ψj(Ai)
− can

be, respectively, defined by the following formulas:

Ψj(Ai)
+ =

m
∑

h=1
Dj

ih

m
, i = 1, 2, · · · , m, j = 1, 2, · · · , n (6)

Ψj(Ai)
− =

m
∑

h=1
Dj

hi

m
, i = 1, 2, · · · , m, j = 1, 2, · · · , n (7)

Let Ψj(Ai) be the relative dominant degree, which measures the difference between dominant
and non-dominant degrees of alternative Ai on attribute Cj. Ψj(Ai) can be calculated by the
following formula:

Ψj(Ai) = Ψj(Ai)
+ −Ψj(Ai)

− (8)
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5. A Numerical Example

5.1. Illustrative Applications

Following Martel and Zaras [29], Nowak [12], and Liu et al. [18], we consider the same problem
of selecting the most desirable one from ten computer development projects (A1, A2, ..., A10).
The decision-making committee assesses the projects based on four attributes which follow: (1) personal
resources effort (C1); (2) discounted profit (C2); (3) chances of success (C3); and, (4) technological
orientation (C4). The weight vector of the attribute provided by the DMs is (0.09, 0.55, 0.27, 0.09)T.
The evaluation group is constituted by seven experts. The evaluations on the projects with respect to
the criteria provided by the evaluation group are expressed in the form of probability distributions,
as shown in Table 3. In the example, we assume that ⊗ is a multiplication operator and the function
p(ε) = (2ε− 1)r (r > 0) (Figure 3).
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Table 3. Distributional evaluations for the ten projects.

Criteria Scores
Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
1 0 0 0 1/7 0 1/7 1/7 1/7 0 0
2 3/7 1/7 0 0 0 0 0 2/7 0 1/7
3 1/7 0 0 0 1/7 0 0 2/7 0 2/7
4 0 2/7 0 0 0 0 0 1/7 0 2/7
5 2/7 1/7 3/7 1/7 0 0 3/7 1/7 2/7 1/7
6 0 2/7 1/7 0 2/7 0 1/7 0 1/7 0
7 1/7 0 1/7 0 2/7 1/7 0 0 3/7 1/7
8 0 1/7 2/7 1/7 0 3/7 1/7 0 1/7 0
9 0 0 0 4/7 2/7 0 0 0 0 0

C1

10 0 0 0 0 0 2/7 1/7 0 0 0
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Table 3. Cont.

Criteria Scores
Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

C2

1 0 1/7 1/7 0 0 0 1/7 3/7 0 0
2 2/7 0 0 0 0 0 3/7 3/7 0 1/7
3 1/7 0 0 1/7 0 4/7 1/7 0 1/7 0
4 0 0 0 1/7 0 0 0 1/7 1/7 0
5 2/7 0 0 0 1/7 0 1/7 0 0 0
6 0 1/7 1/7 1/7 2/7 0 1/7 0 1/7 0
7 0 1/7 0 0 1/7 1/7 0 0 4/7 2/7
8 1/7 1/7 2/7 3/7 2/7 2/7 0 0 0 3/7
9 1/7 3/7 1/7 1/7 1/7 0 0 0 0 0
10 0 0 2/7 0 0 0 0 0 0 1/7
1 0 0 1/7 0 1/7 0 0 2/7 0 1/7
2 0 0 0 0 0 0 3/7 1/7 0 2/7
3 1/7 0 0 1/7 0 0 1/7 4/7 1/7 0
4 3/7 0 0 0 0 1/7 1/7 0 2/7 0
5 0 1/7 0 0 0 1/7 2/7 0 2/7 0
6 1/7 0 0 0 0 0 0 0 0 2/7
7 0 1/7 0 1/7 0 0 0 0 2/7 2/7
8 1/7 2/7 0 2/7 3/7 2/7 0 0 0 0
9 1/7 3/7 2/7 1/7 1/7 1/7 0 0 0 0

C3

10 0 0 4/7 2/7 2/7 2/7 0 0 0 0

C4

1 0 1/7 0 1/7 0 0 0 2/7 0 0
2 0 0 0 0 0 0 0 0 1/7 0
3 3/7 0 0 0 0 0 1/7 0 0 0
4 0 0 0 0 0 0 0 1/7 1/7 0
5 2/7 0 0 0 0 1/7 1/7 2/7 0 0
6 0 0 0 0 1/7 1/7 0 1/7 3/7 3/7
7 0 0 1/7 0 1/7 1/7 0 0 0 1/7
8 1/7 2/7 4/7 0 3/7 2/7 3/7 1/7 1/7 1/7
9 0 2/7 0 1/7 1/7 1/7 1/7 0 0 1/7
10 1/7 2/7 2/7 5/7 1/7 1/7 1/7 0 1/7 1/7

Firstly, we set r = 1 and calculate decision results by first degree SDD. Decision steps and some
computation results are shown as follows:

Calculate the SDD with Equation (2), set up SDD matrix for each attribute. The SDD matrixes for
each attribute are showed as follow:

D1 =



φ φ φ φ φ φ φ 0.857 φ φ

1.286 φ φ φ φ φ φ 2.183 φ 1
2.571 1.286 φ φ φ φ 0.286 3.429 φ 2.286
3.171 1.891 0.367 φ 0.143 φ 1.191 4.286 0.275 2.881
3.000 1.714 0.177 φ φ φ 0.778 3.877 0.095 2.714
3.414 2.173 0.538 0.095 0.397 φ 1.714 4.592 0.467 3.165
1.580 0.510 φ φ φ φ φ 2.851 φ 1.469

φ φ φ φ φ φ φ φ φ φ

2.584 1.476 0.048 φ φ φ 0.337 3.571 φ 2.429
0.154 φ φ φ φ φ φ 1.183 φ φ
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D2 =



φ φ φ φ φ φ 1.938 3.041 φ φ

1.891 φ φ 0.184 0.018 1.556 4.041 5.143 0.762 φ

2.314 0.429 φ 0.514 0.117 1.761 4.469 5.571 1.152 0.095
1.714 φ φ φ φ 1.659 3.714 4.836 0.714 φ

2.183 φ φ 0.257 φ 2.000 4.000 5.265 1.096 φ

0.020 φ φ φ φ φ 2.000 3.265 φ φ

φ φ φ φ φ φ φ 1.143 φ φ

φ φ φ φ φ φ φ φ φ φ

0.485 φ φ φ φ 0.554 2.857 3.992 φ φ

2.286 0.029 φ 0.381 0.020 1.891 4.183 5.286 1.052 φ



D3 =



φ φ φ φ φ φ 2.183 3.183 0.292 0.672
2.429 φ φ φ 0.200 0.029 4.592 5.571 2.857 3.429
2.520 0.190 φ 0.286 0.714 0.315 4.836 6.183 2.978 4.000
2.429 φ φ φ 0.048 0.062 4.571 5.571 2.898 3.429
1.829 φ φ φ φ φ 4.125 5.469 2.282 3.286
2.286 φ φ φ φ φ 4.469 5.408 2.735 3.265

φ φ φ φ φ φ φ 1.000 φ φ

φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ 1.714 2.674 φ 0.247
φ φ φ φ φ φ 0.914 1.883 φ φ



D4 =



φ φ φ φ φ φ φ 0.706 φ φ

2.104 φ φ φ φ 0.057 0.328 3.571 1.609 0.099
3.143 0.286 φ φ 0.429 1.000 1.183 4.143 2.429 1.000
2.799 0.517 0.011 φ 0.163 0.467 0.947 4.286 2.314 0.508
2.714 0.016 φ φ φ 0.429 0.755 3.714 2.000 0.571
2.326 φ φ φ φ φ 0.143 3.306 1.612 0.048

φ φ φ φ φ φ φ 3.020 1.286 φ

φ φ φ φ φ φ φ φ φ φ

0.510 φ φ φ φ φ φ 1.714 φ φ

2.143 φ φ φ φ φ 0.032 3.143 1.429 φ


Construct relative dominant degree matrix with Equations (6)–(8). The relative dominant degree

matrix is shown as follows:

Ψ =



−1.690 −0.591 −0.516 −1.703
−0.458 1.314 1.874 0.695
0.873 1.642 2.202 1.360
1.411 1.130 1.872 1.201
1.182 1.465 1.621 0.961
1.655 −0.414 1.776 0.548
0.211 −2.606 −2.640 0.292
−2.684 −3.754 −3.694 −2.760
0.961 0.311 −0.941 −1.045
−1.461 1.503 −1.533 0.452
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Normalize the relative dominant degree matrix with Equations (3) and (4):

Φ =



0.229 0.586 0.539 0.257
0.513 0.939 0.944 0.839
0.820 1 1 1
0.944 0.905 0.944 0.961
0.891 0.967 0.901 0.903

1 0.619 0.928 0.803
0.667 0.213 0.179 0.741

0 0 0 0
0.840 0.753 0.467 0.416
0.282 0.974 0.363 0.780


Calculate overall dominant degree matrix with Equation (5):

Z =
(

0.512 0.893 0.984 0.924 0.937 0.753 0.292 0 0.653 0.729
)T

The ranking result of alternatives is A3 � A5 � A4 � A2 � A6 � A10 � A9 � A1 � A7 � A8.
Similarly, we can obtain the overall dominant degree matrix that is calculated by second degree

and second degree inverse SDD as follows:

Z2 =
(

0.499 0.890 0.987 0.924 0.932 0.739 0.289 0 0.669 0.729
)T

Z2∗ =
(

0.480 0.875 0.974 0.890 0.901 0.711 0.277 0 0.614 0.704
)T

Suppose that the reference point is 5. We can also get the overall dominant degree matrix
calculated by prospect SDD.

Zp =
(

0.579 0.916 0.949 0.951 0.967 0.827 0.325 0 0.751 0.752
)T

5.2. Comparative Analysis and Discussion

The results obtained by different SDD, Zaras and Martel’s method [29], Nowak’s method [12],
and Liu and Fan’s method [18] are shown in Table 4. It can be seen from Table 4 that the results obtained
by the proposed SDD method and those by the existing methods are slightly different. However,
the proposed method and Liu and Fan’s method [18] could produce more accurate results than the
others. When comparing with the existing methods, the new method takes the risk preference styles
and group utility distribution of stakeholders into account. The results obtained by the new method
will vary with the risk preference styles of stakeholders. It makes the new method more reasonable for
practical decision making.

Table 4. The ranking of projects obtained by different methods.

Methods
Rank

1 2 3 4 5 6 7 8 9 10

First degree, second
degree and second
degree inverse SDD

A3 � A5 � A4 � A2 � A6 � A10 � A9 � A1 � A7 � A8

Prospect SDD A5 � A4 � A3 � A2 � A6 � A10 � A9 � A1 � A7 � A8
Zaras and Martel’s A3 ; A4 � A3 ; A5 � A6 ; A9 ; A10 � A1 ; A7 � A8
Nowak’s A3 � A2 � A4 ; A5 � A6 � A9 ; A10 � A1 � A7 � A8
Liu and Fan’s A3 � A4 � A2 � A5 � A6 � A10 � A9 � A1 � A7 � A8
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To analyze the impact of group utility distribution of stakeholders on the ranking result, we set
r = 1/10, 1/3, 1, 3, and 10, respectively, then calculate and compare the decision results under first
degree SDD. The images of function p(ε) are shown in Figure 3. The results are shown in Table 5
accordingly. From Figure 3 and Table 5 we can see that the differences in ranking results are slight
relative to the significant differences in function p(ε). This is because p(ε) is limited to monotonically
increasing function. The group utility distribution of stakeholders has a limited influence over the
ranking result. Therefore, when the elicitation of group utility distribution of stakeholders is difficult
or the group utility distribution is ambiguous, we can still get ranking results by the proposed method.

Table 5. The decision results under different values of r.

r Rank and Final Score

1 2 3 4 5 6 7 8 9 10

A3 � A5 � A4 � A2 � A6 � A10 � A9 � A1 � A7 � A8

1/10 0.977 0.907 0.894 0.876 0.716 0.708 0.625 0.481 0.277 0
1/3 0.980 0.917 0.904 0.882 0.728 0.715 0.633 0.490 0.282 0

1 0.984 0.937 0.924 0.893 0.753 0.729 0.653 0.512 0.292 0
3 0.985 0.963 0.958 0.910 0.801 0.750 0.694 0.554 0.311 0

A4 � A5 � A3 � A2 � A6 � A10 � A9 � A1 � A7 � A8

10 0.956 0.953 0.946 0.896 0.830 0.743 0.728 0.600 0.332 0

6. Conclusions

To overcome the defects in traditional SD rules, we firstly supplement the definitions of ASISD
and APSD. Then, we propose a new definition of SDD based on the idea of ASD. When comparing
with existing definitions, the new definition takes both objective mean and stakeholders’ subjective
preference into account. For an alternative, its SDD is determined by two aspects, its own performance
and the support from stakeholders, and vary with the utility situations of the stakeholder group.
The new definition contains four kinds of SDD, which are corresponding to different risk preference
styles, DMs can choose suitable one according to stakeholders’ situations. The operator in the definition
also can be changed to fit in with different circumstances. In addition, with the relaxation of restrictions
on distribution functions, it is easier to obtain the dominance relation between alternatives, and both
SD and ASD degree can be measured by the same equation.

On the basis of the new SDD, we present a method to solve the stochastic MCDM problem.
The numerical experiment shows that the new method could produce more accurate results according
to the risk preference styles of stakeholders. Moreover, when it is difficult to elicit the group utility
distribution of stakeholders or the group utility distribution is ambiguous, the proposed method
can still rank alternatives. Unlike most existing methods, the utility situations of stakeholders are
adequately considered in the proposed method. It gives DMs one more choice to solve stochastic
MCDM problems according to stakeholders’ preferences.

In the future, further researches will helpful for improving the accuracy of the method.
The property of hierarchy is an important property for SD rules. However, existing ASD definitions do
not possess the property. It will be very interesting to seek new ASD definitions that are possessing
the property of hierarchy. The research regarding to the elicitation of stakeholders’ group utility
distribution are significant, too. Furthermore, when considering that the relevant distribution
is not completely known due to heterogeneous beliefs, subjective distortion, or estimation error,
the inferential frameworks based on entropy and similar information-theoretic measures of distances
between distribution will be the focus of our future research.
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