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Abstract: Bearing vibration response studies are crucial for the condition monitoring of bearings and
the quality inspection of rotating machinery systems. However, it is still very difficult to diagnose
bearing faults, especially rolling element faults, due to the complex, high-dimensional and nonlinear
characteristics of vibration signals as well as the strong background noise. A novel nonlinear
analysis method—the symplectic entropy (SymEn) measure—is proposed to analyze the measured
signals for fault monitoring of rolling bearings. The core technique of the SymEn approach is the
entropy analysis based on the symplectic principal components. The dynamical characteristics
of the rolling bearing data are analyzed using the SymEn method. Unlike other techniques
consisting of high-dimensional features in the time-domain, frequency-domain and the empirical
mode decomposition (EMD)/wavelet-domain, the SymEn approach constructs low-dimensional
(i.e., two-dimensional) features based on the SymEn estimate. The vibration signals from our
experiments and the Case Western Reserve University Bearing Data Center are applied to verify
the effectiveness of the proposed method. Meanwhile, it is found that faulty bearings have a great
influence on the other normal bearings. To sum up, the results indicate that the proposed method can
be used to detect rolling bearing faults.

Keywords: fault detection; high-dimensional nonlinear characteristic; rolling bearing; symplectic
entropy (SymEn) measurements; vibration signal

1. Introduction

Rolling bearings are basic and key components in rotary machine systems. Any slight fault will
lead to abnormal working states of the rotary machine structures, and even affect the normal running
of other components. The caused concurrent faults will bring about economical and personnel losses.
Rolling bearings with defects have been widely and deeply investigated from the two aspects of
mechanism studies and diagnosis analyses, respectively [1–3]. Mechanism studies mainly involve
dynamic model designs and theoretical analyses of rolling bearings with surface defects (such as pitting
or spalling) from the viewpoint of mechanical dynamics theory [4]. Meanwhile, various nonlinear
multi-body dynamic models have been proposed, due to Hertzian contact, unbalanced rotor effects,
radial internal clearance, raceway spalls and the size of the rolling elements [4–7]. Diagnosis analyses
cover the exploration and development of approaches for the feature extraction and identification for
rolling bearing faults from the viewpoint of signal processing or information theory, such as statistical
processing, fractal dimension, linear discriminant analysis, cepstrum analysis, time-frequency analysis,
supervised learned processing and so on [8–20]. Few studies however have investigated and extracted
the characteristics of the vibration signals on rolling bearings in terms of dynamics theory. For this,
this paper tries to introduce the SymEn method to analyze these vibration signals from the point of
view of dynamics.
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In order to describe the behavior of rolling bearings, the features extracted from vibration signals
are the most commonly high-dimensional feature vectors consisting of values in various domains,
such as the time domain, frequency domain, EMD/wavelet domain and so on [20–31]. Yang et al.
constructed 14-dimensional features including three fractal dimensions and 11 time-domain statistical
features to evaluate various fault conditions of rolling bearings [20]. For bearing fault detection,
Prieto et al. gave a set of 30-dimension statistic features in the time domain for two channels in the
beginning [21]. Wu et al. studied 80 original features from multi-scale entropy (MSE), multi-scale
permutation entropy (MPE), multi-scale root-mean-square (MSRMS) and multi-band spectrum entropy
(MBSE) [22]. Jiang et al. constructed a feature vector consisting of 59 features from the time, frequency
and wavelet domains [23]. Ali et al. used empirical mode decomposition and time-domain statistics
to extract 50 features [24]. Yang et al. extracted 35 features to identify the condition of a rotor [25].
Wang et al. extracted a set of 22 statistical features from the time, frequency and time-frequency
domains [26]. Mbo’o et al. extracted a 10 × 6 feature matrix by using frequency analysis and
statistical measures for the diagnosis of bearing damage [27]. Sun et al. applied a weighted wavelet
packet entropy (WWPE) method to construct a feature vector of 50 WWPE values for each moving
window [28]. Xu et al. applied multiscale base-scale entropy approaches to construct high-dimensional
feature vectors (such as 4-dimensional vectors) for fault diagnosis of rolling bearings [29]. Li et al.
used 20 features in the time-domain and frequency-domain to reflect the running states of bearings [30].
Yu gave 20-dimensional original features including Shannon entropy, second order statistics, frequency
characteristics, wavelet energy, etc. [31]. However, the high-dimensional fault features often contain a
great deal of redundant and irrelevant information so that the corresponding classification techniques
cause an increase of computational burden and even a decline of the classification accuracy [32].
In order to avoid these problems, one thinks that the reduction dimension of high-dimensional features
is a necessary process. In other words, how to get appropriate features becomes a key step for feature
recognition. Various reduction dimension techniques have been developed and applied, such as the
marginal fisher analysis (MFA) [23], the principal component analysis (PCA) [33], the generalized
discriminate analysis (GDA) [34] and so on, but it can be seen that these methods are related to
the intrinsic dimensionality of the analyzed data. That is to say, to a great extent, the recognition
performance is dependent on the intrinsic dimension value of the data [35,36]. Although it is still a
great challenge to choose an optimal value of the intrinsic dimension, the intrinsic dimension of the
analyzed data should come from its system. This paper introduces the SymEn method to research the
dimensionality and nonlinearity of the vibration signals by reconstructing a Hamilton matrix of the
rolling bearing system in symplectic space.

Symplectic space is an even dimensional phase space. In this space, the geometry transform
theory is called symplectic geometry. A Hamilton matrix of the system in symplectic space can be
equivalent to its original system. Namely, the eigenvalues of the Hamilton matrix contain the dynamical
information of the system, such as dimensions. At present, symplectic geometry theory has been
mainly studied in nonlinear differential systems [37–39]. However, it has also been applied to deal with
the time series from complex systems in the reconstructed phase space, such as dimension estimation,
nonlinear analysis, symplectic principal component analysis, reduction noise, data prediction and
feature extraction [40–43]. Meanwhile, a SymEn estimate is an entropy measure for complex systems in
symplectic geometry space, which can reflect the intrinsic characteristics of the dynamical systems [44].

The rest of this paper is organized as follows: Section 1 introduces the symplectic entropy
method as well as the approximate entropy (ApEn), the sample entropy (SampEn), the fuzzy entropy
(FuzzyEn), and the radial basis function (RBF) classifier. Section 2 shows our experimental signals
and the vibration data sets from the Case Western Reserve University (CWRU) Bearing Data Center.
Section 3 analyzes and discusses the dynamical characteristics of our experimental data based on
the SymEn method. The effectiveness of the proposed approach is verified by using RBF classifier to
diagnose faults in our experiments in comparisons with the ApEn, SampEn and FuzzyEn methods.
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Then, the SymEn method with RBF classifier is also applied to detect faults in CWRU data. Finally,
Section 4 gives the conclusions.

2. Methodology

From the point of view of dynamics theory, a time series, i.e., one-dimensional signal, can reconstructed
the system dynamics according to Takens’ embedding theorem. In other words, for a real time series x
(xi, i = 1, . . . , N), an attractor Xl×m is reconstructed in phase space and also called the trajectory matrix
of the dynamical system:

X =


Xm

1
Xm

2
...

Xm
l

 =


x1 x2 · · · xm

x2 x3 · · · xm+1
...

... · · ·
...

xl xl+1 · · · xN

, (1)

where Xm
i = {xi, xi+1, · · · , xi+m−1}, i∈(1, N − m + 1), represents a point of the system in the phase

space. m is the embedding dimension. l = N − m + 1 is the number of points in Rm. The matrix X
contains the dynamical information of the system. In order to keep the dynamical characteristics of
the matrix X unchanged, this paper introduces the SymEn method due to the measure preserving
transformation of symplectic geometry theory. Moreover, the ApEn, SampEn and FuzzyEn methods
are also given for comparison.

2.1. Symplectic Entropy (SymEn)

The SymEn method estimates a SymEn measure based on the energy distribution of the attractor
X in symplectic space. The SymEn statistic can better describe the properties of the system by using
the symplectic transform, even for the nonlinear dynamic systems [44]. The SymEn algorithm is given
as follows: first, the attractor X in (1) is mapped into symplectic space. That is, for the attractor X,
one can get a Hamilton matrix M of the system in symplectic space [41]:

M =

(
A 0
0 −AT

)
, (2)

where A = XTX. M is equivalent to the attractor X.
Second, eigenvalues of the Hamilton matrix M are obtained by a symplectic similar transform.

According to symplectic geometry theory, any Hamilton matrix can remain unchanged during a
symplectic similar transform [40]. Then, the eigenvalues of the Hamilton matrix M reflect the
dynamical characteristics of the system. The symplectic similar transform is a regular transform
based on a bilinear antisymmetric nonsingular cross product, called the symplectic cross product [x, y],
vectors x and y ∈ R2n:

[x, y] = 〈x, Jy〉, (3)

where <·> denotes the inner product, J is the skew-symmetric matrix:

J = J2n =

[
0 +In

−In 0

]
, (4)

where In is a n-dimensional unit matrix.
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In symplectic geometry, the Hamilton matrix M can be transformed into an upper Hessenberg
matrix B (bij = 0, i > j + 1) by a symplectic matrix H:

HTMH =

(
B R
0 BT

)
, (5)

where H can also be a Household matrix, i.e.,

H = H(k, ω) =

(
P 0
0 P

)
, (6)

where:

P = In −
2vv∗

v∗v

v = (0, · · · , 0; ωk, · · · , ωn)
T 6= 0

here, P can be obtained from the matrix A [40,42]. For the matrix A, we can get:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

 =

(
a11 A(1)

12

α
(1)
21 A(1)

22

)
, (7)

If α
(1)
21 6= 0, the elementary reflective array P(1) can be calculated as follows:

P(1) = I − 2v(1)(v(1))
T

, (8)

where: 

v(1) = 1
ρ1

(
S(1) − α1E(1)

)
S(1) =

(
a(1)11 , a(1)21 , · · · , a(1)n1

)T
= (a11, a21, · · · , an1)

α1 = ‖S(1)‖2
ρ1 = ‖S(1) − α1E(1)‖

E(1) = (1, 0, · · · , 0)T n× 1

, (9)

Then:

P(1)A =


µ1 a(2)12 · · · a(2)1n

0 a(2)22 · · · a(2)2n
...

...
. . .

...

0 a(2)n2 · · · a(2)nn

 = A(2), (10)

Next:

S(2) =
(

0, a(2)22 , · · · , a(2)n2

)T
, (11)

The matrix P(2) can be constructed:

P(2) = I − 2ω(2)(v(2))
T

, (12)
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where: 
α2 = ‖S(2)‖2

E(2) = (0, 1, 0, · · · , 0)T n× 1
ρ2 = ‖S(2) − α2E(2)‖

v(2) = 1
ρ2

(
S(2) − α2E(2)

) , (13)

Thus, A(2) can be transformed as A(3), in which the values of the second column are all zero except
the first two elements:

P(2)A(2) = A(3) (14)

One can repeat the above steps until A(n) becomes an upper triangle matrix B. The matrix P can
be computed:

P = P(n)P(n−1) · · · P(1) (15)

The eigenvalues µ = {µ1, µ2, . . . , µm} of matrix B are equal to those of matrix A. The eigenvalues
µ are sorted in descending order, i.e., µ1 > µ2 > . . . > µk >> µk+1 ≥ . . . ≥ µm, called the symplectic
principal components of matrix A.

The µ values reflect the distribution of the energy of the system in different directions of symplectic
space. The probability space of the system can be expressed as:

[M · P] =
{

M : µ1, µ2, · · · , µm

P : p1, p2, · · · , pm
, (16)

pi =
µi

m
∑

i=1
µi

(17)

where m is the embedding dimension, 0 ≤ pi ≤ 1, ∑m
i=1 pi = 1. pi describes the uncertainty of the

entropy in different directions. Then, the SymEn measure can be defined as follows:

SymEn = −
m

∑
i=1

pi log(pi), (18)

The SymEn statistic calculates the statistical average and measures the degree of uncertainty
about the underlying energy probability distribution referring to the Shannon entropy.

2.2. Approximate Entropy (ApEn)

For the ApEn algorithm [45], when the dimension is equal to m, the distance dm
ij between Xm

i and
Xm

j in Equation (1) is defined as:

dm
ij = d

[
Xm

i − Xm
j

]
= max

{∣∣∣xi+k − xj+k

∣∣∣ : k ∈ (0, m− 1)
}

, (19)

Then, the similarity between Xm
i and Xm

j can be described by using a measure Cm
i (i), i.e.,

Cm
r (i) =

1
N −m + 1

N−m+1

∑
j=1

Θ(dm
ij − r), (20)

r = k · std(x) (21)
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where, std(·) means the standard deviation. r represents a predetermined tolerance value. k is a
constant larger than zero. Θ is the Heaviside function, i.e.,

Θ(z) =

{
1 i f z ≤ 0
0 i f z > 0

, (22)

Next, one can get φm(r) as follows:

φm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
r (i), (23)

For m + 1, there is:

Cm+1
r (i) =

1
N −m

N−m

∑
j=1

Θ(dm+1
ij − r), (24)

φm+1(r) =
1

N −m

N−m

∑
i=1

ln Cm+1
r (i) (25)

Then, for the time series x with the finite length N, the ApEn value can be defined as:

ApEn(m, r, N) = φm(r)− φm+1(r), (26)

Here, for given N data points, choices of parameter m and r are required in order to calculate
reasonable values of ApEn. In applications, m is generally chosen as 2. r ranges from 0.1 to 0.2 std [45].
Besides, ApEn estimate is bias due to self-matches of the ApEn algorithm [46].

2.3. Sample Entropy (SampEn)

The SampEn algorithm does not count self-matches in order to reduce the bias. For the SampEn
estimate, the similarity measure Cm

i (r) is defined as follows:

Cm
r (i) =

1
N −m− 1

N−m

∑
j=1, j 6=i

Θ(dm
ij − r), (27)

Here, the analysis length is chosen as the first N −m vectors of length m so that for 1≤ i≤ N − m,
Xm

i and Xm+1
i are defined. dm

ij is calculated by using Equation (19) with i 6= j. Then:

Φm(r) =
1

N −m

N−m

∑
i=1

Cm
r (i), (28)

and for m + 1, there is:

Cm+1
r (i) =

1
N −m− 1

N−m

∑
j=1, j 6=i

Θ(dm+1
ij − r), (29)

Φm+1(r) =
1

N −m

N−m

∑
i=1

Cm+1
r (i) (30)

The SampEn can be calculated by using Equations (28) and (30):

SampEn(m, r, N) = − ln
Φm+1(r)

Φm(r)
, (31)
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Here, the choices of m and r are the same as those of ApEn algorithm. The SampEn statistic
computes the negative logarithm of a probability associated with the time series as a whole but does not
employ a template-wise strategy, whereas the ApEn statistic calculates probabilities in a template-wise
fashion. In the other hand, the SampEn statistic employs the same Heaviside function to measure the
similarity of vectors as the ApEn does. However, the Heaviside function has the characteristics of the
discontinuity and hard boundary, which causes problems in the validity and accuracy of the results for
the small tolerance r [45,46].

2.4. Fuzzy Entropy (FuzzyEn)

FuzzyEn algorithm employs the fuzzy membership function instead of the Heaviside function to
avoid the above issues in the SampEn and ApEn algorithms [47]. Fuzzy membership function has the
features of ambiguous boundaries with a real number in the range [0, 1].

For the FuzzyEn estimate, the similarity measure Cm
i (r) is defined as follows:

Cm
r (i) =

1
N −m− 1

N−m

∑
j=1, j 6=i

Dm
ij , (32)

where, Dm
ij denotes a fuzzy membership function instead of the Heaviside function Θ(·) in Equation (22):

Dm
ij = exp

−(dm
ij )

2

r2

, (33)

For m + 1:

Cm+1
r (i) =

1
N −m− 1

N−m

∑
j=1, j 6=i

Dm+1
ij , (34)

Dm+1
ij = exp

−(dm+1
ij )

2

r2

 (35)

Then, referring to Equations (28), (30) and (31) in the SampEn algorithm, the FuzzyEn measure
for finite datasets can be defined:

FuzzyEn(m, r, N) = − ln
Φm+1(r)

Φm(r)
, (36)

The FuzzyEn has two different main characteristics, i.e., continuity and convexity, from the
ApEn and the SampEn. Thus, the similarity changes by continuous degrees and self-similarity are
the maximum. Moreover, the FuzzyEn statistic is also the negative natural logarithm of the ratio of
Φm+1 to Φm. The FuzzyEn algorithm is similar to the ApEn and SampEn algorithms. The SymEn
algorithm is different from the algorithms of the ApEn, SampEn and FuzzyEn although their first
steps are all to reconstruct an attractor from a time series. The SymEn values are calculated by a
series of preserving-measure transforms in symplectic space but other entropy values are not done.
In the practical application, the SymEn method can choose any embedding dimensions, even high
dimensions [44], but the others can often only use low dimensions, such as 2 or 3 dimensions [45–47].
For the vibration signals of the rolling bearings, this paper studies the effect of the embedding
dimension on the SymEn algorithm.

2.5. Radial Basis Function (RBF) Classifier

Classifiers based on RBF have been widely using in different fields for pattern recognition [48].
The RBF classifier includes three totally different layers of an input layer, a hidden layer and an
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output layer (see Figure 1). The input layer is an interface between input sources and a RBF network.
The hidden layer is a high-dimensional nonlinear mapping layer of multiple RBF neurons. The output
layer is a layer consisting of linear neurons between the outputs and the hidden layer. Given the input
set xj ∈ Rn, ci is the center of the i-th radial basis function Ri. yk is the k-th class output. For the j-th input
xj, the output yk of the k-th node in the hidden layer is given by the Gaussian radial basis function:

yk(x) = ∑
l

Ri(x)×ω(k, i) (37)

Ri(x) = exp

(
−
‖xj − ci‖2

σ2
i

)
, i ∈ [1, l] (38)

where ω(k,i) represents the weight between the i-th node in the hidden layer and the k-th node in the
output layer, σ is the dispersion of the Gaussian function. For the algorithm details of the RBF classifier
readers may refer to [49].

RBF has global approximation properties and the best approximation performance. Its training
processing is also fast and easy. This paper applies the RBF method to classify the four states of
rolling bearings.Entropy 2017, 19, 607  8 of 17 
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3. Materials

3.1. Case 1: Experimental Vibration Time Series for the Rolling Bearings

In Case 1, two types of the rolling bearings (GB203 and GB6203) are used in order to conveniently
analyze them. Table 1 shows their main parameters. The analyzed data in Case 1 are measured in the
running states of the normal condition (NC), outer race fault (ORF), rolling element fault (REF) and the
inner race fault (IRF). The ORF, REF and IRF are generated by single pitting on the inner race surface,
outer race surface and rolling element surface of the bearings, respectively. The two-channel bearing
vibration signals are collected by the data acquisition system with an accelerometer (8791A250, Kistler,
Amherst, NY, USA), a signal conditioner (Kistler 5134A), a data acquisition card (PXI-1042, National
Instruments, Austin, TX, USA) and a computer on the bearing test rig in the State Key Laboratory
of Mechanical System and Vibration (see Figure 2) [50,51]. Channel 1 is the vertical vibration data.
Figure 2d shows typical REF vibration data taken in the vertical direction. Channel 2 is the horizontal
vibration data. The rotating speed is 720 r/min. The sampling frequency is 25.6 kHz. The total test
number of four running states is seven NC tests, three ORF tests, six REF tests and three IRF tests,
respectively (see Table 2). The sampling time length of each data is 8 s, i.e., 204,800 points. The length
of the analysis data is 6000 points. For training sets, the number of the NC, ORF, REF and IRF data sets
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is 84, 36, 72 and 36, respectively, in training sets (see Table 2). For testing sets, the number of the NC,
ORF, REF and IRF data sets is 154, 66, 132 and 66, respectively (see Table 2).

Table 1. Parameters of the rolling bearings in Case 1.

Type Pitch Diameter (mm) Ball Diameter (mm) Ball Number Contact Angle (o)

GB203 28.5 6.747 7 0
GB6203 28.5 6.747 8 0

Table 2. Test times (TT), training set number (TrSN) and testing set number (TeSN) for the data in case 1.

Type NC
TT (TrSN/TeSN)

ORF
TT (TrSN/TeSN)

REF
TT (TrSN/TeSN)

IRF
TT (TrSN/TeSN)

GB203 3 (36/66) 3 (36/66) 3 (36/66) 3 (36/66)
GB6203 4 (48/88) / 3 (36/66) /
Overall 7 (84/154) 3 (36/66) 6 (72/132) 3 (36/66)
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3.2. Case 2: Standard Reference Data Sets in the CWRU Bearing Database

To further test the utilities of the proposed method, the vibration data sets for 6205-2RS
JEM of Svenska Kullager-Fabriken (SKF) deep-groove ball bearings from the website database of
the Case Western Reserve University (CWRU) Bearing Data Center (http://csegroups.case.edu/
bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website) are
used [8,23,25,29,30]. These data are acceleration signals in the vertical directions on the housing of
drive end (DE) bearing and on the fan end (FE) bearing housing, respectively. The rotor states include
the normal condition (NC), three single-point defects (ORF, REF and IRF) at DE as well as NC at FE.

http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
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Table 3 gives the data set number in seven analyzed data groups with a 12 kHz sampling frequency
and the 1730 r/min shaft speed for 6205-2RS JEM of SKF deep-groove ball bearings. The fault depth is
0.11 inches. The fault diameters are 0.18 mm, 0.36 mm and 0.53 mm, respectively. Meanwhile, the ORF
position is located at the lowest point (6:00 o’clock), the highest point (12:00 o’clock) and horizontal
point (3:00 o’clock), respectively.

Table 3. The used CWRU bearing data set number (SN) of every classification group for 6205-2RS JEM.

Group Number Fault Diameter (mm) NC (SN) IRF (SN) REF (SN) ORF (SN)

1 0.18 100 108 121 133 (6 o’clock)
2 0.18 100 108 121 147 (3 o’clock)
3 0.18 100 108 121 160 (12 o’clock)
4 0.36 100 172 188 200 (6 o’clock)
5 0.53 100 212 225 237 (6 o’clock)
6 0.53 100 212 225 249 (3 o’clock)
7 0.53 100 212 225 261 (12 o’clock)

4. Results and Analysis

4.1. Dimension Analysis of Vibration Signals for the Rolling Bearing

Dimension estimation is often a basic and important step for the dynamical analysis of
vibration time series. Takens’ embedding theorem shows that if the embedding dimension is
appropriate, the n-dimension dynamics of a system can be reconstructed from a time series
of an observable-measurable system. The reconstructed dynamics properties can reflect the
dynamical characteristics of the measured experimental data. Based on Takens’ embedding theorem,
the dimension of the bearing time series is estimated by using symplectic geometry referring to our
previous study [40]. Figure 3 shows the symplectic geometry spectrums of a typical vibration time
series in Figure 2d, which is the logarithm of the energy distribution in Equation (17). The embedding
dimension m ranges from 3 to 28. It can be seen that symplectic geometry spectrums gradually decrease
with increasing the dimension m, and tend suddenly to flatten at m = 7. Therefore, the embedding
dimension is chosen as 7 for the following SymEn analysis on the bearing vibration data.

Entropy 2017, 19, 607  10 of 17 

 

4. Results and Analysis 

4.1. Dimension Analysis of Vibration Signals for the Rolling Bearing 

Dimension estimation is often a basic and important step for the dynamical analysis of 
vibration time series. Takens’ embedding theorem shows that if the embedding dimension is 
appropriate, the n-dimension dynamics of a system can be reconstructed from a time series of an 
observable-measurable system. The reconstructed dynamics properties can reflect the dynamical 
characteristics of the measured experimental data. Based on Takens’ embedding theorem, the 
dimension of the bearing time series is estimated by using symplectic geometry referring to our 
previous study [40]. Figure 3 shows the symplectic geometry spectrums of a typical vibration time series 
in Figure 2d, which is the logarithm of the energy distribution in Equation (17). The embedding 
dimension m ranges from 3 to 28. It can be seen that symplectic geometry spectrums gradually decrease 
with increasing the dimension m, and tend suddenly to flatten at m = 7. Therefore, the embedding 
dimension is chosen as 7 for the following SymEn analysis on the bearing vibration data. 

 
Figure 3. The symplectic geometry spectrums of the data in Figure 2d. 

4.2. SymEn Analysis of Vibration Signals for the Rolling Bearing 

The SymEn measure reflects the dynamical characteristics of a system. As an entropy estimate, 
the SymEn value quantifies the lack of information existing in the system by analyzing a time series 
in symplectic space. Here, the SymEn estimate is used as a test statistic to detect the nonlinear 
dynamical characteristics of the vibration signals for the rolling bearings. The null hypothesis of a 
Gaussian linear stochastic process is applied to generate surrogates of the raw vibration signals [52]. 
The aim of the null hypothesis is to test whether the dynamics of the vibration signals are consistent 
with a Gaussian linear noise system. According to the null hypothesis, the surrogate data generated 
from a Gaussian linear noise system contain the same power spectrum and empirical distribution as 
the raw data by using the iterated amplitude adjusted Fourier transform (IAAFT) algorithm [53]. If 
there is a significant difference between a test statistic value of the raw data and those of its 
surrogate data, the null hypothesis is rejected. It indicates that the raw data could be nonlinear. In 
order to give a judgement in the 95% confidence level, the generated surrogate data are 39 sets. The 
SymEn values are calculated according to Equation (18). For the rolling bearings, the differences 
between the SymEn values of the raw vibration data in Figure 2d and those of its surrogate data 
increases with the increase of the embedding dimension m (see Figure 4a). Figure 4b shows that 
�here is a significant difference between the SymEn value of the raw data and those of its surrogates 
in m = 7. The null hypothesis can be rejected in the 95% confidence. The raw data does not come from 

Figure 3. The symplectic geometry spectrums of the data in Figure 2d.



Entropy 2017, 19, 607 11 of 18

4.2. SymEn Analysis of Vibration Signals for the Rolling Bearing

The SymEn measure reflects the dynamical characteristics of a system. As an entropy estimate,
the SymEn value quantifies the lack of information existing in the system by analyzing a time series in
symplectic space. Here, the SymEn estimate is used as a test statistic to detect the nonlinear dynamical
characteristics of the vibration signals for the rolling bearings. The null hypothesis of a Gaussian
linear stochastic process is applied to generate surrogates of the raw vibration signals [52]. The aim
of the null hypothesis is to test whether the dynamics of the vibration signals are consistent with a
Gaussian linear noise system. According to the null hypothesis, the surrogate data generated from a
Gaussian linear noise system contain the same power spectrum and empirical distribution as the raw
data by using the iterated amplitude adjusted Fourier transform (IAAFT) algorithm [53]. If there is
a significant difference between a test statistic value of the raw data and those of its surrogate data,
the null hypothesis is rejected. It indicates that the raw data could be nonlinear. In order to give a
judgement in the 95% confidence level, the generated surrogate data are 39 sets. The SymEn values are
calculated according to Equation (18). For the rolling bearings, the differences between the SymEn
values of the raw vibration data in Figure 2d and those of its surrogate data increases with the increase
of the embedding dimension m (see Figure 4a). Figure 4b shows that there is a significant difference
between the SymEn value of the raw data and those of its surrogates in m = 7. The null hypothesis
can be rejected in the 95% confidence. The raw data does not come from a Gaussian linear stochastic
process. The result indicates that the raw data could contain nonlinear dynamical characteristics.
Subsequently, this paper furtherly investigates the fault detection of vibration signals by applying the
SymEn method.
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4.3. Fault Detection of Vibration Signals for the Rolling Bearing Based on SymEn

For four running states of rolling bearings in Case 1, the SymEn values of vibration data are
calculated with the dimension m = 7 referring to Equation (18). Figure 5 shows the SymEn values of
the vibration data for seven NC tests, three ORF tests, six REF tests, three IRF tests in Table 2. We can
see that for the same running states, the SymEn values of different tests are very close although the
different rolling bearings have some different SymEn values (see Figure 5). Table 4 gives the mean
and standard deviation of the SymEn values of vibration signals for four running states. The SymEn
values of four running states are obviously different. The results indicate that the SymEn measure
could reflect the dynamical characteristics of rolling bearings.
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Table 4. SymEn values of vibration signals in four running states.

SymEn NC
Mean ± std

ORF
Mean ± std

REF
Mean ± std

IRF
Mean ± std

Channel 1 2.57 ± 0.06 2.28 ± 0.05 2.13 ± 0.08 1.84 ± 0.05
Channel 2 2.74 ± 0.03 2.73 ± 0.01 2.66 ± 0.02 2.71 ± 0.01

Moreover, this paper analyzes the effect of the analysis data length L on the proposed method
in order to better detect faults of rolling bearings. The SymEn values of the vibration data in Case 1
are calculated in m = 7 and the data length L ranging from 2000 to 10,000 points. Then, the overall
accuracies based on the SymEn values are given by using the radial basis function (RBF) classifier (see
Table 5). For contrast, the ApEn, SampEn and FuzzyEn values are estimated in the dimension m = 2
as well (see Table 5). For the SymEn values, the classification rates increase with the increase of the
analysis data length L and tend to a flat in the beginning of the 6000-point data length (see Table 5).
For the ApEn, SampEn and FuzzyEn values, the rates tend to a flat in the beginning of the 8000-point
data length and are lower than those of the SymEn in the same analysis data length L, so the length of
the analysis data can be chosen as 6000 points in this paper. The rates of four running states based on
the SymEn estimates are shown in Table 6. The above classification features are two-dimension vectors
consisting of two SymEn values based on two channels. Comparing with the accuracy rates based on
high-dimension features of Case II in the literature [50,51], the results show that the low dimension
features based on SymEn can get higher recognition rates. The SymEn estimate could describe the
characteristics of different running states for rolling bearings. The SymEn method is superior to other
entropy methods. In order to furtherly verify the performance of the proposed method, the receiver
operating characteristic (ROC) curves and classification confusion matrix are given in Figure 6. For the
training set, the area of ROC curves is 1. For the testing set, the area is 0.9968. The results show that
the proposed method can be applied to classify the four states of rolling bearings.
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Table 5. Effects of data length L on the SymEn, ApEn, SampEn and FuzzyEn methods for the rolling
bearing fault diagnosis.

L
SymEn (%) ApEn (%) SampEn (%) FuzzyEn (%)

Training Testing Training Testing Training Testing Training Testing

2000 95.4 93.7 93.2 92.3 90.1 87.9 91.8 90.4
3000 97.3 97.8 94.5 92.4 93.1 91.2 91.3 90.9
4000 100 98.9 97.8 95.5 93.5 92.6 94.7 94.3
5000 100 99 96.2 95.7 93.6 92.7 97.4 95.3
6000 100 99.8 96.9 95.2 93.9 94 99.6 95
7000 100 99.7 97.9 98.3 96.8 95 98.4 96.4
8000 100 99.7 99.4 98.4 94.2 96.4 100 97.7
9000 100 100 99.3 98.5 98 95.1 99.3 96.6

10,000 100 99.6 99.2 99.2 98.5 94.7 99.2 97.6

Table 6. Classification rate (%) of four classes in Case 1 by using SymEn with the RBF classifier.

NC ORF REF IRF Overall

Training 100 100 100 100 100
Testing 99.4 100 100 100 99.8

Here, the data in Case 2 from the CWRU database website are analyzed as well. The DE data are
considered as the data of channel 1 and the FE data instead of the data of channel 2. The SymEn values
are calculated with m = 7 and L = 6000 points. Figure 7 shows the scatter plots based on the SymEn
values of DE and FE data for the groups in Table 3. We can see that the SymEn estimates are obviously
different for different running states of the DE bearing (see Figure 7). The accuracies are all 100% by
RBF classifier for the NC, ORF, REF and IRF (see Table 7). Besides, for the same fault diameter (such
as group 1 to 3 and group 5 to 7 in Table 3), the SymEn values are different with the different outer
rolling fault positions (see Figure 7a–c,e–f). For the same outer rolling fault position (such as 6 o’clock
position), the SymEn values are also different with the different fault diameters (see Figure 7a,d,e).
The results indicate that the classification groups of four running states built by the same shaft speed,
the same fault diameter and the same outer rolling fault position are help to investigate the dynamic
characteristics of rolling bearings. For this, other data of SKF bearings for four different shaft speeds
in the CWRU database are grouped into 70 sets like Table 3. The best classification rates are 100%,
the worst 84.8%. The analyzed results are not all 100% classification accuracies. Comparing with
Case 1, this might be caused by using the vertical direction accelerations at two different points of a
horizontal rotation shaft, i.e., the housings of drive end (DE) bearing and the fan end (FE) bearing,
respectively. For the normal FE bearing, the SymEn estimates of the data in FE should be very close but
are obviously different due to the faults of the DE bearing and vice versa. These results demonstrate
that fault bearings have a great impact on other bearings of rotary machine systems, such as fan end
bearings or drive end bearings. In other words, even if a bearing is normal, it might be considered as a
faulty bearing if another bearing on the same shaft is faulty. Therefore, for fault diagnosis of rolling
bearings, the vertical and horizontal accelerations at a test position might better help to detect faults.
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Figure 6. The performance analysis of the proposed method for the 6000-point data in Case 1: (a,b) for
the training sets; (c,d) for the testing sets.

Besides, the data in the CWRU database have been widely investigated. In the previous studies,
the classification features were often high-dimensional in order to get high accuracy rates [23,25,29,30,50].
By comparison, the low-dimensional features based on SymEn estimate can effectively detect the faults
of rolling bearings for the data used in [23,25,29,30,50]. The results indicate that the SymEn estimate
could describe the characteristics of different running states for rolling bearings. The performance of
the SymEn method is better than those of other high-dimensional approaches.

Table 7. Classification of the data in Case 2, group number corresponding to Table 3.

Group Number 1 2 3 4 5 6 7

Training (%) 100 100 100 100 100 100 100
Testing (%) 100 100 100 100 100 100 100
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5. Conclusions

The vibration signals of rolling bearings usually contain non-stationary and nonlinear
characteristics. This paper introduces a novel entropy analysis method—the SymEn measure—to
investigate the dynamic behavior of rolling bearings. Based on the SymEn analysis, the vibration data
of the rolling bearing should be high-dimensional and nonlinear. The dimensions of the data could
be chosen as 7 for the data analysis. Based on the SymEn measure, there are significant differences
among the dynamic characteristics of the NC, ORF, REF and IRF conditions for the rolling bearings.
For the bearing fault detection, the performance of the proposed method is better than those of the
ApEn, SampEn, FuzzyEn and other high-dimensional approaches by using the radial basis function
classifier. The SymEn measure as a low-dimension feature can provide a higher accuracy rate than
the high-dimension features based on time-domain, frequency-domain, wavelet-domain and so on.
The results show that the SymEn method better reflects the vibration characteristic information of
rolling bearings, and the SymEn method can be applied to diagnose the faults of rolling bearings.
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