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Abstract: Copula functions have been extensively used to describe the joint behaviors of extreme
hydrological events and to analyze hydrological risk. Advanced marginal distribution inference,
for example, the maximum entropy theory, is particularly beneficial for improving the performance
of the copulas. The goal of this paper, therefore, is twofold; first, to develop a coupled maximum
entropy-copula method for hydrological risk analysis through deriving the bivariate return periods,
risk, reliability and bivariate design events; and second, to reveal the impact of marginal distribution
selection uncertainty and sampling uncertainty on bivariate design event identification. Particularly, the
uncertainties involved in the second goal have not yet received significant consideration. The designed
framework for hydrological risk analysis related to flood and extreme precipitation events is exemplarily
applied in two catchments of the Loess plateau, China. Results show that (1) distribution derived
by the maximum entropy principle outperforms the conventional distributions for the probabilistic
modeling of flood and extreme precipitation events; (2) the bivariate return periods, risk, reliability and
bivariate design events are able to be derived using the coupled entropy-copula method; (3) uncertainty
analysis highlights the fact that appropriate performance of marginal distribution is closely related to
bivariate design event identification. Most importantly, sampling uncertainty causes the confidence
regions of bivariate design events with return periods of 30 years to be very large, overlapping with the
values of flood and extreme precipitation, which have return periods of 10 and 50 years, respectively.
The large confidence regions of bivariate design events greatly challenge its application in practical
engineering design.

Keywords: hydrological risk analysis; maximum entropy-copula method; uncertainty; Loess Plateau

1. Introduction

Extreme hydrological events (e.g., floods, rainstorms, droughts) have had disastrous effects on
society and the environment in recent years. Specifically, floods, as one of the most frequent and
costly natural disasters, have posed a serious threat to the human life and economic development [1–3].
A report issued by UNISDR (2015) highlights the fact that, between 1995 and 2015, floods affected
2.3 billion people, worldwide, accounting for 56% of the people affected by weather-related disasters [4,5].
Flood risk analysis can provide extremely valuable information by estimating the occurrence of
floods for flood control and disaster mitigation, hydraulic structure design, reservoir management,
and so on [6,7]. It is widely known that, in rain-dominant watersheds, river floods are commonly
triggered by extreme precipitation events [8,9]. Therefore, in practice, reducing the flood risk also
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requires information on extreme precipitation [10–12]. Consequently, the present work focuses on
exploring the bivariate risk of annual maximum flood discharge (AMF) and associated extreme
precipitation (Pr) events.

Up until now, copula functions have been used extensively to evaluate the bivariate risk of
hydro-meteorological events [13–17]. For instance, Chen et al. (2013) constructed four-dimensional copulas
to model the behaviors of drought events; She et al. (2016) applied copula-based severity-duration-frequency
curves to evaluate the spatio-temporal variability of dry spells and wet spells. Compared with traditional
bivariate hydrologic modeling, the main advantage of copulas is that they allow the joint dependence
structure to be modeled, without any restrictions on marginal distributions [18]. Given this, practitioners
can flexibly choose marginal and joint probability functions [19,20]. Consequently, the selection of marginal
distribution is of crucial importance as it strongly impacts the performance of the copula in modeling
bivariate variables [6].

However, distributions that model the univariate hydro-meteorological series are diverse. In terms
of hydrologic frequency analysis, the most widely used distributions are parametric ones, such as
the general extreme value distribution, normal distribution, lognormal distribution, Pearson type
3 distribution, Log Pearson type 3 distribution, Gamma distribution and so on [6,21–23]. When utilizing
these distributions, one obvious drawback is that selecting the appropriate distribution from a variety
of candidates is time-consuming [12]. Worse, if the univariate probability distribution is misidentified,
results derived from the copulas tend to be underestimated/overestimated [24]. Hence, a widely
applicable probability distribution with high accuracy is urgently needed. The maximum entropy
principle (MEP), first expounded by [25], offers a methodology for deriving probability distribution
functions (PDFs) with a minimum of bias from limited information in a more objective way [7,26].
The MEP proposes a criterion for selecting the most appropriate PDF on the basis of the rationale
that the desired PDF possesses maximum uncertainty, subject to a set of constraints [27]. As Zhang
and Singh (2012) stated, an entropy-based methodology is able to reach a universal solution, and can
better capture the shape of the probability density function, without first knowing the format of the
a priori distribution [24]. More moments of observations, beyond just the second moment, can be
accounted for in the MEP approach. Additionally, various generalized distributions, such as Pearson
type 3 distribution, Gamma distribution, etc., can be derived from the MEP-based distribution using
different constraints [28,29]. Attracted by the splendid performance of MEP distribution, therefore,
it has been extensively used in the hydrology field [6,12,24,30]. For instance, Mishra et al. (2009)
employed the entropy concept to investigate the spatial and temporal variability of precipitation time
series for the State of Texas, USA [31]; Rajsekhar et al. (2013) used the entropy concept to identify the
homogenous regions based on drought severity and duration [32].

Given the above, the present work takes advantage of the outstanding performance of MEP
distribution, and subsequently develops a framework based on a coupled MEP-copula model for
bivariate hydrological risk analysis in terms of AMF and Pr.

Also of note is that uncertainty accompanies the copula-based hydrological risk analysis.
As Michailidi and Bacchi (2017) stated, flood risk evaluation without accounting for uncertainty
is deceptive [33]. Serinaldi (2013) also stressed that the uncertainty of multivariate design event
estimation should be considered carefully for practical application, rather than speculation [34].
However, previous studies have paid considerably less attention to the impact of uncertainty on
hydrological risk analysis [34–36]. Therefore, another contribution of this paper is to present a
framework aiming to reveal the impact of marginal distribution selection uncertainty and sampling
uncertainty on hydrological risk analysis. The two sources of uncertainty are often overlooked in spite
of their widely recognized importance; particularly sampling uncertainty, due to its difficult estimation
and interpretation [35,36].

The Loess Plateau (LP) is known as the “cradle of Chinese civilization”, and is also one of
the most serious soil erosion areas worldwide. On the LP, annual average soil erosion reaches to
around 2000–2500 t/km2, and the area suffering severe soil and water loss covers more than 60% [37].
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Sparse vegetation cover, highly intense rainfall events, and the long history (over 5000 years) of human
activities are generally considered to be the principal factors causing severe soil loss on the LP [38].
Due to the arid and semi-arid continental monsoon climate, however, most previous studies have
primarily focused on low flow and drought conditions [39,40]. Studies investigating the bivariate risk
of flood and extreme precipitation events for the LP are still few.

Consequently, the present study primarily aims to advance the coupled MEP-copula model for
bivariate risk analysis, and to reveal the impact of the marginal distribution selection uncertainty and
sampling uncertainty on hydrological risk analysis. The developed framework is exemplarily applied
for two catchments of the LP. The remainder of the paper is constructed as follows. Section 2 describes
the study area and data. Section 3 introduces the methods adopted in this study. The results and
discussion are presented in Section 4. Section 5 shows the main conclusions drawn from this study.

2. Study Area and Dataset

2.1. Study Area

The Weihe River basin (104–107◦ E and 33–34◦ N), located in the southern part of the LP, was
selected as our study area (Figure 1). The basin has a typical continental climate, and lies in the
semi-humid and semi-arid transitional zone [41]. The Weihe River (hereafter WR) provides the water
supply for 9300 km2 of fertile fields in the Guanzhong Plain, and more than 61% of the Shaanxi
Province’s population [42]. Additionally, the start-point of the well-known Silk Road Economic Belt,
Xi’an City, is situated in this basin. Mean annual precipitation varies between 400 and 600 mm, of which
approximately 70% falls between June and September. Floods occur frequently after rainstorms.
The largest gauged flood event at the Linjiacun station since 1960 occurred in 1966, and was 4200 m3/s.

The Weihe River basin is also one of the most serious soil loss areas on the LP. Areas suffering from
severe soil loss cover approximately 65% of the total land area of this basin. It is of note that floods
accelerate soil and water loss. Accelerated serious soil loss has caused severe sediment deposition in
the lower reach of the WR, which poses great challenges for local flood control.
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Figure 1. Location of the studied watershed.

2.2. Dataset

The Linjiacun (107◦03′ E, 34◦22′ N) and Huaxian (109◦78′ E, 34◦51′ N) stations are important
control stations upstream and downstream of the Weihe River basin, respectively. The locations of
the two stations are displayed in Figure 1. Annual maximum flood records (1960–2012) from the two
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stations are utilized. The data quality was strictly controlled by the hydrology bureau of the Yellow
River Conservancy Commission before the data was released. Data collected from Linjiacun and
Huaxian stations can characterize the water hazard control in the Weihe River basin.

Daily precipitation data (1960–2012) are provided by the China Meteorological Data Sharing
Service System (http://cdc.cma.gov.cn). The flood discharge is closely linked to the accumulated
rainfall amounts before the occurrence of annual peaks [43]. Given this, the extreme precipitation
event (Pr) used in present study is defined as:

Pr =
l−n

∑
i=l

Raini (1)

where Pr denotes the accumulated rainfall from the 1st to i-th day, l is the occurrence time of peak
discharge Q, n (n = 0, 1, 2, 3, 4) indicates lag time (i.e., time from peak discharge to the beginning of
rainfall), Raini means the i-th day of rainfall. The Pr1, Pr2, Pr3, Pr4 and Pr5 represent the accumulated
1-, 2-, 3-, 4- and 5-day consecutive rainfall amounts (i.e., n = 0, n = 1, n = 2, n = 3, n = 4). The Thiessen
polygon method is applied to compute the areal accumulated rainfall.

To select the extreme precipitation events most closely correlated to AMF, the Kendall’s tau
correlation coefficient was computed (Table 1). The Kendall’s tau is a rank-based coefficient that is
robust to departures from normality. It can be found from Table 1 that Pr2 and Pr3 were most closely
correlated with AMF as gauged at Xianyang and Huaxian stations, respectively.

Table 1. Correlation coefficients between AMF and Pr. Bold numbers denote the extreme precipitation
events most correlated with AMF.

Station
Correlation Coefficient

(AMF, Pr1) (AMF, Pr2) (AMF, Pr3) (AMF, Pr4) (AMF, Pr5)

Linjiacun 0.1420 0.4192 ** 0.3654 ** 0.3582 ** 0.3320 **
Huaxian 0.1586 0.2369 * 0.3756 ** 0.3175 ** 0.3320 **

Note: * and ** indicate that correlation coefficients are significant at the 95% and 99% confidence level, respectively.

3. Methodologies

3.1. Methodological Framework

As mentioned above, the aim of this paper is to disclose the bivariate hydrological risk and
to reveal the impact of marginal distribution selection uncertainty and sampling uncertainty on
hydrological risk analysis. To achieve this goal, this paper presents the following framework, as shown
in Figure 2.

First, appropriate marginal distributions for AMF and Pr series were ascertained from the MEP
distribution, Pearson type III distribution (P3), lognormal distribution (Logn), normal distribution
(Norm) and gamma distribution (Gam). These parametric distributions are popular for characterizing
the probability distributions of extreme hydrological events due to their better performance [6,44].
Second, we constructed copula models to depict the dependence structure of AMF and Pr series by
joining their marginal distributions. Afterwards, the joint return periods, risk and reliability of AMF
and Pr pairs were estimated for hydrological risk analysis. Last, the bivariate hydrological design
events of specific joint return period were selected for hydraulic engineering design. To provide robust
information for hydraulic structures design, we examined the impact of the marginal distribution
selection uncertainty and sampling uncertainty on bivariate hydrological design event estimation.
Here, the 6 candidate marginal distributions were combined with each other to form 36 combinations
for modeling the AMF and Pr series. These combinations were utilized to explore the impact of
marginal distribution uncertainty. Moreover, one Monte Carlo-based algorithm was designed to
discover the impact of sampling uncertainty.

http://cdc.cma.gov.cn
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3.2. Maximum Entropy Principle Distribution (MEP)

The concept of entropy was first formulated by Shannon (1948) [45]. After that, Jaynes (1957,
1982) developed the maximum entropy principle for deriving a least-biased probability distribution
when certain information is given in terms of constraints [25,46]. To date, Shannon entropy has been
extensively used in the hydrological field, such as rainfall-runoff modeling, drought analysis, and flow
forecasting [29,30,47–49].

The Shannon entropy H(x) of a probability density function (PDF) f (x) for a continuous variable
X = {x1, x2, · · · , xn} can be defined as

H(x) = −
∫ b

a
f (x) ln f (x)dx (2)

where a and b denote the lower and upper limits of the variable X, respectively.
In order to attain the least biased probability distribution, the maximum entropy principle is

performed by maximizing the entropy given by Equation (2) subject to the following constraints
Cr, r = 0, 1, 2, · · · , n

C0 =
∫ b

a
f (x)dx = 1 (3)
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Cr =
∫ b

a
gr(x) f (x)dx = gr(x), r = 1, 2, · · · , n (4)

where gr(x), r = 1, 2, · · · , n, denotes some known functions of x; n represents the number of constraints;
gr(x) means the expectation of gr(x). Equation (3) states that the probability density function must
satisfy the total probability theorem. Here, the gr(x) can be expressed as the power of x such that

gr(x) = xn, r = 1, 2, · · · , n (5)

In general, different numbers of constraints would obtain different performances [50]. In light of
this, the present study employs 3 and 4 constraints to build the MEP-based distributions for AMF and
Pr series, respectively. The corresponding distributions are denoted as MEP-3 and MEP-4, hereafter.
The impact of the number of constraints in terms of MEP distribution on bivariate design event
identification will be discussed in Section 4.

To achieve the maximization of entropy, the Lagrange multiplier method is one simple
and frequently used method [51]. Subject to the constraints expressed in Equations (3) and (4),
the Lagrangian function L can be written as

L = −
∫ b

a
f (x) ln f (x)dx− (λ0 − 1)

[∫ b

a
f (x)dx− C0

]
−

n

∑
r=1

λr

[∫ b

a
f (x)gr(x)dx− Cr

]
(6)

where λr(r = 1, 2, · · · , n) denotes the Lagrange multipliers.
f (x) can be attained through maximizing the function L, and therefore one differentiates L with

respect to f (x) being equal to zero:

∂L
∂ f

= 0⇒ −[1 + ln f (x)]− (λ0 − 1)−
n

∑
r=1

λrgr(x) = 0 (7)

Hence, the resulting maximum entropy-based PDF of a variable X in terms of the given constraints
can be written by

f (x) = exp

[
−λ0 −

n

∑
r=1

λrgr(x)

]
(8)

Inserting Equation (8) into Equations (3) and (4), respectively, we can obtain

exp(λ0) =
∫ b

a
exp

[
−

n

∑
r=1

λrgr(x)

]
dx, r = 1, 2, · · · , n (9)

Cr =
∫ b

a
gr(x) exp

[
−λ0 −

n

∑
r=1

λrgr(x)

]
dx, r = 1, 2, · · · , n (10)

With the use of Equation (9), the zeroth Lagrange multiplier can be written as

λ0 = ln
∫ b

a
exp

[
−

n

∑
r=1

λrgr(x)

]
dx, r = 1, 2, · · · , n (11)

Substituting Equation (11) into Equation (8), f (x) can be expressed as

f (x) = exp

[
− ln

∫ b

a
exp

[
−

n

∑
r=1

λrgr(x)

]
dx−

n

∑
r=1

λrgr(x)

]
(12)
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Here, the PDF expressed in Equation (12) can preserve the most important statistical moments.
The cumulative distribution function (CDF) can be obtained through integration of Equation (12)

F(x) =
∫ x

a
exp

[
− ln

∫ b

a
exp

[
−

n

∑
r=1

λrgr(x)

]
dx−

n

∑
r=1

λrgr(x)

]
dx (13)

Based on the PDF function, the Lagrange multipliers λr can be estimated by minimizing the
convex function, shown as

Z(λ) = ln

[∫ b

a
exp

[
−

n

∑
r=1

λrgr(x)

]
dx

]
+

n

∑
r=1

λrgr(x) (14)

In the present study, the conjugate gradient method is employed to determine the Lagrange
multipliers λr in Equation (14). The method is superior for solving large-scale nonlinear optimization
problems. Its primary advantages are super-linear convergence, simple recurrence formula, and less
calculation. Readers interested in the detailed process of determining the Lagrange multipliers λr

through the conjugate gradient method are referred to the papers of Fan et al. (2016) [6].

3.3. Copula Function

The copula, as introduced by Sklar (1959) is a powerful tool for modeling the dependence
structures of individual variables [52]. A d-dimensional copula is defined as a multivariate distribution
function F [0, 1]d → [0, 1], linking standard uniform marginal distributions. Formally, the copula can
be divided into two components: individual univariate distributions, and a copula function describing
dependence structures between variables based on the copula and its parameter(s).

According to Sklar’s theorem, one d-dimensional multivariate distribution function F for random
variables X1, X2, . . . , Xd with marginal distribution of F1, F2, . . . , Fd can be expressed as

F(X1, · · · , Xd) = C(F1(X1), · · · , Fd(Xd); Θ) (15)

where Θ is the copula parameter vector and Fd(Xd) = F(X ≤ x) is the marginal distribution of Xd.
In the field of hydrology, Archimedean copulas are quite popular due to their explicit functional

forms. Moreover, they are superior for characterizing a wide range of dependence structures with
several desirable properties. In the present study, the Clayton, Frank, and Gumbel-Hougaard
copulas, which belong to the Archimedean class of copulas, were employed to evaluate the bivariate
hydrological risk. The specific formula of these copulas was first reported by Nelsen (1999) [18].

3.4. Joint Return Periods, Risk and Reliability

To conduct a bivariate frequency analysis, the joint probability behaviors are defined in terms of
variables X and Y, with thresholds x and y, respectively:

(1): {X>x} OR {Y>y}, (2): {X>x} AND {Y>y}

Accordingly, the joint return periods (also called primary return periods) can be written as [53–55]:

TOR =
µT

1− C(FX(x), FY(y))
(16)

TAND =
µT

1− FX(x)− FY(y) + C(FX(x), FY(y))
(17)

Here, µT indicates the average inter-arrival time between two successive events (µT = 1 for
maximum annual events).
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In engineering practice, risk (hereafter, Risk) and reliability (hereafter, Reliability) are another two
important indices for hydraulic structure design [56]. To date, they have received widespread attention
within the hydrological community [55–59].

Risk is defined as the probability of occurrence of at least one event exceeding the design event for
the project life of n years:

Risk = 1− (1− p)n (18)

where p indicates the annual exceedance probability.
It should be noted that the Risk also can be determined from the return period T (TOR and TAND

in this study) by substituting p = 1
T into Equation (18):

Risk = 1−
(

1− 1
T

)n
(19)

Reliability, which signifies the probability that a dangerous event will not occur within a project
life of n years, i.e., that a system will remain in a satisfactory state within its lifetime, is defined as:

Reliability = 1− Risk = (1− p)n =

(
1− 1

T

)n
(20)

3.5. Bivariate Design Event Derived from Joint Distribution

Practical engineering design applications desire one appropriate multivariate design event or an
appropriate subset of multiplets, instead of a large set of potential multiplets for the specific return
period [34,60,61]. However, in a multivariate context, there exists a problem of inherent ambiguity,
whereby various combinations of random variables X and Y share the same joint probability, and thus
produce the same return period. Therefore, Salvadori et al. (2011) proposed a method for solving the
ambiguity problem by identifying the most-likely design event [62]. The essence of the method is to
identify one design event lying on critical layers LF

t for a critical level t with the largest joint probability
density. The most-likely design realization δ can be written as:

δ = argmaxw(x, y) = argmax f (x, y), (x, y) ∈ LF
t (21)

Here, f indicates the density of F(x, y) = C(FX(x), FY(y)), which can be expressed as

f (x, y) =
∂F(x, y)

∂FX(x)∂FY(y)
= fX(x) fY(y)c(FX(x), FY(y)) (22)

where fX(x) and fY(y) represent the probability density function of FX(x) and FY(y), respectively;
c(FX(x), FY(y)) indicates the probability density function of C(FX(x), FY(y)).

LF
t is defined as:

LF
t = {(x, y) : F(x, y) = t} (23)

where t ∈ (0, 1).
Then, the design event δ can be estimated by determining the largest joint probability density

in the logarithmic domain on the critical layers LF
t , with the corresponding (x∗, y∗) as the design

realization with the joint return period T (TOR and TAND in this study).
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3.5.1. Uncertainty Due to the Marginal Distribution Selection

To assess the impact of marginal distribution selection uncertainty on the most-likely design
event identification, we designed one experiment project by combining the 6 candidate distributions
with each other to model the random variables X and Y. The 36 designed combinations are displayed
in Figure 3. Then, the 36 fitted combinations (FX(x), FY(y)) are carried into Equation (21), and thus
the most-likely design events for the different combinations are obtained. Through comparison
among these bivariate design events, the impact of marginal distribution uncertainty is expected to
be discovered.

Entropy 2017, 19, 609  9 of 23 

 

3.5.1. Uncertainty Due to the Marginal Distribution Selection 

To assess the impact of marginal distribution selection uncertainty on the most-likely design 
event identification, we designed one experiment project by combining the 6 candidate distributions 
with each other to model the random variables X and Y. The 36 designed combinations are displayed 
in Figure 3. Then, the 36 fitted combinations ( ) ( )( )X YF x F y,  are carried into Equation (21), and thus 

the most-likely design events for the different combinations are obtained. Through comparison 
among these bivariate design events, the impact of marginal distribution uncertainty is expected to 
be discovered. 

MEP-3 MEP-4 P3 Logn Norm

MEP-3 MEP-4 P3 Logn Norm

Gam

Gam

X:

Y:  
Figure 3. Experimental design for assessing the uncertainty of marginal distribution in bivariate 
design event estimation. 

3.5.2. Sampling Uncertainty 

To determine the impact of sampling uncertainty on the most-likely design event estimation, the 
following Monte Carlo-based procedures were designed: 

1. Estimate the parameter Θ  of the copula for the observations (i.e., X and Y) as well as the 
parameters xα  and yα  of the marginal distributions for X and Y, respectively; 

2. Simulate B  bivariate samples of size n  on the basis of the copula parameter, and then apply 
the marginal backward transformations using the estimated parameters xα  and yα . The 

simulated bivariate samples are denoted as ( ) ( ) ( )1 1* * *
ij ij      i , ,nZ X ,Y  j ,, , ,Bx y == == ;  . n is 

equal to the length of the observed sample. Here, B is set equal to 10,000; 
3. Estimate the parameters Θ , xα  and yα for the simulated sample *

jZ  using the same 
estimation method used for the observations; 

4. Identify the most-likely design realization δ  for different ( )x, y  pairs. 

5. Estimate the confidence intervals for δ  at 95% confidence level by the method of highest 
density regions (denoted as HDR) propose by Hyndman et al. (1996) [63]. 

4. Results and Discussion 

4.1. Marginal Distribution Selection 

To construct the copula model for (AMF, Pr) in the study regions, the first step was to select 
appropriate marginal distributions. Table 2 lists the relevant parameters for different marginal 
distributions for the AMF and Pr series in the study regions. 
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3.5.2. Sampling Uncertainty

To determine the impact of sampling uncertainty on the most-likely design event estimation,
the following Monte Carlo-based procedures were designed:

1. Estimate the parameter Θ of the copula for the observations (i.e., X and Y) as well as the
parameters αx and αy of the marginal distributions for X and Y, respectively;

2. Simulate B bivariate samples of size n on the basis of the copula parameter, and then apply the
marginal backward transformations using the estimated parameters αx and αy. The simulated
bivariate samples are denoted as Z∗ = (X∗, Y∗) =

(
xij, yij

)
, (i = 1, . . . , n; j = 1, . . . , B ).

n is equal to the length of the observed sample. Here, B is set equal to 10,000;
3. Estimate the parameters Θ, αx and αy for the simulated sample Z∗j using the same estimation

method used for the observations;
4. Identify the most-likely design realization δ for different (x, y) pairs.
5. Estimate the confidence intervals for δ at 95% confidence level by the method of highest density

regions (denoted as HDR) propose by Hyndman et al. (1996) [63].

4. Results and Discussion

4.1. Marginal Distribution Selection

To construct the copula model for (AMF, Pr) in the study regions, the first step was to select
appropriate marginal distributions. Table 2 lists the relevant parameters for different marginal
distributions for the AMF and Pr series in the study regions.
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Table 2. Parameters of the fitted distribution for the AMF and Pr series in the catchments of Linjiacun
and Huaxian stations.

Distribution PDF Parameter
Linjiacun Huaxian

AMF Pr2 AMF Pr3

MEP-3 f (x|λ1, λ2, λ3)
λ1 4.04 × 10−4 −0.15 3.50 × 10−3 −0.15
λ2 2.64 × 10−7 4.65 × 10−3 −1.14 × 10−6 4.01 × 10−3

λ3 −4.02 × 10−11 −2.93 × 10−5 1.19 × 10−10 −2.25 × 10−8

MEP-4 f (x|λ1, λ2, λ3, λ4)

λ1 7.63 × 10−4 −0.23 −3.20 × 10−4 0.07
λ2 1.57 × 10−6 9.65 × 10−3 1.03 × 10−6 −6.73 × 10−3

λ3 −5.40 × 10−10 −1.48 × 10−4 −3.73 × 10−10 −1.87 × 10−4

λ4 6.01 × 10−14 9.13 × 10−7 3.83 × 10−14 −1.41 × 10−6

P3 f (x|a, b, α)
a 1.23 13.19 0.99 21.65
b 88.08 −22.69 866 −26.25
α 880.82 3.56 1999.35 2.57

Logn f (x|µ, σ) µ 6.73 3.01 7.82 3.29
σ 0.86 0.69 0.56 0.44

Norm f (x|µ, σ) µ 1170.32 24.52 2853.66 29.54
σ 954.42 13.55 1413.64 12.7

Gam f (x|µ, σ) µ 1.65 2.82 3.71 5.53
σ 707.28 8.68 770.06 5.34

Note: PDF of P3: f (x|a, b, α ) = 1
baΓ(a) (x− α)a−1exp

(
− x−α

b
)
; PDF of Logn: f (x|µ, σ ) = 1

xσ
√

2π
exp

(
− (lnx−µ)2

2σ2

)
;

PDF of Norm: f (x|µ, σ ) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
; PDF of Gam: f (x|a, b ) = 1

baΓ(a) xa−1exp
(−x

b
)
, where Γ(·) is a

complete gamma function.

Figure 4 illustrates the distributions of the AMF and Pr series in the upper catchments of Linjiacun
and Huaxian stations fitted by the MEP-3, MEP-4, P3, Logn, Norm and Gam distributions. The curves
of CDF and PDF are exhibited in this figure.
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Figure 4. Frequency distributions of the AMF and Pr series in the upper catchments of Linjiacun
and Huaxian stations. (A,C,E,G) denote the cumulative probabilities of the AMF and Pr series,
while (B,D,F,H) denote the probability density of the AMF and Pr series.

It can be seen from this figure that the CDFs and PDFs exhibit variations in fitting performance
between the theoretical and empirical distributions. In spite of this, it is difficult to select an appropriate
fitting distribution by visual assessment. Therefore, the widely used root mean square error (RMSE)



Entropy 2017, 19, 609 12 of 23

was employed to select the most appropriate model from among the candidate distribution models.
The marginal distribution characterized by the minimum RMSE value was selected as the preferred
model. Moreover, the goodness-of-fit test (the Kolmogorov-Smirnov (K-S) approach) was also
performed to provide support in evaluating the validity of these distribution models. The K-S statistic
(denoted as S) aims to quantify the largest vertical difference between the empirical and estimated
distributions [64]. The p-value of the K-S statistic was obtained by using Miller’s approximation.
A value of p bigger than 0.05 indicates that the candidate distribution can appropriately fit random
variables at the 5% significance level.

The RMSE values and K-S test results are presented in Table 3. It can be seen from Table 3 that the
p values were much higher than the significance level 0.05, signifying that these candidate distributions
are suitable for fitting the distributions of the AMF and Pr series. The RMSE values listed in Table 3
indicate that the MEP-4 distribution could be selected as the appropriate distribution for fitting the
AMF and Pr series in the upper catchment of Linjiacun station, while MEP-3 and MEP-4 performed
best among the candidates for fitting the AMF and Pr series, respectively, in the upper catchment of
Huaxian station.

Table 3. The goodness-of-fit and RMSE values of the candidate distributions for the AMF and Pr series
in the study regions.

Station Series Functions
K-S Test

RMSE Series Functions
K-S Test

RMSE
S p S p

Linjiacun AMF

MEP-3 0.09 0.72 0.0303

Pr2

MEP-3 0.08 0.89 0.0293
MEP-4 0.07 0.85 0.0296 MEP-4 0.07 0.95 0.0248

P3 0.08 0.85 0.0309 P3 0.09 0.80 0.0373
Logn 0.09 0.80 0.0366 Logn 0.10 0.58 0.0450
Norm 0.15 0.19 0.0823 Norm 0.12 0.43 0.0473
Gam 0.11 0.53 0.0405 Gam 0.08 0.87 0.0275

Huaxian AMF

MEP-3 0.06 0.98 0.0195

Pr3

MEP-3 0.09 0.73 0.0306
MEP-4 0.06 0.97 0.0202 MEP-4 0.08 0.78 0.0267

P3 0.14 0.25 0.0686 P3 0.10 0.65 0.0299
Logn 0.10 0.59 0.0553 Logn 0.10 0.62 0.0390
Norm 0.12 0.37 0.0534 Norm 0.09 0.76 0.0382
Gam 0.09 0.74 0.0513 Gam 0.10 0.63 0.0300

A closer look at the fitting performance of these distributions for the AMF series at Linjiacun
station, as presented in Figure 4 and Table 3, indicates that the fitting performance among the different
distributions were similar, except for the Norm distribution. The RMSE values were 0.0303, 0.0296,
0.0309, 0.0366 and 0.0405 for the MEP-3, MEP-4, P3, Logn and Gam distributions, respectively, and
0.0823 for the Norm distribution. In terms of the Pr2 series in the upper catchment of Linjiacun station,
the Norm distribution had the worst performance of all the candidates.

As for the AMF series at the Huaxian station, the MEP-3 distribution outperformed other
candidates (RMSE = 0.0195). The RMSE values for MEP-4, P3, Logn, Norm and Gam distributions
ranged from 0.0202 to 0.0686. As shown in Figure 4, the histogram of the AMF series at Huaxian
station has two peaks. MEP distribution can deal with multiple modes, while conventional models fail
to fit a distribution with more than one mode. This is the reason that the conventional distributions
show poor performance when fitting the AMF series at Huaxian station, while for the Pr3 series in the
upper catchment of Huaxian station, a comparison of RMSE values among the candidates indicates
that the MEP-4 distribution (RMSE = 0.0267) performed better than other candidates (ranging from
0.0299 to 0.0390).

In light of the above findings, it can be concluded that MEP-related functions provide a better
alternative than other conventional distributions for modeling the AMF and Pr series. Specifically, due
to the PDF of the variables consisting of a single mode, the fitting performances of MEP-related
distributions were similar to certain conventional distributions. The fitting performance of distributions
for the AMF and Pr2 series at Linjiacun station and the Pr3 series at Huaxian station are able to
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demonstrate this inference. Moreover, it also can be inferred that the MEP-related distributions
outperform the conventional distributions, particularly when modeling the distribution of random
variables exhibiting multiple modes in the histogram, such as the AMF series at Huaxian station.
These findings are similar to those obtained in Zhou et al. (2010) and Liu and Chang (2011) when
fitting the distribution of wind speed data [65,66].

Additionally, we should also note that there exist some disadvantages to the MEP distribution;
for example, the CDF of MEP-related distributions cannot be expressed in a closed form, parameter
estimation is computationally expensive, and the mathematical expression of MEP-related distributions
is more complex to develop as a computer program [6,66].

4.2. Copula Function Construction

Once the marginal distribution is chosen, the next step is to estimate the parameters of the
copula and select an appropriate copula function from among the Clayton, Frank and Gumbel
copulas. The parameters of the copulas are estimated using the maximum pseudo-likelihood method.
The constructed MEP-related distributions are used to quantify the marginal probabilities of the AMF
and Pr series. The estimated parameters of these candidate copulas are listed in Table 4.

Table 4. Parameters and goodness-of-fit test values for the candidate copulas.

Station Copula Parameter
Cramér–von Mises Test

AICc
Sn p-Value

Linjiacun
Clayton 0.31 0.03 0.23 −10.83
Frank 4.09 0.04 0.10 −19.54

Gumbel 1.59 0.03 0.15 −22.38

Huaxian
Clayton 0.42 0.03 0.45 −11.67
Frank 3.72 0.02 0.59 −17.03

Gumbel 1.50 0.03 0.36 −16.22

To select the suitable copulas, the Cramér–von Mises test was used to test goodness-of-fit based
on the empirical copula. Table 4 lists the goodness-of-fit statistics Sn corresponding to the Cramér–von
Mises criteria, and their associated p-value based on N = 10,000 parametric bootstrap samples. A larger
value of Sn indicates greater distance between the estimated and the empirical copulas. p-value > 0.05
means the estimated copula can be accepted at the 5% level. Results displayed in Table 4 illustrate that
these candidate copulas are all acceptable for fitting the dependence structures between AMF and Pr
in each region at a 5% significance level.

Further, the corrected Akaike information criterion (AICc) indicator is employed to select the
copula with the highest fitting performance (shown in Table 4). The AICc indicator is much stricter than
classical AIC, particularly when the size of the hydrological observations is limited [67]. The copula
distribution characterized by the minimum AICc value was selected as the preferred model. It can be
seen from Table 4 that the Gumbel and Frank copulas should be chosen to model the joint distribution
of AMF and Pr series in the upper catchments of Linjiacun and Huaxian stations, respectively.
For simplicity, the bivariate model constructed by integrating the MEP distributions into the copula is
denoted as MEP-copula.

4.3. Bivariate Return Period, Risk and Reliability Analysis Based on the MEP-Copula

Exploring the concurrence probabilities of various combinations of AMF and Pr is of critical
importance for practical flood control and disaster mitigation. As expressed as Equations (16) and (17),
the bivariate return periods are estimated based on the constructed MEP-copula models.
Figure 5 displays the bivariate joint return periods of “AND” and “OR” cases for various (AMF, Pr)
pairs. It can be seen from Figure 5 that the joint return period level of the “AND” case is concave,



Entropy 2017, 19, 609 14 of 23

while that for the “OR” case is convex. Generally, the joint return period of the “AND” case is lower
than that of the “OR” case. For instance, if both the AMF and Pr observed in the upper catchment of
Linjiacun station are in the 20-year return period, the “AND” joint return period of the (AMF, Pr) pair
is 42.23 years, while the “OR” joint return period is 13.10 years. Additionally, in practical terms, water
resource managers and policy-makers can identify the return periods for various (AMF, Pr) pairs of
observations or forecasts through Figure 5.
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period for the “AND” case.

In engineering design of hydrological infrastructures, risk can be defined as the likelihood of
experiencing at least one event exceeding the design event over the design life (denoted as n) of the
hydraulic structure [6]. Furthermore, reliability over the project life is commonly chosen to describe
the probability that the hydraulic structure will remain in a satisfactory state within its project life [60].
In the present study, the “AND” joint return period case is applied to define the bivariate risk and
reliability through Equations (18)–(20). Here, the service time of a river levee is assumed to be 10 years,
i.e., n = 10.

Figure 6 exhibits the bivariate risk and reliability under different designed AMF and Pr
combinations in the two regions. It can be found from Figure 6 that the risk value would decrease as
the designed AMF or Pr increased, which is contrary to the reliability value. In other words, higher
values of the designed AMF or Pr for the hydraulic structure indicate a smaller probability for the
occurrence of an undesirable flood event within a project life of n years, and a higher probability that
the hydraulic structure will remain in a satisfactory state.
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The implication for the bivariate risk and reliability of (AMF, Pr) pairs is to provide decision
support for hydraulic structures and practical flood control. Decision-makers can attain the
corresponding risk and reliability under various AMF and Pr scenarios as the design events for
the hydraulic structure. For example, if the design event for a river levee in the downstream area of
Huaxian station is set to (5000 m3/s, 39.02 mm), the corresponding risk (reliability) that that event
(AMF > 5000 m3/s) AND (Pr3 > 39.02 mm) will occur (not occur) during the river levee life of 10 years is
0.3331 (0.6669). Clearly, if decision-makers tend to decrease the risk or increase the reliability, the values
of (AMF, Pr) pair should be improved.
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4.4. Bivariate Design Event Identification

In practical hydrological facility design, unique design realization on the isoline is obligatory
and crucial. As is widely known, higher values of design event for hydraulic structures lead to poor
economy, while lower values have a negative impact on the safety of flood control. However, as
displayed in Section 4.3, for the specified return period, risk or reliability, there is a large set of potential
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(AMF, Pr) events. Therefore, appropriate methods for identifying the unique design realization from
the return level curve is of great necessity. In the present study, the most-likely design event method is
utilized, as described previously in the literature [23,60,62]. The constructed MEP-copula is applied
to estimate the most-likely design event. Table 5 lists the most-likely design events determined
given TOR = TAND = 30 years using Equation (21) in the study regions. It can be seen from Table 5
that the most-likely design events for the upper catchments of Linjiacun and Huaxian stations are
(3825.82 m3/s, 56.95 mm) and (5369.10 m3/s, 73.46 mm) given TOR = 30 years, respectively, while
given TAND = 30 years, they are (3052.79 m3/s, 46.76 mm) and (5017.84 m3/s, 41.64 mm), respectively.

Table 5. Most-likely design events under different combinations of marginal distributions.

Distribution
Most-Likely Design Event (AMF, Pr)

TOR = 30 TAND = 30

AMF Pr Linjiacun Huaxian Linjiacun Huaxian

MEP-3

MEP-3 (3921.34, 56.26) (5626.03, 63.42) (2877.37, 46.53) (4976.51, 42.52)
MEP-4 (3920.99, 56.72) (5369.10, 73.46) (2864.31, 48.00) (5017.84, 41.64)

P3 (3937.32, 57.06) (5653.22, 55.68) (2921.17, 46.92) (4924.88, 41.07)
Logn (3930.55, 78.62) (5678.83, 64.63) (3065.06, 56.57) (5028.83, 39.38)
Norm (3961.55, 51.29) (5642.49, 54.98) (2760.59, 44.54) (4882.04, 42.83)
Gam (3925.95, 60.35) (5660.16, 59.29) (2960.32, 48.86) (4966.30, 40.87)

MEP-4

MEP-3 (3833.86, 57.87) (5492.61, 65.46) (3105.70, 45.48) (4969.43, 42.53)
MEP-4 (3825.82, 56.95) (5290.03, 73.46) (3052.79, 46.76) (4991.76, 41.49)

P3 (3849.07, 52.66) (5521.30, 56.98) (3034.24, 42.96) (4928.09, 40.94)
Logn (3834.21, 79.18) (5539.27, 67.13) (3204.83, 54.23) (5010.76, 39.49)
Norm (3849.58, 51.53) (5513.93, 56.04) (2980.19, 43.39) (4894.56, 42.64)
Gam (3830.33, 60.66) (5526.09, 60.98) (3126.29, 47.38) (4960.69, 40.82)

P3

MEP-3 (3828.15, 57.44) (8613.13, 67.16) (2772.63, 47.11) (4897.99, 49.50)
MEP-4 (3842.96, 57.74) (7635.10, 73.46) (2750.37, 48.44) (5372.34, 46.50)

P3 (3860.18, 58.30) (8866.89, 57.89) (2802.71, 47.44) (4591.65, 46.52)
Logn (3867.76, 81.16) (8984.54, 68.75) (2936.73, 57.73) (5204.69, 46.98)
Norm (3868.93, 52.20) (8820.36, 56.80) (2654.70, 44.82) (4400.06, 47.56)
Gam (3853.61, 61.71) (8897.28, 62.14) (2839.67, 49.46) (4809.40, 47.38)

Logn

MEP-3 (4609.04, 57.71) (7749.23, 67.64) (2843.58, 48.19) (4499.62, 49.81)
MEP-4 (4636.79, 57.96) (6941.66, 73.46) (2807.61, 49.49) (4890.92, 46.87)

P3 (4665.66, 58.58) (7989.66, 58.14) (2898.54, 48.52) (4289.21, 46.69)
Logn (4670.78, 81.59) (8094.99, 69.23) (3141.70, 60.07) (4729.38, 47.43)
Norm (4681.88, 52.44) (7948.81, 57.00) (2618.77, 45.66) (4155.63, 47.64)
Gam (4653.58, 61.99) (8017.00, 62.46) (2969.72, 50.66) (4437.30, 47.64)

Norm

MEP-3 (3108.07, 57.79) (5793.91, 66.33) (2524.13, 44.13) (4699.00, 44.79)
MEP-4 (3119.85, 58.02) (5446.16, 73.46) (2497.94, 45.68) (4782.48, 43.07)

P3 (3130.51, 58.61) (5861.15, 57.45) (2534.21, 44.25) (4606.08, 43.07)
Logn (3152.78, 82.35) (5898.04, 67.97) (2603.77, 47.62) (4797.38, 41.64)
Norm (3124.46, 52.27) (5846.46, 56.43) (2481.91, 43.14) (4535.18, 44.65)
Gam (3132.06, 62.18) (5870.99, 61.58) (2542.46, 45.41) (4676.33, 43.10)

Gam

MEP-3 (3586.49, 57.56) (6654.48, 66.89) (2633.78, 46.68) (4677.02, 47.24)
MEP-4 (3601.58, 57.84) (6096.07, 73.46) (2604.74, 48.09) (4883.48, 44.83)

P3 (3617.00, 58.41) (6785.93, 57.75) (2660.38, 46.99) (4515.48, 44.90)
Logn (3632.96, 81.57) (6850.96, 68.51) (2769.53, 56.15) (4846.30, 44.36)
Norm (3620.10, 52.24) (6760.41, 56.68) (2540.92, 44.61) (4401.43, 46.19)
Gam (3613.57, 61.86) (6803.04, 61.96) (2687.53, 48.87) (4631.91, 45.35)

4.4.1. Uncertainty Due to Marginal Distribution Selection

In order to explore the impact of the uncertainty of marginal distribution selection on design
event estimation, an extended experiment combining different marginal distributions was conducted.
These selected marginal distributions all passed the goodness-of-fit test at the 5% significance level.
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The copula functions that modeled the joint distributions of (AMF, Pr) pairs in the upper catchments of
the Linjiacun and Huaxian stations were the Gumbel and Frank copulas, respectively. Figure 3 exhibits
the analyzed combinations of different marginal distributions. Given TOR = TAND = 30 years, and the
estimated most-likely design events under different combinations of marginal distributions are shown
in Figure 7 and Table 5.
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Figure 7. Most-likely design events under different combinations of marginal distributions.
(A,C) denote the most likely design events under different combinations of marginal distributions
when TOR = 30 years in the upper catchments of Linjiacun and Huaxian stations, respectively, while
(B,D) denote the most likely design events when TAND = 30 years in the two regions, respectively.

It can be seen from Figure 7 and Table 5 that there is a remarkable difference among these design
events for the “OR” case under different combinations of marginal distributions. Among these
estimated (AMF, Pr) pairs, the AMF value ranges from 3108.07 m3/s to 4681.88 m3/s in the
upper catchment of Linjiacun station, while the Pr value ranges from 51.29 mm to 82.35 mm.
The corresponding cumulative probability for the AMF series varies between 0.97 and 0.98, while that
for the Pr series ranges between 0.97 and 0.99.

As for the “AND” case, it can be seen from Figure 7 that the difference among these design events
estimated under different combinations of marginal distributions is smaller than that for the “OR”
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case. Take the upper catchment of Linjiacun station, for example; among these estimated (AMF, Pr)
pairs, the AMF value ranges from 2481.91 m3/s to 3204.83 m3/s in the “AND” case, while the Pr value
ranges from 42.96 mm to 60.07 mm. The corresponding cumulative probability of AMF values varies
between 0.89 and 0.96, while that for the Pr value varies between 0.84 and 0.95.

To further explore the reasons for the difference among design events for the “OR” and “AND”
cases, we exemplarily display part of CDF curves for AMF and Pr series for the upper catchment
of Linjiacun station in Figure 8. Figure 8 illustrates that the difference of the fitting performance of
different marginal distributions increases with the values of the variables. In other words, the smaller
the value of AMF/Pr or the cumulative probability of AMF/Pr is, the smaller the difference in fitting
performance among these distributions is. When TOR = TAND = 30 years, the corresponding cumulative
probability of AMF in the “OR” case ([0.97–0.98]) is larger than that in the “AND” case ([0.89–0.96]),
which is the same as that of Pr. Therefore, the difference among design events in the “AND” case is
smaller than that in the “OR” case. This finding is consistent with that of Dung et al. (2015) [35].
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4.4.2. Uncertainty Due to the Limited Size of Hydrological Records

In order to uncover the impact of sampling uncertainty on the most-likely design event estimation,
the designed Monte Carlo algorithm in Section 3.5.2 was utilized. Here, the AMF and Pr series
were modeled by the MEP-related distributions. The Gumbel and Frank copulas were applied to
describe the joint distribution of (AMF, Pr) pairs in the upper catchments of Linjiacun and Huaxian
stations, respectively.

Moreover, Figure 9 clearly shows the confidence regions of the most-likely design events with
TOR = TAND = 30 years using the HDR method. The highest density regions (95% and 99%) are exhibited
in a two-dimensional plane (AMF-Pr) that correspond to a return period of 30 years. It can be seen
from Figure 9 that the confidence regions of the most-likely design events for TOR = TAND = 30 years
are very large in the study regions. The 95% confidence region for the most-likely design events in
terms of AMF and Pr with a return period of 30 years could range between values for AMF and Pr
with return periods of 10 and 50 years, at least. Take the upper catchment of Linjiacun station, for
example; in the 95% region for TOR = 30 years, the AMF could assume values with a univariate return
period from 10 to 50 years. Large uncertainties due to sampling uncertainty can also be found in the
works of [34,35,68,69], i.e., the return periods of the most-likely design events overlap. These large
uncertainties present a significant challenge for reservoir design, flood risk, etc., particularly for
Guanzhong plain, as one of the most important Chinese agricultural production regions, and Xi’an city,
as one of the four major ancient capitals of civilization, which lie in the floodplain between Linjiacun
and Huaxian stations. Uncertainty of copula-based frequency analysis for the study regions should
arouse critical concern, particularly when constituting policy for flood control and hazard reduction.
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Figure 9. The most-likely design events with the “OR” (A,C) and “AND” (B,D) joint period of
30 years. Black lines denote the “OR” and “AND” joint periods estimated with the original data series.
The shaded area denotes the confidence regions of the most-likely design events with TOR = TAND = 30
years at 95% and 99% confidence interval.

5. Summary and Conclusions

In this study, one general framework, aiming to analyze bivariate hydrological risk through a
coupled maximum entropy-copula method and to reveal the impact of marginal distribution selection
uncertainty and sampling uncertainty on hydrological risk analysis, is proposed.

The framework excels previous studies in applying the maximum entropy principle-based
marginal distribution for modeling random variables and accounting for the impact of different
uncertainty sources on hydrological risk analysis. The joint return periods, risk reliability, and bivariate
design events are derived based on the coupled maximum entropy-copula method. For the purpose
of practical engineering design applications, the so-called most-likely design event is identified
to characterize the bivariate design event. To reveal the impact of marginal distribution selection
uncertainty and sampling uncertainty on the bivariate design event identification, we designed a
corresponding experiment project and specific Monte Carlo-based algorithm to achieve the two goals,
respectively. Here, to elucidate the impact of marginal distribution uncertainty on the bivariate
design event identification, 6 candidate distributions were combined with each other to produce
36 combinations for fitting univariate flood and extreme precipitation series. Then, these combinations
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concerning the marginal distributions of flood and extreme precipitation events were utilized to derive
the bivariate design event. For the second goal, the Monte Carlo-based algorithm was designed to
disclose the impact of sampling uncertainty on the bivariate design event identification.

Two sub-catchments of Loess Plateau, which were typical eco-environmentally vulnerable regions,
were selected as the study regions. The primary conclusions are drawn as follows:

(1) The maximum entropy principle (MEP)-based distributions outperform the conventional
distributions (i.e., P3, Logn, Norm and Gam at least in this study) in quantifying the probability
of flood and extreme precipitation events. Results of this study indicate the better performance
of MEP distribution, suggesting that it could be an attractive alternative for quantifying the
marginal probability of random variables.

(2) The Gumbel and Frank copulas were suitable dependence models for quantifying the joint
probabilities of flood and extreme precipitation events in the upper catchments of Linjiacun and
Huaxian stations, respectively.

(3) The bivariate return periods, risk and reliability of flood and extreme precipitation events
for the two study regions were calculated based on the coupled maximum entropy-copula
models, which were expected to provide practical support for the local flood control and
disaster mitigation.

(4) The bivariate design realizations were estimated for the study regions. Comprehensive uncertainty
analysis revealed that the fitting performance of univariate distribution is closely related to the
bivariate design event identification. If the difference of the fitting performance between two
marginal distributions is small, values of the bivariate design events are similar, and vice versa.
Therefore, advanced univariate distribution is critical for the bivariate design event selection.

Most importantly, the uncertainty related to the limited sample size is considerable, and should
arouse critical attention. The bivariate design events of a specific return period exhibit significant
variation. In other words, the return periods of the most-likely design events overlap. The 95%
confidence regions of bivariate design events for flood and extreme precipitation with a return period
of 30 years could reach between the values for flood and extreme precipitation with return periods
of 10 and 50 years. The overlap phenomenon poses great challenges for practical engineering design
applications, flood control, and so on. To enable a more reliable estimation of the design realization,
increasing the information content by expanding the temporal, spatial or causal data is desirable,
as proposed by Merz and Blöschl (2008) [70].
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