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Abstract: The downlink of symmetric Cloud Radio Access Networks (C-RANs) with multiple relays
and a single receiver is studied. Lower and upper bounds are derived on the capacity. The lower
bound is achieved by Marton’s coding, which facilitates dependence among the multiple-access
channel inputs. The upper bound uses Ozarow’s technique to augment the system with an auxiliary
random variable. The bounds are studied over scalar Gaussian C-RANs and are shown to meet and
characterize the capacity for interesting regimes of operation.
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1. Introduction

Cloud Radio Access Networks (C-RANs) are expected to be a part of future mobile network
architectures. In C-RANs, information processing is done in a cloud-based central unit that is
connected to remote radio heads (or relays) by rate-limited fronthaul links. C-RANs improve energy
and bandwidth efficiency and reduce the complexity of relays by facilitating centralized information
processing and cooperative communication. We refer to [1–3] and the references therein for an overview
of the challenges and coding techniques for C-RANs. Several coding schemes have been proposed in
recent years for the downlink of C-RANs including message sharing [4], backhaul compression [5],
hybrid schemes [6] and generalized data sharing using Marton’s coding [7,8]. The paper [9] gives an
upper bound on the sum-rate of two-relay C-RANs with two users and numerically compares the
performance of the aforementioned schemes with the upper bound.

We consider the downlink of a C-RAN with multiple relays and a single receiver. This network
may be modeled by an M-relay diamond network where the broadcast component is modeled by
rate-limited links and the multiaccess component is modeled by a memoryless Multiple Access
Channel (MAC); see Figure 1. The capacity of this class of networks is not known in general, but lower
and upper bounds were derived in [10–12] for two-relay networks. Moreover, the capacity was
found for binary adder MACs [12] and for certain regimes of operation in Gaussian MACs [11,12].
In this work, we derive lower and upper bounds for C-RANs with multiple relays and find the capacity
in interesting regimes of operation for symmetric Gaussian C-RANs.

This paper is organized as follows. Section 2 introduces the notation and the problem setup.
In Section 3, we propose a coding strategy based on Marton’s coding and discuss simplifications
for symmetric networks. In Section 4, we generalize the bounding technique in [11,12]. The case of
symmetric Gaussian C-RANs is studied in Section 5, where we compute lower and upper bounds on
the capacity and show that they meet in certain regimes of operation characterized in terms of power,
number of users and broadcast link capacities.
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Figure 1. A C-RAN downlink.

2. Preliminaries and Problem Setup

2.1. Notation

Random variables are denoted by uppercase letters, e.g., X; their realizations are denoted
by lowercase letters, e.g., x; and their corresponding probabilities are denoted by pX(x) or p(x).
The probability mass function (pmf) describing X is denoted by pX . T n

ε (X) denotes the set of sequences
that are ε-typical with respect to PX ([13], p. 25). When PX is clear from the context, we write T n

ε .
The entropy of X is denoted by H(X); the conditional entropy of X given Y is denoted by H(X|Y);
and the mutual information of X and Y is denoted by I(X; Y). Similarly, differential entropies and
conditional differential entropies are denoted by h(X) and h(X|Y).

Matrices are denoted by bold letters, e.g., K. We denote the entry of matrix K in row i and column
j by Kij. Sets are denoted by script letters, e.g., S . The Cartesian product of S1 and S2 is denoted
by S1 × S2, and the n-fold Cartesian product of S is denoted by Sn. The cardinality of S is denoted
by |S|.

Given the set S = {s1, . . . , sk}, XS denotes the tuple (Xs1 , . . . , Xsk ). We define Xn = X1, . . . , Xn,
and (see [14], Equation (74)):

I(XS ) = ∑
m∈S

H(Xm)− H(XS ). (1)

For example, when S = {s1, s2}, (1) becomes the mutual information I(Xs1 ; Xs2). The conditional
version of (1), I(XS |U), is defined similarly by conditioning all terms in (1) on U. Note that I(XS |U)

is non-negative.

2.2. Model

Consider the C-RAN in Figure 1, where a source communicates a message W with nR bits to a
sink with the help of M relays. LetM = {1, . . . , M} be the set of relays. The source encodes W into
descriptions V1, . . . ,VM that are provided to relays 1, . . . , M, respectively, and where Vm satisfies:

H(Vm) ≤ nCm, m = 1, . . . , M. (2)

Each relay m, m = 1, . . . , M, maps its description Vm into a sequence Xn
m, which is sent over a multiple

access channel. The MAC is characterized by the input alphabets X1, . . . ,XM, the output alphabet
Y and the transitional probabilities p(y|x1, . . . , xM) for all (x1, . . . , xM, y) ∈ X1 × . . .×XM ×Y . From
the received sequence Yn, the sink decodes an estimate Ŵ of W.

A coding scheme consists of an encoder, M relay mappings and a decoder and is said to achieve
the rate R if, by choosing n sufficiently large, we can make the error probability Pr(Ŵ 6= W) as small
as desired. We are interested in characterizing the largest achievable rate R. We refer to the supremum
of achievable rates as the capacity C(M) of the network.

In this work, we focus on symmetric networks.



Entropy 2017, 19, 610 3 of 14

Definition 1. The network in Figure 1 is symmetric if we have:

C1 = . . . = CM =: C (3)

X1 = . . . = XM =: X (4)

and:

pY|X1 ...XM
(y|x1, . . . , xM)= pY|X1 ...XM

(y|x′1, . . . , x′M) (5)

for all y ∈ Y , (x1, . . . , xM) ∈ XM and any of its permutations (x′1, . . . , x′M).

When the MAC is Gaussian, the input and output alphabets are the set of real numbers, and the
output is given by:

Y =
M

∑
m=1

XM + Z (6)

where Z is Gaussian noise with zero mean and unit variance. We consider average block power
constraints P1, . . . , PM:

1
n

n

∑
i=1

E(X2
m,i) ≤ Pm, m = 1, . . . , M. (7)

The Gaussian C-RAN is symmetric if Cm = C and Pm = P for all m = 1, . . . , M.

3. A Lower Bound

We outline an achievable scheme based on Marton’s coding. We remark that this scheme can be
improved for certain regimes of C by using superposition coding (e.g., see ([15], Theorem 2) and ([11],
Theorem 2)).

Fix the pmf p(x1, . . . , xM), ε > 0, and the auxiliary rates Rm, R′m, m = 1, . . . , M, such that:

Rm, R′m ≥ 0 (8)

Rm + R′m ≤ Cm. (9)

3.1. Codebook Construction

Set:

R =
M

∑
m=1

Rm. (10)

For every m = 1, . . . , M, generate 2n(Rm+R′m) sequences xn
m(wm, w′m), wm = 1, . . . , 2nRm , w′m = 1, . . . , 2nR′m ,

in an i.i.d. manner according to ∏` PX`
(xm,`), independently across m = 1, . . . , M. For each bin index

(w1, . . . , wM), pick a jointly typical sequence tuple:

(xn
1 (w1, w′?1 ), . . . , xn

M(wM, w′?M)) ∈ T n
ε . (11)

3.2. Encoding

Represent message w as a tuple (w1, . . . , wM), and send (wm, w′?m) to relay m, m = 1, . . . , M.

3.3. Relay Mapping at Relay m, m = 1, . . . , M

Relay m sends Xn
m(wm, w′?m) over the MAC.
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3.4. Decoding

Upon receiving yn, the receiver looks for indices ŵ1, . . . , ŵM for which the following joint typicality
test holds for some ŵ′1, . . . , ŵ′M:

(xn
1 (ŵ1, ŵ′1), . . . , xn

M(ŵM, ŵ′M), yn) ∈ T n
ε . (12)

We show in Appendix A that the above scheme has a vanishing error probability as n → ∞ if,
in addition to (8)–(10), we have:

∑
m∈S

R′m ≥ I(XS ), ∀S ⊆ M (13)

∑
m∈S

Rm + R′m ≤ I(XS ; Y|XS̄ ) + I(XM)− I(XS̄ ), ∀S ⊆ M. (14)

One can use Fourier–Motzkin elimination to eliminate Rm, R′m, m = 1, . . . , M, from (8)–(10),
(13), (14), and characterize the set of achievable rates R. For symmetric networks (see Definition 1),
we bypass the above step and proceed by choosing pXM to be “symmetric”.

We say pXM is symmetric if:

X1 = . . . = XM = X (15)

and, for all subsets S ,S ′ ⊆M with |S| = |S ′|, we have:

pXS (x1, . . . , x|S|) = pXS′ (x1, . . . , x|S|), ∀(x1, . . . , x|S|) ∈ X |S|. (16)

We simplify the problem defined by (8)–(10), (13), (14) for symmetric distributions and prove the
following result in Appendix B.

Theorem 1. For symmetric C-RAN downlinks, the rate R is achievable if:

R ≤ MC− I(XM) (17)

R ≤ I(XM; Y) (18)

for some symmetric distribution pXM .

4. An Upper Bound

Our upper bound is motivated by [11,12,14,16].

Theorem 2. The capacity C(M) is upper bounded by:

C(M) ≤ max
p(x)

min
p(u|xy)
=p(u|y)

max
p(q|x,u,y)
=p(q|x)

{
MC− (M− 1)H(U|Q) + ∑M

m=1 H(U|XmQ)− H(U|XM)

minS⊆M |S|C + I(XS̄ ; Y|XSQ)

}
(19)

where Q− XM − Y −U forms a Markov chain. Moreover, the alphabet size of Q may be chosen to satisfy
|Q| ≤ ∏M

i=1 |Xi|+ 2M − 1.

Remark 1. For M = 2, Theorem 2 reduces to ([12], Theorem 3).
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Proof outline. We start with the following n-letter upper bound (see Appendix C):

nR ≤ nMC− I(Xn
M) (20)

nR ≤ n|S|C + I(Xn
M; Yn|Xn

S ), ∀S ⊆M. (21)

For any sequence Un, we have:

I(Xn
M) ≥ I(Xn

M)− I(Xn
M|Un)

=

[
M

∑
m=1

I(Xn
m; Un)

]
− I(Xn

M; Un)

= (M− 1)H(Un)−
[

M

∑
m=1

H(Un|Xn
m)

]
+ H(Un|Xn

M). (22)

By substituting (22) into (20), we obtain:

nR ≤ nMC− (M− 1)H(Un) +

[
M

∑
m=1

H(Un|Xn
m)

]
− H(Un|Xn

M). (23)

We now choose Ui, i = 1, . . . , n, to be the output of a memoryless channel pU|Y(ui|yi) with input Yi.
The auxiliary channel pU|Y(.|.) will be optimized later. With this choice, we single-letterize (21) and (23)
and obtain:

R ≤ MC− (M− 1)H(U|Q) +
M

∑
m=1

H(U|XmQ)− H(U|XM) (24)

R ≤ |S|C + I(XS̄ ; Y|XSQ), ∀S ⊆ M (25)

where Q− XM −Y−U forms a Markov chain.

5. The Symmetric Gaussian C-RAN

We specialize Theorem 1 to the symmetric Gaussian C-RAN defined in (6) and (7) where Pm = P
for all m = 1, . . . , M. Choose (X1, . . . , XM) to be jointly Gaussian with the covariance matrix:

KM(ρ) =


P ρP . . . ρP

ρP P . . . ρP
...

. . .
...

ρP . . . ρP P

 . (26)

Remark 2. Choosing (X1, . . . , XM) to be jointly Gaussian (and/or symmetric) is not necessarily optimal
for (13) and (14), but it gives a lower bound on the capacity.

Theorem 3. The rate R is achievable if it satisfies the following constraints for some non-negative parameter ρ,
0 ≤ ρ ≤ 1:

R ≤ MC− 1
2

log
(

PM

det(KM(ρ))

)
(27)

R ≤ 1
2

log(1 + PM(1 + (M− 1)ρ)). (28)
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Remark 3. One can recursively calculate det(KM(ρ)):

det(KM(ρ)) = PM

(
1− ρ2

M−1

∑
i=1

i(1− ρ)i−1

)
= PM(1− ρ)M−1 (1 + (M− 1)ρ) .

(29)

Let R(`) be the maximum achievable rate given by (27) and (28). The RHS of (27) is non-increasing
in ρ, and the RHS of (28) is increasing in ρ. Therefore, we have the following two cases for the
optimizing solution ρ(`):

• If MC ≤ 1
2 log (1 + PM) then

ρ(`) = 0 and R(`) = MC. (30)

• Otherwise, ρ(`) is the unique solution of ρ in:

1
2

log(1 + PM(1 + (M− 1)ρ)) = MC− 1
2

log
(

1
(1− ρ)M−1 (1 + (M− 1)ρ)

)
(31)

and we have:

R(`) =
1
2

log(1 + PM(1 + (M− 1)ρ(`))). (32)

We next specialize Theorem 2 to symmetric Gaussian C-RANs.

Theorem 4. The rate R is achievable only if there exists ρ, 0 ≤ ρ ≤ 1, such that the following inequalities hold
for all N ≥ 0:

R ≤ MC− (M− 1)
1
2

log
(

22R + N
)
− 1

2
log(1 + N)

+
M
2

log (1 + N + P((M− 1)(1− ρ)(1 + (M− 1)ρ))) (33)

R ≤ 1
2

log (1 + PM(1 + (M− 1)ρ) . (34)

Proof. Set:

Ui = Yi + ZN,i, i = 1, . . . , n (35)

where {ZN,i}n
i=1 are identically distributed according to the normal distribution N (0, N) and are

independent of each other and Xn
1 , . . . , Xn

M. The variance N is to be optimized.
In order to find a computable upper bound in (19), we need to lower bound h(U|Q). Recall that

U is a noisy version of Y. We thus use the conditional entropy power inequality ([17], Theorem 17.7.3):

h(U|Q) ≥ 1
2

log
(

22h(Y|Q) + 2πeN
)

≥ 1
2

log
(

2πe
(

22R + N
))

.
(36)

Substituting (36) into the first constraint of (19), we obtain:
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R ≤ MC− (M− 1)
1
2

log
(

2πe
(

22R + N
))

+
M

∑
m=1

h(U|XmQ)− h(U|XM)

≤ MC− (M− 1)
1
2

log
(

2πe
(

22R + N
))

+
M

∑
m=1

h(U|Xm)− h(U|XM).

(37)

Now, consider the second term in (19) with S = ∅:

R ≤ I(XM; Y|Q)

≤ I(XM; Y) (38)

= h(Y)− h(Y|XM).

Note that the RHSs of (37), (38) are both concave in p(xM) and symmetric with respect to X1, . . . , XM.
Therefore, a symmetric p(xM) maximizes them. Let K denote the covariance matrix of an optimal
symmetric solution. We have:

Kii = P, Kij = Pρ. (39)

Using the conditional version of the maximum entropy lemma [18], we can upper bound the differential
entropies that appear with a positive sign in (37) and (38) by their Gaussian counterparts, and h(U|XM)

and h(Y|XM) can be written explicitly because the channels from XM to U and Y are Gaussian.
We obtain (33) and (34). Note that the RHSs of both bounds are increasing in P, and therefore there is
no loss of generality in choosing Kii = P (among Kii ≤ P).

The upper bound of Theorem 4 and the lower bound of Theorem 3 are plotted in Figure 2
for M = 3 and P = 1, and they are compared with the lower bounds of message sharing [4] and
compression [5]. One sees that our lower and upper bounds are close, and they match over a wide
range of C. Moreover, establishing partial cooperation among the relays through Marton’s coding
offers significant gains. Figure 3 plots the capacity bounds for P = 1 and different values of M.
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We next compare the lower and upper bounds. We define:

CC =
1

2M
log (1 + PM) (40)

CL =
1

2M
log

 1 + M2

2 P(
M

2(M−1)

)M−1 M
2

 (41)

CU =
1

2M
log

 1 + MP
(

1 + (M− 1)ρ(2)
)

(
1− ρ(2)

)M−1 (1 + (M− 1)ρ(2)
)
 (42)

where:

ρ(2) =
M− 2− 1

P +
√
(M− 2− 1

P )
2 + 4(M− 1)

2(M− 1)
. (43)

Theorem 5. The lower bound of Theorem 3 matches the upper bound of Theorem 4 if:

C ≤ CC (44)

or if:

CL ≤ C ≤ CU (45)

where CC, CL, CU are defined in (40)–(42).

Remark 4. Theorem 5 recovers ([12], Theorem 5), for M = 2.

Remark 5. For C ≤ CC, no cooperation is needed among the transmitters, and the capacity is equal to MC.

Remark 6. For C large enough, full cooperation is possible through superposition coding, and the capacity is:

C(M) =
1
2

log
(

1 + M2P
)

, C ≥ Ccoop (46)
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where

Ccoop =
1
2

log
(

1 + M2P
)

. (47)

The rate (46) is not achievable by Theorem 3 except when C → ∞. This rate is achievable by message sharing.

Proof of Theorem 5. To find regimes of P and C for which the lower and upper bounds match,
we mimic the analysis in ([12], Appendix F). Consider the lower bound in Theorem 3 and in particular
its maximum achievable rate R(`), which is attained by ρ(`); see (30)–(32). If (44) holds, we have
ρ(`) = 0, R(`) = MC, and thus the cut-set bound is achieved. Otherwise, we proceed as follows.

Consider (33). Since R ≥ R(`) and using the definition of R(`) in (32), we can further upper
bound (33) and obtain:

R ≤ MC− (M− 1)
1
2

log
(

1 + N + PM(1 + (M− 1)ρ(`))
)

+
M
2

log (1 + N + P((M− 1)(1− ρ)(1 + (M− 1)ρ))) (48)

− 1
2

log(1 + N).

Call the RHS of (48) g1(ρ) and the RHS of (34) g2(ρ). Fix N as a function of ρ(`) such that:

I(G,ρ(`))(XM|U) = 0 (49)

where I(G,ρ(`))(XM|U) is I(XM|U) evaluated for a fully-symmetric Gaussian distribution with
correlation factor ρ(`). One can verify that the following choice of N satisfies (49):

N = P
(1− ρ(`))(1 + (M− 1)ρ(`))

ρ(`)
− 1. (50)

The right inequality in (45) ensures N ≥ 0.
With this choice of N, g1(ρ) is exactly equal to:

MC− I(G,ρ(`))(XM)

at ρ = ρ(`). Note that ρ(`) is defined in (31), and thus, g1(ρ) crosses g2(ρ) at ρ(`). Since g2(ρ) is
increasing in ρ, the maximum admissible rate by (34) and (48) matches R(`) if g1(ρ) is non-increasing
for ρ ≥ ρ(`). This is ensured by the left inequality in (45).

6. Concluding Remarks

We studied the downlink of symmetric C-RANs with multiple relays and a single receiver
and established lower and upper bounds on the capacity. The lower bound uses Marton’s coding to
establish partial cooperation among the relays and improves on schemes that are based on message
sharing and compression for scalar Gaussian C-RANs (see Figure 2). The upper bound generalizes
the bounding techniques of [11,12]. When specialized to symmetric Gaussian C-RANs, the lower and
upper bounds meet over a wide range of C, and this range gets large as M and/or P get large.

Future directions include generalizing the techniques to address C-RANs with multiple receivers
(e.g., [5]), secrecy constraints at the receivers (e.g., [19]) and secrecy constraints at individual relays
(e.g., [20]).
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Appendix A. Analysis of the Achievable Scheme

The scheme fails only if one of the following events occurs:

• (11) does not hold for any index tuple (w′?1 , . . . , w′?M). This event has a vanishing error probability
as n→ ∞ ([13], Lemma 8.2) if we have (13);

• (12) does not hold for the original indices (w1, w′?1 , . . . , wM, w′?M). This event has a vanishing error
probability as n→ ∞ by (11) and the law of large numbers;

• (12) holds for indices (w̃1, w̃′1, . . . , w̃M, w̃′M) where (w̃1, . . . , w̃M) 6= (w1, . . . , wM). We show that
this event has a vanishing error probability as n → ∞ if we have (14). Since the codebook is
symmetric with respect to all messages, we assume without loss of generality that w1 = . . . =
wM = 1 and w′1 = . . . = w′M = 1. Fix the sets S1,S2,S3 ⊂ M such that S1 ∪ S2 ∪ S3 = M.
Consider the case where

w̃i = 1, w̃′i = 1 ∀i ∈ S1

w̃i = 1, w̃′i 6= 1 ∀i ∈ S2

w̃i 6= 1 ∀i ∈ S3.
(A1)

We denote the set of index tuples satisfying (A1) by W(S3
1 ). We have:

Pr

 ⋃
W(S3

1 )

(Xn
1 (w̃1, w̃′1), . . . , Xn

M(w̃M, w̃′M), Yn) ∈ T n
ε


≤ 2n ∑m∈S3

(Rm+R′m)+n ∑m∈S2
R′m

× ∑
(xn

1 ,...,xn
M ,yn)∈T n

ε

pXn
S1

X̃n
S2

X̂n
S3

Yn(xn
S1

, xn
S2

, xn
S3

, yn)

(a)
≤ 2n ∑m∈S3

(Rm+R′m)+n ∑m∈S2
R′m

× 2n(H(XMY)−H(XS1
Y)−∑m∈S2∪S3

H(Xm)−δ(ε))

(A2)

where X̃n
S2

denotes {Xn
m(w̃m, w̃′m)}m∈S2 and X̂n

S3
denotes {Xn

m(w̃m, w̃′m)}m∈S3 . In Step (a),
we use that (i) (Xn

S1
Yn) is “almost independent” of (X̃n

S2
, X̂n
S3
) and (ii) the random sequences

Xn
m(w̃m, w̃′m), m ∈ S2, and Xn

m(w̃m, w̃′m), m ∈ S3, are mutually “almost independent”. Note that
we use the term “almost independent”, rather than independent, because we have assumed
w1 = . . . = wM = 1 and w′1 = . . . = w′M = 1; i.e., we implicitly have a conditional probability
and conditioned on w′1 = . . . = w′M = 1, claims (i)–(ii) may not hold if we insist on exact
independence. This issue has been dealt with in [21–23], and following similar arguments, one
can show that (i) and (ii) hold with “almost independence”. The probability of the considered
error event is thus arbitrarily close to zero for large enough n if:

∑
m∈S3

(Rm + R′m) + ∑
m∈S2

R′m < I(XM; Y|XS1) + I(XM)− I(XS1). (A3)

Inequality (A3) is satisfied by (14) when we choose S̄ = S1. Note that the inequalities with
S2 6= ∅ are redundant.
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Appendix B. Simplification for Symmetric Networks with Symmetric Distributions

Choose Rm = R̃ and R′m = R̃′ for all 1, . . . , M. The problem defined by (8)–(10), (13), (14) simplifies
using the definition in (16):

R̃, R̃′ ≥ 0 (A4)

R̃ + R̃′ ≤ C (A5)

MR̃ = R (A6)

|S|R̃′ ≥ I(XS ) ∀S ⊆ M (A7)

|S|(R̃ + R̃′) ≤ I(XS ; Y|XS̄ ) + I(XM)− I(XS̄ ) ∀S ⊆ M. (A8)

We prove that the tightest inequality in (A7) and (A8) is given by S =M. Eliminating R̃′ from the
remaining inequalities concludes the proof.

Let S be any subset ofM and s0 be an element ofM such that s0 /∈ S . This is possible if S 6=M.
Define T =M\{S ∪ s0}. We show that:

I(XS )
|S| ≤

I(XS∪{s0})

|S|+ 1
(A9)

and:
1

|S|+ 1

(
I(XS∪{s0}; Y|XT ) + I(XM)− I(XT )

)
≤ 1
|S|

(
I(XS ; Y|XT Xs0) + I(XM)− I(XT ∪s0)

)
.

(A10)

The following equalities come in handy in the proof:

I(XS∪T ) = I(XS ) + I(XT ) + I(XS ; XT ) (A11)

I(XS ) =
|S|−1

∑
j=1

I(Xs1 . . . Xsj ; Xsj+1). (A12)

Suppose S = {s1, . . . , s|S|} and S ′ = {s0, s1, . . . , s|S|−1}. We have:

|S|I(XS∪s0) = |S|I(XS ) + |S|I(XS ; Xs0)

≥ |S|I(XS ) +
|S|

∑
j=1

I(Xs1 . . . Xsj ; Xs0)

(a)
= |S|I(XS ) +

|S|−1

∑
j=0

I(Xs0 . . . Xsj ; Xsj+1)

(b)
= |S|I(XS ) + I(XS ′) + I(Xs0 . . . Xs|S|−1 ; Xs|S|)

≥ |S|I(XS ) + I(XS ′)
(c)
= (|S|+ 1)I(XS )

(A13)

where (a) and (c) hold by (16) and (b) is by (A12), written for S ′.
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Similarly, we have:

(|S|+ 1)
(

I(XS ; Y|XT Xs0) + I(XM)− I(XT ∪s0)
)
− |S|

(
I(XS∪{s0}; Y|XT ) + I(XM)− I(XT )

)
= I(XS ; Y|XT Xs0)− |S|I(Xs0 ; Y|XT ) + I(XM)− (|S|+ 1)I(XT ∪s0) + |S|I(XT )
(a)
= I(XS ; Y|XT Xs0)− |S|I(Xs0 ; Y|XT ) + I(XS ) + I(XT ∪s0) + I(XS ; X{T ∪s0})

− (|S|+ 1)I(XT ∪s0) + |S|I(XT )
(b)
= I(XS ; Y|XT Xs0)− |S|I(Xs0 ; Y|XT ) + I(XS ) + I(XS ; XT ∪s0)− |S|I(XT ; Xs0)

= I(XS ; YXT Xs0)− |S|I(Xs0 ; YXT ) + I(XS )

= H(XS ) + I(XS )− H(XS |YXT Xs0)− |S| (H(Xs0)− H(Xs0 |YXT ))
(c)
= |S|H(Xs0 |YXT )− H(XS |YXT Xs0)

(d)
≥ 0 (A14)

where (a) and (b) are by (A11), (c) follows from (16) and (d) follows from (16) and the symmetry of the
channel in (5).

Appendix C. Proof of Theorem 2

We first prove the multi-letter bound in (20) using Fano’s inequality and the data processing
inequality. For any ε > 0, we have:

nR
(a)
≤ H(V1, . . . ,VM) + nε

=
M

∑
m=1

H(Vm)− I(VM) + nε

≤
M

∑
m=1

nC− I(VM) + nε

(b)
≤

M

∑
m=1

nC− I(Xn
M) + nε

(A15)

where (a) is by Fano’s inequality and (b) is by the data processing inequality as follows:

I(VM) =
n

∑
m=1

I(V1 . . .Vm;Vm+1)

≤
n

∑
m=1

I(Xn
1 . . . Xn

m; Xn
m+1)

= I(Xn
M).

(A16)

Similarly, for any subset S ⊂ M and ε > 0, we have:

nR ≤ I(W; Yn) + nε

≤ I(W; YnVSXn
S ) + nε

= I(W;VSXn
S ) + I(W; Yn|VSXn

S ) + nε

(a)
= I(W;VS ) + I(W; Yn|VSXn

S ) + nε

≤ H(VS ) + I(WXn
M; Yn|VSXn

S ) + nε

(b)
≤ n|S|C + I(Xn

M; Yn|Xn
S ) + nε

(A17)
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where (a) is because W −VS − Xn
S forms a Markov chain and (b) is because conditioning does not

increase entropy and because WVM − Xn
M −Y forms a Markov chain.

Next, we single-letterize (23) as follows:

nR ≤ nMC− (M− 1)
n

∑
i=1

H(Ui|Ui−1) +
M

∑
m=1

n

∑
i=1

H(Ui|Xn
MUi−1)−

n

∑
i=1

H(Ui|Xn
MUi−1)

≤ nMC− (M− 1)
n

∑
i=1

H(Ui|Ui−1) +
M

∑
m=1

n

∑
i=1

H(Ui|Xm,iUi−1)−
n

∑
i=1

H(Ui|XM,iUi−1)

= nMC− n(M− 1)H(UT |UT−1T) + n
M

∑
m=1

H(UT |Xm,TUT−1T)− nH(UT |XM,TUT−1T)

= n

(
MC− (M− 1)H(U|Q) +

M

∑
m=1

H(U|XmQ)− H(U|XMQ)

)
(A18)

where T is a uniform random variable on the set {1, . . . , n} independent of everything in the system, Q
is defined by (UT−1T) and X1, . . . , XM, Y and U are defined by X1,T , . . . , XM,T , YT and UT , respectively.
Note that U −Y− XM −Q forms a Markov chain.

Finally, we expand (21) as follows:

nR ≤ n|S|C + I(Xn
M; Yn|Xn

S )

= n|S|C +
n

∑
i=1

H(Yi|Xn
SYi−1)−

n

∑
i=1

H(Yi|Xn
MYi−1)

(a)
= n|S|C +

n

∑
i=1

H(Yi|Xn
SYi−1Ui−1)−

n

∑
i=1

H(Yi|Xn
MYi−1Ui−1)

(b)
≤ n|S|C +

n

∑
i=1

H(Yi|XS ,iUi−1)−
n

∑
i=1

H(Yi|XM,iUi−1)

(c)
= n (|S|C + I(XS̄ ; Y|XSQ))

(A19)

where (a) is because Yi − Xn
SYi−1 −Ui−1 forms a Markov chain, (b) is because Yi − XM,i −Ui−1 forms

a Markov chain and (c) is by a standard time sharing argument. The cardinality of Q is bounded using
the Fenchel–Eggleston–Carathéodory theorem ([13], Appendix A) (see also ([24], Appendix B)).
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