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Abstract: The Decode-Compress-Forward (DCF) is a generalization of Decode-Forward (DF) and
Compress-Forward (CF). This paper investigates conditions under which DCF offers gains over DF
and CF, addresses the problem of coded modulation for DCF, and evaluates the performance of
DCF coded modulation implemented via low-density parity-check (LDPC) codes and polar codes.
We begin by revisiting the achievable rate of DCF in discrete memoryless channels under backward
decoding. We then study coded modulation for the decode-compress-forward via multi-level coding.
We show that the proposed multilevel coding approaches the known achievable rates of DCF.
The proposed multilevel coding is implemented (and its performance verified) via a combination of
standard DVB-S2 LDPC codes, and polar codes whose design follows the method of Blasco-Serrano.
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1. Introduction

Shortly after the introduction of the three-node relay channel by Van Der Meulen [1],
Cover and El-Gamal [2] proposed and analyzed block-Markov encoded decode-forward (DF) and
compress-forward (CF) for the relay channel [3–5]. Decode-forward is capacity achieving for the
degraded relay channel, but, due to the relay decoding constraint, it does not perform well when
the source-relay link is weak. Compress-forward can also be optimal under certain conditions [6],
but it also falls short under certain other conditions [3,4]. This motivated a generalization of DF and
CF into a hybrid technique by Cover and El-Gamal ([2], Theorem 7), denoted decode-compress-forward
(DCF). This technique, its performance and implementation via coded modulation are the subjects of
this paper. Other hybrid relaying protocols include hybrid Decode-forward and Amplify-forward [7],
and also a variation of DCF has appeared in the context of selective cooperation [8].

The known achievable rate of DCF in the additive white Gaussian noise (AWGN) full-duplex
relay channel reduces to either DF or CF achievable rates. This is a result due to [9] that we re-derive
in the following under backward decoding. In the discrete input full-duplex relay channel, we show
via examples that the DCF performance can exceed both DF and CF.

A coding implementation for the DCF in the AWGN channel is then proposed based on multilevel
coding (MLC). Multilevel coding was proposed by Imai and Hirakawa in [10]. More details about
the performance and the design of MLC can be found in [11–13]. Duan et al. [14] showed that MLC
with linear mapping does not require active shaping to achieve the capacity. MLC was extended to the
MIMO (multiple-input multiple-output) transmission [15], and was used for diversity coding [16–19]
and in data storage [20]. Much less is known about MLC in the context of multi-node networks.
Exceptions exist, for example, Hern and Narayanan [21] used MLC in the context of compute and
forward and Chen et al. [22] studied multilevel coding in the two-way relay channel.

At the source and the relay, the proposed DCF multilevel coding decomposes the overall coded
modulation into a group of binary codes, each either operating via a DF or a CF protocol. The mapper
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combines these constituent level-wise codes into a hybrid DF-CF coded modulation. The assignment
of each level to either DF or CF and the rate allocation to each level is an optimization problem.
We demonstrate the operation of this system by an implementation that employs for the DF components
the DVB-S2 LDPC codes [23], and, for the CF components, a group of polar codes that are designed
according to Blasco-Serrano [24,25].

2. Preliminaries

2.1. The Relay Channel

The capacity of the full-duplex relay channel is in general unknown. The capacity of the degraded
relay channel is achieved by decode-forward, and achievable rates for several other protocols have also
been calculated including partial decode-forward and compress-forward. In a full-duplex relay, these
protocols are implemented via block-Markov encoding [26], a consequence of the causality constraint
on the relay.

Throughout the paper, we denote the signal transmitted from the source node and the relay node
in block t by X(t)

1 and X(t)
2 . We begin with the received signal model at the relay, which experiences

self-interference:
Y(t)

2 = H12X(t)
1 + n2 + ns,

where H12 is the channel coefficient from the source to the relay, n2 is the additive Gaussian
(thermal) noise at the receiver, and ns is the sampled residual self-interference. The area of modeling
and analyzing loop-back or self-interference has experienced rapid growth in the past few years.
Several methods for mitigating self-interference are now in place, among them antenna design and
placement (including passive components), as well as echo cancellation in the amplifier stage, as well
as digital signal processing after down-conversion and sampling [27]. The collection of these methods
has allowed the residual self-interference to be reduced significantly. The residue of self-interference,
ns, is the component that is seen by the relay decoder. Several works to date [27–29] have used
a Gaussian model for ns, an approximation that is confirmed by various measurements [30,31].
Therefore, the combination ñ2 = n2 + ns is also Gaussian with the appropriate variance.

Thus, the received signal at the relay and destination in block t are respectively given by

Y(t)
2 = H12X(t)

1 + ñ2, (1)

Y(t)
3 = H13X(t)

1 + H23X(t)
2 + n3, (2)

where H12, H13 and H23 are the channel coefficients as illustrated in Figure 1. The channel coefficients
can include a path-loss component as well as any type of fading.

The destination uses either backward decoding or a sliding window decoding. The former
requires waiting until a terminating point where no new message is transmitted from the source, and,
in the latter, the decoder uses a window of L blocks for decoding.

In decode-forward, the relay decodes the message from the source in block t and assists the source
in its transmission during block t + 1. In compress-forward, the relay does not attempt decoding but
quantizes the received signal Y2 and sends the quantized version to the destination.

X
1

Y
2 X

2

Y
3

H
12

H
13

H
23

Figure 1. Full-Duplex relay channel.
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2.2. Multilevel Coding

In the point-to-point channel, multilevel coding (see Figure 2) divides the data stream into
m = log2(q) binary sub-streams for a q-ary constellation. Each sub-stream i is encoded independently
with rate Ri. At each time instance, the outputs of the (binary) encoders are combined to construct the
vector [B1, B2, . . . Bm], which is then mapped to a constellation point X. The channel is described by
the conditional distribution PY|X(y|x), where Y is the output of the channel. The mutual information
between the input and output is given by

I(X; Y) = I(B1, B2, . . . , Bm; Y) =
m

∑
i=1

I(Bi; Y|Bi−1), (3)

where we use the chain rule of mutual information, one-to-one relationship between X and
[B1, B2, . . . , Bm], and the notation Bi−1 ≡ [B1, B2, . . . , Bi−1]. This equation suggests a multistage
decoding where the codeword of level i is decoded using the output of the decoders of the preceding
levels. A necessary and sufficient condition for multilevel coding achieving the constellation
constrained capacity is that the optimal distribution P∗B1,...,Bm

(b1, . . . , bm) must be independent across
its components [32]:

PB1,...,Bm(b1, . . . , bm) =
m

∏
i=1

PBi (bi). (4)
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Figure 2. MLC and multi-stage decoding in the point to point channel.

3. Decode-Compress-Forward

In this section, we re-derive Theorem 7 [2] for the discrete memoryless relay channel under
backward decoding and obtain the DCF achievable rate for the AWGN relay channel as well as the
constellation constrained AWGN relay channel.

3.1. Discrete Memoryless Full-Duplex Relay

Block Markov encoding for decode-compress forward is shown in Figure 3 over four transmission
blocks. In each transmission block, the source and the relay send a compress-forward component that
is superimposed on a decode-forward component. A detailed system design and analysis is explained
as follows:

In g transmission blocks, a sequence of (g− 1) i.i.d. messages Wj ∈ [1 : 2nR], j ∈ [1 : g− 1] is
transmitted. Each message Wj is split into two messages Wdj ∈ [1 : 2nRd ] and Wcj ∈ [1 : 2nRc ] for
j ∈ [1 : g− 1]. This implies that R = Rd + Rc, where R is the total rate, and Rd, Rc, respectively, indicate
the rate carried by decode-forward and compress-forward components of signaling.
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Figure 3. Decode-Compress-Forward transmission over four transmission blocks.

Codebook generation:
For each block j ∈ [1 : g], randomly and independently generate 2nRd sequences Un

2d(wd(j−1))

according to

n

∏
i=1

PU2d(u2di).

For each wd(j−1) ∈ [1 : 2nRd ], randomly and conditionally independently generate 2nR′ sequences

Xn
2 (lj−1|wd(j−1)), lj−1 ∈ [1 : 2nR′ ], each according to

n

∏
i=1

PX2|U2d
(x2i|u2di(wd(j−1))).

For each lj−1 ∈ [1 : 2nR′ ], randomly and conditionally independently, generate 2nR′′ sequences
Ŷn

2 (k j|lj−1), k j ∈ [1 : 2nR′′ ] each according to

n

∏
i=1

PŶ2|X2i
(ŷ2i|x2i(lj−1|wd(j−1)).

R′′ represents the compression rate at the relay. In addition, for each wd(j−1), randomly
and conditionally independently generate 2nRd sequences Un

1d(wdj|wd(j−1)), wdj ∈ [1 : 2nRd ], each
according to

n

∏
i=1

PU1d |U2d
(u1di|u2di(wd(j−1))).

Finally, for each pair of messages wd(j−1) and wdj, randomly and conditionally independent
generate 2nRc sequences Xn

1 (wcj|wd(j), wd(j−1)), each according to

n

∏
i=1

PX1|U2d ,U1d
(x1i|u2di(wd(j−1)), u1di(wd(j−1))).

This defines the codebooks

Cj = {xn
1 (wcj|wdj, wd(j−1)), xn

2 (lj|wd(j−1))}, j ∈ [1 : g].
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The source node:
In block j, the pair of messages wdj and wcj are to be transmitted. The encoder at the source node

chooses x1(wcj|wdj, wd(j−1)) from codebook Cj. The messages of the last block are considered to be
wcg = wdg = 1.

The relay node:
The decoding phase of the relay uses typicality decoding as follows: first, assume that w̃d0 = 1.

Second, at the end of block j, the relay finds a unique w̃dj such that

(xn
1 (wcj|w̃dj, w̃d(j−1)), xn

2 (lj−1|w̃d(j−1)), yn
2 (j)) ∈ T (n)

ε

for any wcj, where T (n)
ε denotes the jointly typical sets of the corresponding random variables.

The relay then finds k j such that

(
yn

2 (j), ŷn
2 (k j|lj−1), xn

2 (lj−1)
)
∈ T (n)

ε ,

and if there is more than one k j, the relay selects one at random and if the relay does not find any k j,
then, it selects one uniformly at random from [1 : 2nR′′ ]. Based on k j, the relay determines lj as it is the
bin index of k j.

In the transmission phase, in block j, the relay chooses x2(lj−1|wd(j−1)) from codebook Cj.

The destination node:
The destination uses backward decoding, so it waits until the reception of the g blocks and then

starts decoding from the last block and successively toward the first block. For j = g− 1, g− 2, . . . , 1,
the destination finds estimates ŵd(j) and l̂j such that

(xn
1 (ŵc(j+1)|ŵd(j+1), ŵd(j)), xn

2 (l̂j|ŵd(j)), yn
3 (j + 1)) ∈ T (n)

ε ,

where wcg = wdg = 1. The destination then finds an estimate ŵcj such that

(x1(ŵc(j)|ŵd(j), ŵd(j−1)), x2(l̂j−1|ŵd(j−1)), ŷn
2 (k̂ j|l̂j−1)) ∈ T

(n)
ε

for some k̂ j that belongs to the bin l̂j.

Probability of error analysis:
Without loss of generality, the source messages are wdj = wcj = 1 for j ∈ [1 : g]. In block j, there

are two error events at the relay, an error event when the relay does not decode wdj correctly and
another when the relay makes an error in the compress-forward part. The two error events at the relay
in block j are defined as follows:

Ẽ1(j) = {Ŵdj 6= 1}, (5)

Ẽ2(j) = {(Xn
2 (Lj−1|Wd(j−1)), Ŷn

2 (k j|Lj−1), Yn
2 (j)) /∈ T (n)

ε for all k j ∈ [1 : 2nR′′ ]}, (6)

while the error events at the destination are defined as follows:

E(j + 1) = {(Wd(j+1) 6= 1) ∪ (Wc(j+1) 6= 1)}, (7)

E ′(j + 1) = {Lc(j+1) 6= 1}, (8)

E1(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), Ŵdj), Xn

2 (L̂j|Ŵdj), Yn
3 (j + 1)) /∈ T (n)

ε }, (9)

E2(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), ŵdj), Xn

2 (l̂j|ŵdj), Yn
3 (j + 1)) ∈ T (n)

ε for some ŵdj 6= 1, l̂j 6= 1}, (10)

E3(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), Ŵdj), Xn

2 (l̂j|Ŵdj), Ŷn
2 (K̂j|L̂j−1)) /∈ T (n)

ε }, (11)
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E4(j) = {(Xn
1 (wc(j+1)|Ŵd(j+1), Ŵdj), Xn

2 (l̂j|Ŵdj), Ŷn
2 (K̂j|L̂j−1)) ∈ T

(n)
ε for some wc(j+1) 6= 1}. (12)

The probability of error is then

P(E(j)) = P(Ẽ1(j) ∪ Ẽ2(j) ∪ E(j + 1) ∪ E ′(j + 1) ∪ E1(j) ∪ E2(j) ∪ E3(j) ∪ E4(j)) (13)

≤ P(Ẽ1(j)) + P(Ẽ2(j)) + P(E(j + 1))

+ P((E1(j) ∪ E3(j)) ∩ Ẽ c
1(j) ∩ Ẽ c

2(j) ∩ E c(j + 1) ∩ E ′c(j + 1)) + P(E2(j)) + P(E4(j)), (14)

where the superscript c denotes the complementary event. By the law of large numbers and the packing
lemma, P(Ẽ1(j))→ 0 as n→ ∞ if

Rd ≤ I(U1d; Y2|U2d). (15)

By independence of the codebooks and the covering lemma, the term P(Ẽ2(j))→ 0 as n→ ∞ if

R′′ ≥ I(Ŷ2; Y2|X2). (16)

For P(E(j + 1)), since the messages of the last block is known exactly to be 1, by induction and
satisfying the other constraints, P(E(j + 1))→ 0 as n→ ∞.

By the independence of the codebooks and the law of large numbers, the term P((E1(j) ∪ E3(j)) ∩
Ẽ c

1(j) ∩ Ẽ c
2(j) ∩ E c(j + 1) ∩ E ′c(j + 1))→ 0 as n→ ∞. The term P(E2(j))→ 0 as n→ ∞ if

Rd ≤ I(U1d, U2d; Y3), (17)

R′ ≤ I(X2; Y3|U2d), (18)

Rc ≤ I(X1; Ŷ2, Y3|X2, U1d). (19)

Eventually, the total transmission rate is Rd + Rc. By combining the previous rate constraints,
we have:

Theorem 1. The achievable rate of decode-compress-forward is given by

R ≤ min
{

I(U1d; Y2|U2d), I(U1d, U2d; Y3)
}
+ I(X1; Ŷ2, Y3|X2, U1d) (20)

subject to

I(Y2; Ŷ2|X2, U1d) ≤ I(X2; Y3)− I(U2d; Y3), (21)

where

PY3,Y2,Ŷ2,U1d ,U2d ,X1,X2
(y3, y2, ŷ2, u1d, u2d, x1, x2)

= PU2d(u2d)PU1d |U2d
(u1d|u2d)PX1|U1d

(x1|u1)PX2|U2d
(x2|u2)PY2|X1

(y2|x1)

PŶ2|U1d ,X2,Y2
(ŷ2|u1, x2, y2)PY3|X1,X2

(y3|x1, x2).

(22)

3.2. AWGN Full-Duplex Relay

Assume that all the variables in the Section 3.1 are Gaussian, and the source and relay have an
average power constrained by P1 and P2, respectively. Note that Gaussian codebooks are not known to
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be optimal in this case. A block-Markov encoding of DCF in the AWGN channel is shown in Figure 4
under four transmission blocks. The source and relay signals are given by

X1 = U1d + βU2d + U1c, (23)

X2 = U2d + U2c, (24)

respectively.

Block 2 Block 3 Block 4

Source

Block 1

Relay
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Figure 4. Decode-compress-forward transmission for the AWGN full-duplex relay channel over
four blocks.

Each of the codewords U1d, U2d, U1c and U2c are normally distributed. The term βU2d represents
the assistance that the source provides for the relay destination transmission. This assistance depends
on the correlation between U1d + βU2d and U2d, which is denoted by ρ.

Remark 1. In DCF, normally one can optimize the power allocation of each code at the source and the relay.
We fix the power of one of the DF signals U1d and the CF signal U1c. The power of the remaining signals can
be obtained as a function of the power of U1d and U1c and the power constraint at the source and relay nodes.
Consequently, the design variables of the rate maximization problem become the power of U1d, U1c and the
correlation ρ.

Assuming that the power of U1d is P1d and the power of U1c is P1c, the power of U2d is then
given by

P2d =
P1 − P1d − P1c

β2 , (25)

and, consequently, the power of U2c is

P2c = P2 − P2d

= P2 −
P1 − P1d − P1c

β2 , (26)

where

ρ =
E[(U1d + βU2d)U2d]√

(P1d + β2P2d)P2d
, (27)

β =

√
ρ2P1dP2d

P2
2d(1− ρ2)

. (28)

The signals Y2, Ŷ2 and Y3 are given by

Y2 = H12X1 + n2, (29)

Ŷ2 = Y2 + n̂, (30)

Y3 = H13X1 + H23X2 + n3, (31)

where n2, n3 and n̂ are zero mean Gaussian noise with variance σ2
2 , σ2

3 and N̂, respectively.
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Based on the previous characterization for each of the distributions of the variables involved in
calculating the transmission rate, the achievable rate for the AWGN DCF relay is as follows:

R ≤ min

{
1
2

log
(

1 + |H12|2P1d
|H12|2P1c+σ2

2

)
,

1
2

log
(

1 + (P1d+β2P2c)|H13|2
σ2

3
+ P2d |H23|2

σ2
3

+ 2ρ

√
(P1d+β2P2)P2d |H13|2|H23|2

σ4
3

)}

+
1
2

log

(
(|H12|2P1c+σ2

3+N̂)(|H13|2P1c+σ2
3 )−(|H12|2|H13|2)P2

1c
(σ2

3+N̂)σ2
3

)
,

(32)

where

N̂ =
(|H12|2P1c + σ2

2 )(|H13|2(P1d + P1c) + σ2
2 )

|H23|2P2c
. (33)

To illustrate the performance of DCF as a function of the location of the relay, we adopt the
illustration used in [3] and calculate the achievable rate as a function of relay position on a line
extending from the source to destination. For simplicity, a path-loss model is considered with the
channel coefficient Hij = 1/dα

ij, where dij is the distance between node i and node j and α is the
path-loss coefficient, which is usually between 2 and 4. The distance between the source and the
destination is fixed to d13 = 1 while the distances d12 and d23 depend on the relay location where
d23 = 1− d12. In Figure 5, the achievable rate of different transmission techniques are shown as a
function of the distance between the source and the relay d12.

Figure 5 shows that the achievable rate of DCF in the AWGN relay channel reduces to either DF
rate or CF rate. In other words, optimizing DCF results in either DF or CF.

d
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Figure 5. The achievable rate of different transmission techniques in the AWGN full-duplex relay
channel.

3.3. Constellation-Constrained Full-Duplex Relay

For the discrete input AWGN relay channel, the rate expressions in Theorem 1 can be calculated
via numerical integrations. The optimizing distribution may require an exhaustive search. As shown
in many point-to-point and multi-user scenarios [33,34], when the constellation becomes large enough,
the achievable rate under a constrained constellation becomes very close to the Gaussian input rate.
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However, the main difficulty comes from the restriction in Equation (21), which is now even
harder to satisfy since the mutual information I(X2; Y3) is no longer equal to

1
2

log

(
1 +
|H23|2P2

σ3

)

and is limited by the cardinality of the input size |X2|. The exact value of the constellation constrained
capacity [35], I(X2; Y3), can be obtained from

I(X2; Y3) = max
PX2 (x2)

∑
X2

PX2(x2)
∫

y3

PY3|X2
(y3|x2) log

(
PY3|X2

(y3|x2)

PY3(y3)

)
dy3. (34)

An accurate approximation for I(X2; Y3) under constrained constellation can be obtained using
the Blahut–Arimoto algorithm [36,37]. Constellation constrained point-to-point channel capacity for
various constellations is shown in Figure 6.
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Gaussian Input
Capacity

Figure 6. The constellation constrained capacity of several constellations in the point-to-point AWGN
channel compared with the Gaussian input capacity.

By calculating the value of I(X2; Y3), one can find the achievable rate of compress-forward and
DCF. In the following, an upper bound is provided on the achievable rate of DCF under discrete
relay-destination input X2. The upper bound is based on bounding I(X2; Y3) by either the cardinality
of X2 or the Gaussian capacity

I(X2; Y3) ≤ min

{
|X2|,

1
2

log

(
1 +
|H23|2P2

σ2
3

)}
. (35)

Therefore, the constraint in Equation (21) becomes

I(Y2; Ŷ2|X2, U1d) ≤ min

{
|X2|,

1
2

log

(
1 +
|H23|2P2

σ2
3

)}
− I(U2d; Y3). (36)

By using the bound in Equation (36), one can find an upper bound on the DCF as follows:

R ≤ min
{

I(U1d; Y2|U2d), I(U1d, U2d; Y3)
}
+ I(X1; Ŷ2, Y3|X2, U1d) (37)
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subject to

I(Y2; Ŷ2|X2, U1d) ≤ min

{
1
2

log

(
1 +
|H23|2P2

σ2
3

)
, |X2|

}
− I(U2d; Y3). (38)

The capacity of the decode-compress-forward technique can be obtained by evaluating these
expressions using numerical integrations and an exhaustive search for the optimal distribution.

In a similar manner to Section 3.2, the achievable rate for different strategies is shown in Figure 7,
showing that when the relay is close to the destination, CF suffers a rate penalty while DCF does not.

d
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DF
CF
DCF

Figure 7. The achievable rate of different transmission techniques in the AWGN relay channel under a
constrained constellation of 16-PAM at the source and 4-PAM at the relay.

Remark 2. Compress-forward works well when the source-relay channel is weak, but the relay destination
channel is strong so that an estimate of Y2 can be communicated with the destination. If the relay-destination
channel supports insufficient rate (either because of channel gain or limitation of constellation) communicating
an estimate of Y2 is not an attractive strategy for the relay. This can in part explain the effect of the constellation
constraint on the performance of compress-forward.

Clearly, the relay channel model in Figure 7 does not represent every possible scenario. We show
two more results in Table 1 that cannot be observed in Figure 7.

Table 1. The achievable rate of different strategies in the relay channel under different values of channel
coefficients.

H12 H23 H13 RNo Relay RDF RCF RDCF Upper Bound

1 100 1 1.7 1.7 1.9 2.1 2.19
1 100 2 2.19 1.7 2.3 2.45 2.47

4. Multilevel Decode-Compress-Forward

The proposed multilevel coding is shown in Figure 8, over one transmission block. The message
at the source, W(t), is divided into two parts, W(t)

d which is to be transmitted using decode-forward

and W(t)
c which is to be transmitted using compress-forward. As shown in the figures, each level at the

source and the relay is responsible for either DF or CF.
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Figure 8. Multilevel coding for full-duplex decode-compress-forward relay.

Relay transmission:
The levels at the relay are divided into two sets. The first set sends the message W(t−1)

d . The second
set sends the quantized version of Y2 after removing the effect of Wd, namely, Ŷ2.

Source transmission:
The levels at the source are divided into three sets. The first set sends the message W(t−1)

d

cooperatively with the relay to the destination node. The second set sends the message W(t)
d to be

decoded at the relay. The third set of levels sends the message W(t)
c .

The achievable rate of the multilevel coding DCF is given by

R ≤ maxB̂,B̄,Ĉ,C̄ min{I(B̂; Y2|Ĉ)}, I(B̂, Ĉ; Y3)}

+I(B̂, B̄; Ŷ2, Y3|Ĉ, C̄, B̂)
(39)

subject to

I(Y2; Ŷ2|Ĉ, C̄) ≤ I(Ĉ, C̄; Y3)− I(Ĉ; Y3), (40)

where B̂ = [B1, . . . , Bj] are the source levels that are responsible for the decode-forward
part. B̄ = [Bj+1 . . . Bm] are the source levels responsible for the compress-forward part. Similarly,
Ĉ = [C1, . . . Cl ] and C̄ = [Cl+1, . . . Cm] are the relay levels responsible for the DF part and CF
part, respectively.

The question now is how to allocate the rate in each level at the source and the relay. This is
determined through the following steps.

1. The optimal function of each level (being a DF or a CF level) at the source and the relay depends
on the constellation and the channel conditions. Using an exhaustive search to opti ize (39),
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one can find the best set of levels for decode-forward and for compress-forward at the source and
the relay.

2. The number of bits of W(t)
d and W(t)

c depends on the rate of the decode-forward and
compress-forward components given by

Rd = min{I(B̂; Y2|Ĉ)}+ I(B̂, Ĉ; Y3)} (41)

and

Rc = I(B̂, B̄; Ŷ2, Y3|Ĉ, C̄, B̂), (42)

respectively.

Thus, Wd has rate nRd and Wc has rate nRc.

Remark 3. In the proposed multilevel DCF, we assume that each level is limited to either DF or CF. Extensive
simulations show that this restriction has a negligible effect on achievable rates.

Remark 4. In addition to level-assignment, other labeling variations are also possible, e.g., natural versus Gray
labeling. Simulations in the sequel indicate that natural labeling is in general preferable to Gray labeling.

5. Simulations

For the decode-forward components, we use the DVB-S2 LDPC codes. For the compress-forward
components, we use the polar codes designed for compress-forward by Blasco-Serrano [24,25].
The optimal code rate of each level is obtained via an exhaustive search to maximize the rate. The block
length of the component codes is n = 64k. Both the relay and destination nodes used belief propagation
decoding at each level where the maximum number of iterations is set to 50.

For simplicity of notation, in the following, we use P(x) to denote PX(x). While decoding level i
of the signal X1 at the relay, the relay knows two parts of X1 already. The first is the source assistance
to the relay and the second is the output of the preceding decoders at the relay, assuming correct
decoding. Therefore, the log-likelihood ratio (LLR) of level i at the relay is

LLRr = log
P(y2|ck, bi−1, 0)
P(y2|ck, bi−1, 1)

, (43)

where

P(y2|ĉ, bi−1, bi) =
1

P(ĉ, bi−1, bi)
∑
bm

i+1

P(y2|ĉ, b̂).

The relay removes the effect of W(t−1)
d and W(t)

d from Y2 by first encoding them and removing
their effect from X1.

The decoding at the destination node is performed as follows: after the last transmission block,
the destination decodes the decode-forward signal from the relay and then decode the signal from the
source node. The LLR of level i of the relay at the destination node is

LLRRD = log
P(y3|ci−1, 0)
P(y3|ci−1, 1)

, (44)

where

P(y3|ci−1, ci) =
1

P(ci−1, ci)
∑

bm ,cm
i+1

P(y3|bm, cm). (45)
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The next step is to decode the signal from the source given the transmitted signal from the
relay with

LLRSD = log
P(y3|cm, bi−1, 0)
P(y3|cm, bi−1, 1)

, (46)

where

P(y3|cm, bi−1, bi) =
1

P(cm, bi−1, bi)
∑
bm

i+1

P(y3|bm, cm).

In each of the error plots, a capacity threshold is marked that corresponds to the relay DCF
constellation constrained capacity. The source and relay powers are identical throughout all
simulations, enabling the use of a single scale for power (dB) in the error curves.

Figure 9 shows the bit error probability and frame error probability for a 16-QAM source and
QPSK relay. The figure compares the performance of DCF under different labelings. The system model
is the same as the one considered in Figure 7 where the source, relay and destination are all on one line.
The distance between the source and relay is 0.8, the distance between the relay and destination is 0.2
and the distance between the source and destination is 1. The path-loss coefficient is α = 2.

The total transmission rate is 2.2 bits/s/Hz. The four levels of the source operate as follows:
the most significant bit transmits the same information of the most significant bit of the relay to
provide a beamforming gain to the relay-destination transmission. The following two levels at
the source transmit new information to be decodable at the relay while the last level transmits a
compress-forward component.

Figure 10 shows the bit error probability and frame error probability for a 16-QAM source and
QPSK relay. The model that is considered this time is given by the channel gains, more specifically,
H12 = 1, H23 = 100 and H13 = 1. This figure compares the proposed DCF with DF and CF. The rate is
2 bits/s/Hz. The figure shows that DCF outperforms DF and CF.
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Figure 9. Performance of multilevel superposition for 8-PAM constellation when the relay is located at
d = 2.5.
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Figure 10. Performance of multilevel DCF vs. DF, CF, and no-relay.

6. Conclusions

This work studies the decode-compress-forward protocol, highlighting scenarios where it
exceeds the rates available via decode-forward and compress-forward in the constellation constrained
full-duplex relay channel. Furthermore, this work presents a multilevel coding strategy for the
decode-compress-forward protocol. The proposed multilevel coding was shown to approach the
rates achieved by decode-compress-forward in the constellation constrained AWGN full-duplex
relay channel.
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