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Abstract: We evaluate the performances of wavelet jump detection tests by using simulated
high-frequency data, in which jumps and some other non-standard features are present.
Wavelet-based jump detection tests have a clear advantage over the alternatives, as they are
capable of stating the exact timing and number of jumps. The results indicate that, in addition
to those advantages, these detection tests also preserve desirable power and size properties even in
non-standard data environments, whereas their alternatives fail to sustain their desirable properties
beyond standard data features.
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1. Introduction

During the last two decades, statistics and finance literature have provided substantive empirical
evidence that many financial time series contain surprise elements or jumps. For example, Johannes [1]
found significant evidence for the presence of jumps in the three-month Treasury bill rate, while Dungey
et al [2] found significant evidence of the presence of jumps in U.S. Treasury bond prices. It is also well
understood that compared to continuous price changes, jumps require distinctly different modelling,
inferences and testing tools. Consequently, given the implications for the valuation of derivative
securities, the design of risk management tools and statistical portfolio allocation performance
measures, tremendous research efforts have been dedicated to jump detection tools in asset price data.
Some important examples are [3–5].

Among them, Barndorff-Nielsen and Shephard [6,7] proposed a bipower variation (BPV) measure
to separate the jump variance from the diffusive variance. This separation is important since the jump
variance is the quadratic variation of the jump component while the diffusive variance is defined as the
actual volatility [6]. Consistent with the BPV approach, Andersen et al [8] proposed a method utilizing
a jump-robust estimator of realized volatility and characteristics of the BPV to detect the existence
of jumps and estimate jump size, although this method cannot detect the exact location of jumps
or the exact number of jumps over a given time period. The work in [9] developed a rolling-based
nonparametric test of jumps based on the properties of BPV to detect jumps and to estimate jump size
and jump arrival time. The work in [10] proposed a jump test based on the notion of variance swap
that explicitly takes into account market micro-structure noise.

Although jump detection tests demonstrate great success in identifying the existence of jumps,
especially with high frequency data, they cannot provide an exact location of jumps even ex post.
To solve this issue, a wavelet-based method utilizing the different convergence rates of wavelet
coefficients at high resolution levels with or without jumps was introduced by [11,12]. Following this
approach, the method proposed by [12], in addition to jump size, provides an estimate of the number
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of jumps and an estimate of the interval of the jump location without an exact point estimate
of the jump location. The work in [13] extended the wavelet-based jump detection analysis by
providing a framework in which a formal jump detection test with distributional properties is defined.
Moreover, the use of a maximum overlap discrete wavelet transformation rather than a discrete
wavelet transformation, as in [12], enabled them to provide an exact point estimate of the jump
location. Moreover, Barunik and Vacha [14] implemented wavelet-based jump localization techniques
in multivariate asset price processes showing that wavelets are very useful in detection and localization
of the co-jumps in the multivariate data.

As such, the wavelet-based jump detection analysis constitutes the most complete tool in that it
delivers information on the number, size and location of jumps within a formal testing framework.
Even though this encompassing feature of the wavelets in jump detection renders them a most powerful
tool, to the best of our knowledge, the performances of these wavelets under different non-standard
data characteristics have not yet been investigated. We contend that there are several important
features that may coexist together with jumps in the data that have the potential to severely influence
the performance of the wavelet-based jump tests. From this perspective, one may first consider the
effect of a drift term in the data. While the drift term can be deterministic, as well as time variant,
the latter case contains the possibility of structural breaks with either abrupt or smooth occurrences.
Similar to a drift term, the dynamics of spot volatility in the data generation process, whether the
process is stochastic or deterministic, may also impact the outcome of the wavelet analysis. Other data
features such as the location, i.e., whether the jump occurs at the beginning or the end of the data, can
also be influential. Similarly, in the case of multiple jumps, features such as consecutive or distant
jumps may have consequences on test performance.

In this paper, we conduct an extensive simulation study that addresses all of the above-mentioned
data characteristics in a systematic manner to track the performance of wavelet-based tests vis-à-vis
changes in the data features. While performing this task, we also compare the performance of the
wavelet-based tests with non-wavelet-based alternatives, introduce a bootstrap version of the wavelet
jump test and include this version in the performance analysis.

Our findings indicate that the performances of the wavelet-based tests are significantly robust
to the non-standard features in the data. Although their performances are affected, to some extent,
by the presence of the non-standard features, as expected, the extent of this influence does not
raise any concern about the success of the wavelet-based test. Conversely, the performances of the
non-wavelet-based tests are seriously affected when they are confronted by non-standard data features.
Under standard data features, although the superiority of wavelets versus non-wavelet alternatives
cannot be sustained, there is at least one wavelet version that performs as well as the alternative tests.
It is further emphasized that this performance on the wavelet test is attained even though the success
criteria of wavelet-based tests are much more demanding than those on other tests. Wavelet-based
tests should not only find the presence of jumps, but should also successfully predict the number and
location of the jumps simultaneously. As previously mentioned, by design, non-wavelet tests can only
indicate whether a jump (or jumps) occurs; they cannot indicate the number of jumps or the location
of the jumps.

The remainder of the paper is organized as follows. Sections 2 and 3 provide an overview of
the wavelet- and non-wavelet-based jump tests used in the simulations. Section 4 describes the
data generation processes and the simulation settings. Section 5 illustrates the results, and Section 6
concludes the paper.

2. Wavelet-Based Jump Tests

In this section, we briefly outline the wavelet decomposition analysis and provide an overview of
wavelet-based jump tests.
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2.1. Wavelet Decomposition

Wavelets are wave-like functions that oscillate in a finite subset of real numbers and eventually
fade out. By using these functions, one can construct a filter that can effectively separate different
frequency fluctuations in a time series process. This separation can be achieved by utilizing two types
of filters, namely a high pass and a low pass. Let h = (h0, h1, ..., hL−1) denote the high pass filter
coefficients where L is the filter length. These filter coefficients satisfy the following conditions:

L−1

∑
l=0

hl = 0
L−1

∑
l=0

h2
l = 1.

These equations indicate that the filter coefficients fluctuate approximately at zero and have unit
energy. Furthermore, using the quadrature mirror relation, we obtain the complementary, i.e., low pass,
filter g = (g0, g1, ..., gL−1):

gl = (−1)l + 1hL−1−l for l = 0, 1, ..., L− 1.

There are various types of wavelet decomposition considered in the literature. Discrete wavelet
transformation (DWT), maximum overlap discrete wavelet transformation (MODWT), continuous
wavelet transformation and dual-tree wavelet transformation are among the more popular ones.
As stated above, the most elaborate wavelet jump analysis, according to [13], incorporates the MODWT
and has been able to locate the exact jump points and reduce the jump location detection problem with
respect to the jump detection problem (the property of the MODWT that makes this possible is that,
combined with a zero phase correction, the MODWT yields an equal number of wavelet coefficients as
the number of observations).

Let y be the length of the T vector of observations (this section follows [13]). The MODWT
coefficients after the J level transformation are characterized by the (J + 1)T vector w̃, which is
obtained by:

w̃ = W̃y,

where W̃ is the (J + 1)T × T transformation matrix. We express the wavelet coefficients as:

w̃ =
[
w̃1, w̃2, ..., w̃J , ṽJ

]
, (1)

where w̃j is the vector of the wavelet coefficients associated with changes on a scale of length λj = 2j−1

and ṽJ is the length of the T vector of the scaling or approximation coefficients associated with averages
on a scale of length 2J . It is noted that while w̃1 corresponds to the highest frequency coefficients, ṽJ
corresponds to the lowest frequency coefficients at the level of the J transformation.

The transformation matrix W̃ can be decomposed into the (J + 1) sub-matrices, each of which has
a dimension of T × T:

W̃ =


W̃1

W̃2
...

W̃J
ṼJ


Note that the MODWT uses the descaled filters for j = 1, ..., J.

h̃j =
hj

2j/2 and g̃J =
gJ

2J/2
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From these descaled filters, we obtain the sub-matrices:

W̃j =
[
h̃(1)

j , h̃(2)
j , · · · , h̃(T−2)

j , h̃(T−1)
j , h̃j

]
where h̃j =

[
hj,T−1, hj,T−1, · · · , hj,1, hj,0

]
are the zero padded unit scale wavelet filter coefficients in

reverse order. That is, coefficients hj,0, · · · , hj,L−1 are taken from the orthonormal wavelet family of
length L, and the remaining values L < t < T are defined as zero. The other components in W̃j are the
circularly shifted versions of hj, for instance:

h̃(1)
j =

[
hj,0, hj,T−1, hj,T−1, · · · , hj,4, hj,3, hj,2, hj,1

]
h̃(4)

j =
[
hj,3, hj,1, hj,0, hj,T−1, hj,T−1, · · · , hj,5, hj,4

]
In practice, a pyramid algorithm is used to compute the MODWT. First, we apply high pass h̃l and

low pass g̃l filters by convolving the filter with the observed series y to obtain the first level wavelet
and scaling the coefficients, respectively:

w̃1,t =
L−1

∑
l=0

h̃lyt−lmod T and ṽ1,t =
L−1

∑
l=0

g̃lyt−lmod T

After obtaining the first level coefficients, we apply the filters to the previous level
scaling coefficient:

w̃j,t =
L−1

∑
l=0

h̃lvt−lmod T and ṽj,t =
L−1

∑
l=0

g̃lbt−lmod T

Finally, we obtain the decomposition, which is as follows: w̃ =
[
w̃1 w̃2 · · · w̃J ṽJ

]′
. In this

analysis, we only use the first level wavelet coefficient w̃1. For a more general discussion of wavelets,
see [15].

2.2. Wavelet Jump Test JW

As mentioned in the Introduction of [12], utilizing the different convergency rates of wavelet
coefficients at a high resolution level with or without jumps provides an estimate of the number
of jumps and an estimate of the interval of the jump location without an exact point estimate of
the jump location. Xue et al [13] extended the analysis by developing a formal test (XGF test) with
exact distributional properties and providing an exact point estimate of the jump location. The XGF
framework lies in the decomposing of the time series into several low and high frequency additive
components to separate the underlying process into the jump and noise components. The framework
utilizes the properties of the multi-resolution decomposition of data through the MODWT. The smooth,
i.e., scaling coefficients from the multi-resolution decomposition contain the information from low
frequency features of the underlying series, namely jumps and trend. The detail, i.e., wavelet
coefficients, from the multi-resolution decomposition contains the information from high frequency
features of the underlying series, which includes the market micro-structure noise. A useful property
of the MODWT is that it has an equal number of scaling and wavelet coefficients as the number of data
points. With such features of the MODWT and a zero phase distortion wavelet function, the location of
jumps can be detected precisely from a noisy time series process. The testing procedure that relies on
the first level wavelet coefficients providing the highest frequency resolution is summarized as follows:

1. The null hypothesis is H0: There is no jump between ti and ti−1 vs. Ha: There is a jump between
ti and ti−1
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2. First, pick an appropriate wavelet (with filter length L), and apply the first level maximum overlap
discrete wavelet transform (MODWT) to the observed series Pt. Note that we lose the first L− 1
data points after applying the filter.

3. Retrieve only high pass filtered coefficients, for example, P1,ti for all i ∈ (L, ..., n)
4. Obtain the spot volatility estimator from the following variant of the bipower variation:

σ̂2
ti−1

=
1

i− L− 1

i−2

∑
k=L+1

|P1,tk ||P1,tk−1 | (2)

5. The test statistic is given as JW(i) =
P1,ti
σ̂ti−1

for all i = L + 2, L + 3, ..., n
6. JW(i) is asymptotically distributed as N(0, d) where d is determined according to the wavelet

type chosen (see, Theorem 1, Proposition 2–3 of XGF, 2014).
7. We reject the null hypothesis H0 at time ti, if |JW(i)| > cVα/2(η)| where η ∼ N(0, d) and CVα/2(η)

are the α/2-th quantile of η.

These procedures can be applied to all data points to test the presence of and locate the
jump points.

2.3. Wavelet Jump Test J∗W

In this section, we introduce the bootstrap version of the wavelet-based jump tests. We adopt
a wild bootstrap procedure to improve the small sample inference in these tests. The general idea is
to replicate the small sample distribution of the JW statistic by simulating a bootstrap sample. Since,
in the standard bootstrap techniques, the resampling should be conducted under the null hypothesis,
the wild bootstrap procedure would be the most appropriate way. Other bootstrapping techniques
may not preserve jump information at a given time period or may even spread the jump to other
no jump periods. A similar bootstrap method is applied by Dovonon et al. [16] (BNS) for the high
frequency jump test. We adopt a similar framework with some differences. The following procedure is
used for bootstrapping:

1. Choose B as the number of bootstrap replications.
2. Apply the testing procedure explained in the previous section to the observed series with Haar

filter (any other filter will work fine, but for the parameter d, we have a closed form solution for
the Haar filter). We then calculate σ̂ti from Equation (2), and we use σ̂ti to obtain σ̃2

ti
= 4σ̂2

ti
/(d2)

as a consistent estimator of the true population spot volatility process for Pti (see [13]).
3. Let e(b)ti

be random draws from N(0, 1). For each b = 1, ..., B, generate e∗(b)ti
= σ̃ti × e(b)ti

as the
bootstrapped innovations.

4. Using the Euler method, generate the bootstrap replicate of the Price process:

P∗(b)ti+1
= P∗(b)ti

+ σ̃ti

√
∆te∗(b)ti+1

We do not include the drift term in the bootstrap sample since the testing procedure is
asymptotically invariant to the drift process. Further, ∆t can be chosen according to the sampling
frequency of the data.

5. Calculate the bootstrapped test statistic J∗(b)W (i) for P∗(b)ti
by using the testing procedure described

in the previous section.
6. Repeat Steps 2–5 many times (B times) to obtain an empirical distribution for the bootstrap

samples b = 1, ..., B. Denote this bootstrap distribution as J∗W(i).
7. Reject the null hypothesis if |JW(i)| > cV∗α/2(J∗W(i))| where CV∗α/2(J∗W(i)) is the α/2-th quantile of

the empirical distribution of J∗W(i) for each i = L + 2, L + 3, ..., n.
8. The bootstrapped p-values are computed as follows: p− val = 1

B+1 ∑B
b=1 |JW(i)| > |J∗(b)W (i)|
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Steps 1–8 can be used to analyse the jump dynamics in particular price data. However,
for Monte Carlo simulations, we need a more intensive algorithm. Accordingly, the following method,
which modifies Step 6, is useful for conducting the simulation exercises.

6∗ The above algorithm is an example of a double bootstrap, since, for each data point, we need
to bootstrap the JW statistic B times. This requires the computation of the (B + 1) × T JW
statistics. However, since for each data point, the asymptotic distribution of the JW statistic is
the same (XGF), by setting B = 1, we can apply the double fast bootstrap algorithm, which was
first proposed by [17]. The following routine summarizes the double fast bootstrap for the
wavelet-based jump test:

6∗.1 Set B = 1, and for each ti, obtain J∗W(i).
6∗.2 Instead of finding the empirical distribution for each ti, we compute this distribution

over ti, that is the sequence
{

J∗W(i)
}n

i=L+2 becomes the common bootstrap sample for all
i. Since all elements of this sequence follow the same distribution and the test statistic is
asymptotically pivotal, we use this algorithm.

6∗.3 From the empirical distribution obtained in the previous step, we calculate the critical
values and follow Step 6 by replacing the critical value with the double fast bootstrapped
JW statistic.

6∗.4 The p-values becomes pval = 1
n−L−1 ∑n

k=L+2 |JW(i)| > |J∗W(k)|

We note the similarities of our approach with the methodology of [16] in which the authors do
not use the spot volatility estimator directly in their bootstrapping routine. Nevertheless, since this
estimator is consistent up to some constant, we use it in our bootstrapping scheme. The simulation
exercises also show that the bootstrapping procedure above is working as intended.

3. Non-Wavelet Jump Tests

In this section, we briefly describe the other jump tests used in our analysis. The first test that
we consider was proposed by Barndor-Nielsen and Shephard [7] (BNS test). This test focuses on the
difference or ratio of the realized bipower variation and the realized quadratic variation of the price
data. The key point of the BNS test lies in the different behaviours of the realized quadratic variation
and the bipower variation in the presence and absence of jumps. When there is a jump in a given
interval, the quadratic variation absorbs this information, but the bipower variation behaves as if
there is no jump. Moreover, when there is no jump, the bipower variation and the quadratic variation
behave similarly. Consequently, the gap between the two variation measures becomes apparent in the
presence of jumps, whereas it becomes obscure when there is a lack of jump dynamics. Accordingly,
the BNS test utilizes the following jump test statistic, which can be used to test the presence of jumps
in a given interval with the partition t0 = 0 < t1 < · · · < tn = t:

BNS =
∆t−1/2

(
µ1−2 ∑

bt/∆tc
j=2 |yj−1||yj| −∑

bt/∆tc
j=2 y2

j

)
√

µ1−4 ∑
bt/∆tc
j=4 |yj−3||yj−2||yj−1||yj|

where yj = Ptj − Ptj−1 is the return process and µ1 = E|u| denotes a standard normal variable u.
Furthermore, the BNS test demonstrates that under the null hypothesis of no jump on the given
interval, this test statistic converges to a standard normal distribution. Notice that the different term in
the numerator of the BNS test diverges when there is a jump in the price data.

The second test included in this study is the nonparametric jump test by Jiang and Oomen [10]
(JO test). The JO test considers the swap variance measure rather than the bipower variation.
This measure is illustrated as follows:

SwV(t) = 2
bt/∆tc

∑
j=2

(
Yj − yj

)



Entropy 2017, 19, 638 7 of 22

where Yj = (Ptj − Ptj−1)/Ptj−1 and yj is defined above. Using the difference between the swap variance
measure and the realized quadratic volatility of the price data, the authors construct their test statistic
as follows:

JO =
bt/∆tc√

ΩSwV

(
SwV(t)−

bt/∆tc

∑
j=2

y2
j

)

The consistent estimates for ΩSwV are given in JO test (for a detailed discussion of the construction
of the test statistic and the choice of the estimate for ΩSwV , (see [10]). Moreover, the JO test considers
the same null hypothesis as the BNS test. Under the null of no jumps, the JO test finds that the test
statistic has a standard normal distribution.

According to the above discussion, these two jump tests share many common features (we omit
the test of [9] because it is identical to the wavelet test with the Haar filter). They use the same null
hypothesis and can detect the presence of jumps in a given interval. However, they cannot conclude
the number of jumps in this interval. The wavelet-based test, however, can also detect the number and
location of the jumps, as well as the presence of the jump dynamics. In this regard, the wavelet jump
tests provide a much broader cache for practitioners.

4. Data Generation Processes and Simulation Settings

We apply jump tests to one-dimensional simulated asset price data. Following [13], the true
log-price Pt is generally assumed to be a semi-martingale of the form:

Pt =
∫ t

0
µsds +

∫ t

0
σsdWs +

Nt

∑
l=1

Ll . (3)

where the three terms in Equation (3) correspond to the drift, diffusion and jump parts of Pt, respectively.
In the diffusion term, Wt is a standard Brownian motion, and the diffusion variance σ2

t is the spot
volatility. Regarding the finite activity jump part, Nt represents the number of jumps in Pt up to time t,
and Ll denotes the jump size. Further, we demonstrate the price process as a diffusion:

dPt = µtdt + σtdWt + LtdNt. (4)

As previously mentioned, one purpose of this study is to investigate the sensitivity of the
performance of the jump tests to the various data characteristics. These characteristics are considered
with respect to the three components in Equation (3).

4.1. Drift Component, µt

Regarding the drift term, µt, we consider no-drift (µt = 0), constant drift (µt = µ0) and
time-varying drift cases. The purpose of introducing the time-varying case is to allow smooth structural
breaks in the data characteristics. Smooth structural breaks are usually regarded as discontinuous
change in the mean process. Following [18], these break processes are approximated by the following
Fourier function, which allows both smooth and abrupt breaks with random sizes and locations,
where randomness is introduced through the Monte Carlo simulations when creating the simulated
high frequency data with jump and smooth structural break features:

µt =
z

∑
j=0

(−1)j
1τi<t<τi+1 × αi+1 ×

n

∑
i=1

{
(2i− 1)−1sin

[
π(2i− 1)

(
t−∑z

i=0 1τi<t<τi+1 τi
)

∑z
i=0 1τi<t<τi+1(τi+1 − τi)

]}
(5)

where n is the number of frequencies included in the approximation (1A is the indicator function
taking a value of one when statement A is true, and zero otherwise). Because a Fourier expansion is
capable of approximating absolutely integrable functions to any desired degree of accuracy, smooth
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or abrupt breaks can be approximated by Fourier sinusoidals with an appropriate frequency mix.
If a single frequency is used (n = 1), then the transitions tend to be smooth, whereas higher n values
facilitate the analysis of abrupt breaks.

As they are both assumed to be discontinuous shifts in the data, jumps and structural breaks
are assumed to be the same type of events corresponding to different frequency levels of the data.
Jumps are assumed only to be relevant in high frequency data (in minutes), whereas structural breaks
are relevant only in the higher frequencies (in weeks). However, smooth structural breaks can be
allowed in high frequency frameworks, as well. Therefore, we only allow smooth breaks (n = 1) along
with (abrupt) jumps.

z determines the number of these smooth breaks. We randomly select break times (or locations
of breaks) such that τi ∼ uni f orm(c, T − c) (c determines the length of time between two consecutive
breaks) for all smooth break points with τi < τi+1. αi ∼ N(h, σ2

h ) is the random amplitude of the
Fourier function; hence, it captures the sizes of the (random) breaks.

4.2. Spot Volatility Component, σt

Regarding the spot volatility, σt, we consider a constant (σt = σ0) and a stochastic volatility case
in which the logarithm of the variance evolves as:

dlog(σ2
t ) = θ1 × (θ2 − log(σ2

t )dt) + θ3dW1t (6)

4.3. Jump Component,
Nt
∑

l=1
Ll

In this study, the jump component is both introduced in a deterministic and random manner.
The deterministic jump process is the trivial case where the number of jumps, the jump magnitude and
the jump location are fixed, non-stochastic numbers. Conversely, in the random jump process, all of

these become random. In this setting, the jump component
Nt
∑

l=1
Ll is assumed to follow a compound

Poisson process with double exponential jump magnitudes. The number of jumps, Nt ∼ Poisson(λ)
and Lt follows a truncated double exponential process characterized by the rate parameters δ+ and δ−
and the truncation parameter ψ. To generate the truncated double exponential process, we use the
following routine:

1. Generate Nt by drawing from Poisson(λ).
2. To determine the jump locations, we draw Nt integers without replacement from the discrete

uniform distribution uni f orm(1, T) (unlike smooth breaks, we allow the jumps to appear at the
beginning or the end of the sample). We denote these jump locations as t̃1, ..., t̃Nt , and the set of
jump locations as S = {t̃1, ..., t̃Nt}.

3. We generate a random variable, st ∼ Bernoulli(p) with 0 < p < 1 for all t ∈ S.
4. We generate two random variables, e+,t ∼ Exponential(δ+) and e−,t ∼ Exponential(δ−) for

all t ∈ S.
5. We generate the truncated double exponential process as Lt = st × (ψ + e+,t) + (st − 1)× (ψ + e−,t)

for all t ∈ S.

In our simulations, we first consider the influence of the jump location on the performance of
the test statistics in a single jump framework. We generate price data that contain a single jump
with varying (fixed) locations. Second, we consider multiple jumps by adopting a setup with two
consecutive jumps. We introduce varying (fixed) distances between these two jumps and evaluate the
performance of the tests. Finally, we investigate whether jumps with random numbers, magnitudes
and locations alter the results.
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4.4. Monte Carlo Simulation

With respect to the Monte Carlo simulations, for a given specification of the drift (µt) and
spot volatility (σt) terms, we first generate the continuous time price data without the jumps
(P̃t =

∫ t
0 µsds +

∫ t
0 σsdWs), and we then add jumps with different specifications.

We set the sample size as T = 1024 and the length of the training period as T0 = 200,
and accept ∆t = 1/T. With the length of T + T0, we generate multivariate normal random

variables

[
ε1t
ε2t

]
∼ N

[(
0
0

)
, Σ

]
where Σ is a positive definite variance covariance matrix such that

var(ε1t) = var(ε2t) = 1 and corr(ε1t, ε2t) = −0.62 as in XGF.
We generate two Brownian motions W1t and W2t from [ε1t ε2t]

′. W1t is employed to simulate
the time varying spot volatility, σt, as in Equation (6) using the Euler method. Similarly, for a given
specification, µt and σt, W2t is used to simulate the following continuous time price data without jumps:

dP̃t = µtdt + σtdW2t (7)

Having obtained a jump-free continuous time process as above, we burn the first T0 observation

and add the jump process
Nt
∑

l=1
Ll to P̃t to obtain a simulated path of the price data Pt:

Pt = P̃t +
Nt

∑
l=1

Ll

All simulations are run in the software program R, and they are available upon request from
the authors.

Parametric Configurations

The parametric values are set as follows, The constant drift is set equal to either µ0 = 0 or µ0 = 1.
For the time-varying drift, we introduced smooth (n = 1) single breaks (z = 1) with random sizes
where h = 1, σ2

h = 0.1. Additionally, the truncation parameter for the distribution of the smooth
break locations, c, is set at five. As in XGF, the constant spot volatility is set equal to σ0 = exp(−7).
In the time-varying spot volatility case, it is assumed to follow exponential Brownian motion without
a drift term where θ1 = θ2 = 0 and θ3 = 1. Furthermore, when the jumps are generated at random
locations and different magnitudes, we use the associated parameter values as λ = 1, 3, 5, p = 0.5,
δ+ = δ− = 1/3, ψ = {3, 0.5, 0}.

5. Results

To evaluate the performance of wavelet-based jump tests and their alternatives, the BNS test and
the JO test under different data configurations, we run a series of Monte Carlo simulations to compute
their size and power statistics. The number of Monte Carlo simulations is set equal to 1000, and the
number of data points is fixed at 1024 for each simulation (increasing the number of Monte Carlos
further does not significantly alter the results).

Size, as usual, is defined as the frequency of the spurious detection of jumps when there is,
in fact, no jump in the data generation process. The BNS and JO tests, unlike the wavelet-based
tests, cannot detect the jump location, but they can determine whether there are any jumps in a given
interval. Hence, in terms of comparing sizes, a direct comparison between wavelet-based tests and
their alternatives, the BNS and JO tests, is possible.

However, power comparisons are not as straightforward as are those of sizes. When the null of
no jump is rejected in the BNS and JO tests, we do not know whether it is rejected in favour of a single
or multiple jumps, unlike the wavelet-based tests for which we know the exact number and locations
of the jumps in the case of rejection. Therefore, a fair power comparison between wavelet-based tests



Entropy 2017, 19, 638 10 of 22

and their alternatives appears possible. Accordingly, we define power as the frequency of detecting
the presence of a jump(s) in a pre-specified interval for the BNS and JO tests, while it is defined as the
frequency of detecting correct jump locations in wavelet-based tests.

In our analysis, we also search for the most powerful wavelet filter to be used in wavelet-based
jump tests. For this purpose, 29 different wavelet filters are included in the search from four
different wavelet classes. The included classes are extremal phase (daublet), least symmetric (symlet),
best localized and coiflets filters. They are denoted as dL, sL, lL and cL, respectively, with the subscript
L denoting the filter length, as before. The filter length can be as great as 30, and it changes from one
class to another. All 29 wavelets filters are included in the analysis, as follows: d2,4,...,18,20 (daublet with
ten different lengths); s4,6,...,18,20 (symlet with nine different lengths); l4,6,14,18,20 (best localized with five
different lengths); c6,12,18,24,30 (coiflet with five different lengths).

From these filters, extremal phase filters, also known as Daubechies wavelets, are compactly
supported filters of finite length and can be characterized by a maximal number of vanishing
moments [15]. A special filter under this class is d2, namely the Haar wavelet, which is frequently
used in the time series literature. The second class is the symlets or least asymmetric filters, which are
modified versions of the Daubechies. These filters are obtained by increasing the symmetry feature of
the Daubechies wavelets. Moreover, the other two classes are also generalized from the Daubechies
filters. To save space, we only report on the six most successful wavelets in terms of size and power.
These are listed in Table 1 (the complete simulation results can be provided upon request).

Table 1. The most successful wavelet types.

Wavelet Type Length

Extremal Phase (Daublet) d2 and d4
Least Asymmetric (Symlet) s4 and s8

Best Localized l4
Coiflet c6

The list in Table 1 reflects the fact that filter lengths greater than six or eight are not as useful
when used in wavelet jump tests, which can result from the over smoothing property of the higher
length wavelets.

We report the empirical power calculations computed under different jump characteristics.
The rejection frequencies calculated at the one percent level of significance are presented under
single, consecutive and random number of jumps. For each of these jump characteristics, we also
consider both the constant and stochastic volatility cases. However, since the difference between
constant and stochastic spot volatility are qualitatively not important, we provide the latter results
in Appendix A. Tables 2–5 summarize the size-corrected empirical power values as related to the
various cases.
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Table 2. Size and power results: single jump.

d2 d4 s4 s8 l4 c6 BNS JO

Model Location Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.994 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000

30
0.5σt

1.000 1.000 0.790 0.805 0.798 0.816 0.082 0.093 0.805 0.825 0.291 0.306 0.998 1.000
475 1.000 1.000 0.791 0.763 0.773 0.753 0.043 0.04 0.786 0.758 0.255 0.252 0.998 1.000
875 1.000 1.000 0.786 0.772 0.785 0.772 0.046 0.044 0.777 0.757 0.245 0.242 0.999 1.000

30
no jump

0.020 0.019 0.011 0.011 0.020 0.020 0.025 0.025 0.012 0.011 0.018 0.019 0.008 0.014
475 0.01 0.009 0.008 0.010 0.010 0.012 0.014 0.018 0.012 0.011 0.010 0.009 0.005 0.015
875 0.007 0.007 0.008 0.008 0.008 0.008 0.018 0.02 0.011 0.008 0.019 0.018 0.005 0.018

µt = 1

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.995 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.996 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.995 1.000 1.000 1.000 1.000 1.000 1.000

30
0.5σt

1.000 1.000 0.778 0.783 0.759 0.769 0.073 0.075 0.771 0.768 0.281 0.290 0.103 1.000
475 1.000 1.000 0.764 0.751 0.784 0.778 0.043 0.042 0.775 0.754 0.254 0.240 0.080 1.000
875 1.000 1.000 0.796 0.772 0.788 0.779 0.048 0.050 0.789 0.770 0.245 0.236 0.076 1.000

30
no jump

0.006 0.005 0.023 0.020 0.013 0.013 0.021 0.023 0.018 0.017 0.012 0.010 0.725 1.000
475 0.005 0.003 0.011 0.011 0.014 0.011 0.014 0.013 0.010 0.012 0.010 0.015 0.729 1.000
875 0.003 0.002 0.014 0.013 0.010 0.011 0.012 0.008 0.006 0.005 0.010 0.009 0.698 1.000

µt = f (t)

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.987 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 1.000 1.000 1.000 1.000 1.000 1.000

30
0.5σt

1.000 1.000 0.755 0.770 0.796 0.779 0.061 0.070 0.797 0.794 0.268 0.279 0.608 1.000
475 1.000 1.000 0.794 0.763 0.805 0.766 0.043 0.037 0.793 0.750 0.250 0.226 0.628 1.000
875 1.000 1.000 0.793 0.771 0.793 0.768 0.044 0.038 0.787 0.777 0.280 0.257 0.222 1.000

30
no jump

0.015 0.008 0.015 0.014 0.014 0.011 0.022 0.018 0.015 0.012 0.023 0.020 0.248 0.996
475 0.001 0.002 0.011 0.009 0.012 0.008 0.008 0.008 0.008 0.007 0.013 0.012 0.273 0.996
875 0.008 0.007 0.015 0.013 0.014 0.012 0.009 0.011 0.006 0.005 0.011 0.009 0.261 0.998

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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Table 3. Power results: two consecutive jumps, first jump.

d2 d4 s4 s8 l4 c6 BNS JO

Model Distance Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.991 1.000 1.000 1.000 1.000 0.863 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.985 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.789 0.745 0.776 0.755 0.051 0.048 0.795 0.772 0.310 0.288 0.998 1.000
10 1.000 1.000 0.761 0.732 0.793 0.758 0.051 0.052 0.797 0.786 0.247 0.236 1.000 1.000
20 1.000 1.000 0.793 0.777 0.790 0.778 0.052 0.052 0.784 0.764 0.269 0.235 1.000 1.000

µt = 1

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.992 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.988 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.772 0.760 0.779 0.742 0.037 0.031 0.796 0.777 0.261 0.230 0.759 1.000
10 1.000 1.000 0.765 0.748 0.770 0.745 0.052 0.044 0.796 0.759 0.260 0.238 0.949 1.000
20 1.000 1.000 0.783 0.772 0.813 0.778 0.057 0.048 0.801 0.762 0.238 0.222 0.962 1.000

µt = f (t)

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.986 1.000 1.000 1.000 1.000 0.963 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.99 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.993 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.784 0.755 0.801 0.760 0.045 0.035 0.797 0.750 0.286 0.253 0.977 1.000
10 1.000 1.000 0.784 0.760 0.818 0.771 0.056 0.044 0.793 0.752 0.274 0.243 1.000 1.000
20 1.000 1.000 0.783 0.746 0.804 0.752 0.052 0.042 0.800 0.763 0.278 0.242 1.000 1.000

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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Table 4. Power results: two consecutive jumps, second jump.

d2 d4 s4 s8 l4 c6 BNS JO

Model Distance Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.793 0.67 1.000 1.000 1.000 1.000 0.863 1.000
10 1.000 1.000 1.000 1.000 1.000 0.996 0.000 0.000 1.000 0.999 0.007 0.005 1.000 1.000
20 1.000 1.000 1.000 0.998 1.000 1.000 0.000 0.000 1.000 0.999 0.011 0.001 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.023 0.023 1.000 1.000 1.000 1.000 0.998 1.000
10 1.000 1.000 0.479 0.432 0.458 0.427 0.009 0.005 0.467 0.443 0.061 0.054 1.000 1.000
20 1.000 1.000 0.491 0.440 0.488 0.441 0.005 0.003 0.463 0.421 0.073 0.054 1.000 1.000

µt = 1

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.807 0.708 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 0.999 1.000 1.000 0.000 0.000 1.000 1.000 0.004 0.004 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.012 0.006 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.031 0.027 1.000 1.000 1.000 1.000 0.759 1.000
10 1.000 1.000 0.476 0.464 0.486 0.433 0.008 0.007 0.480 0.437 0.074 0.071 0.949 1.000
20 1.000 1.000 0.478 0.469 0.488 0.439 0.006 0.005 0.499 0.463 0.061 0.061 0.962 1.000

µt = f (t)

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.808 0.676 1.000 1.000 1.000 1.000 0.963 1.000
10 1.000 1.000 1.000 0.999 1.000 1.000 0.000 0.000 1.000 0.998 0.005 0.002 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.999 0.010 0.001 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.023 0.017 1.000 1.000 1.000 1.000 0.977 1.000
10 1.000 1.000 0.467 0.413 0.498 0.424 0.003 0.003 0.473 0.415 0.067 0.051 1.000 1.000
20 1.000 1.000 0.499 0.433 0.522 0.449 0.003 0.003 0.491 0.437 0.056 0.037 1.000 1.000

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.



Entropy 2017, 19, 638 14 of 22

Table 5. Power results: randomized jumps.

d2 d4 s4 s8 l4 c6 BNS JO

Model λ ψ JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

1
3

1.000 1.000 1.000 0.969 1.000 1.000 0.332 0.331 1.000 0.998 0.312 0.296 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.517 1.000 1.000 0.962 0.842 1.000 0.998
5 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.517 1.000 1.000 0.962 0.842 1.000 1.000

1
0.5

1.000 1.000 0.537 0.511 0.581 0.522 0.126 0.057 0.814 0.794 0.325 0.286 1.000 1.000
3 1.000 1.000 0.795 0.782 0.570 0.562 0.110 0.102 0.520 0.516 0.550 0.546 1.000 1.000
5 1.000 1.000 0.795 0.782 0.570 0.562 0.110 0.102 0.520 0.516 0.550 0.546 1.000 0.982

µt = 1

1
3

1.000 1.000 0.680 0.504 0.668 0.606 1.000 1.000 0.923 0.595 0.698 0.678 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.994 1.000 1.000 0.205 0.203 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.994 1.000 1.000 0.205 0.203 1.000 1.000

1
0.5

1.000 1.000 0.988 0.986 0.590 0.569 0.303 0.290 0.719 0.630 0.571 0.539 0.752 1.000
3 1.000 1.000 0.846 0.840 0.993 0.992 0.072 0.067 0.524 0.516 0.455 0.432 0.475 1.000
5 1.000 1.000 0.846 0.840 0.993 0.992 0.072 0.067 0.524 0.516 0.455 0.432 1.000 1.000

µt = f (t)

1
3

1.000 1.000 0.528 0.555 0.845 0.793 0.250 0.250 0.634 0.662 0.384 0.295 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.509 0.500 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 0.509 0.500 1.000 1.000 1.000 1.000 1.000 1.000

1
0.5

1.000 1.000 0.618 0.529 0.860 0.817 0.055 0.044 0.710 0.657 0.276 0.240 1.000 1.000
3 1.000 1.000 0.764 0.704 0.500 0.500 0.113 0.084 1.000 1.000 0.781 0.711 1.000 1.000
5 1.000 1.000 0.764 0.704 0.500 0.500 0.113 0.084 1.000 1.000 0.781 0.711 1.000 1.000

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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5.1. Single Jump

The size and power analysis is first conducted for the single jump case for which a relatively
fairer comparison is possible between wavelet-based and BNS and JO jump tests (XGF also conducted
a similar power analysis for the single jump case. Our analysis extends theirs and contains much
richer data generated configurations.). Table 2 provides the results for the constant spot volatility case
(σt = σ0).

As evidenced from the first vertical block of Table 2, where the data exhibit no drift (µt = 0),
the BNS and JO tests perform equally well with the best of the wavelet-based tests (d2) when power is
concerned (the performances of a standard and a bootstrapped version of d2 are identical). However,
as illustrated in the remaining two vertical blocks of the table, when the data exhibit a non-constant
drift (µt = µ0) or a structural break (µt = f (t)), the performance of non-wavelet tests deteriorates
significantly with noticeable size distortions (We follow the size of the test from the no jump rows.
The tests are performed at one percent significance levels.). The JO test almost always accepts the
presence of a break irrespective of whether there is, in fact, a break in the data, whereas the BNS test
has lower size distortions, but they are still highly above the acceptable levels. In contrast, no wavelet
tests exhibit any size distortions for non-zero drift cases similar to the zero drift case. In terms of
power, the BNS and JO tests perform as well as wavelet-based tests in the case of large break sizes
(3σt). In the case of moderate jump sizes (0.5σt), all wavelet-based tests, except s8, are superior to the
BNS test, but equal to the JO test in terms of power. However, this equally strong power performance
of the JO test is questionable because, when a non-zero drift is present in the data, the test is oversized
at the maximum level. This means that the test cannot differentiate between the non-zero drift and
a jump, and thus, it considers both as jumps. In these power comparisons between wavelet-based and
non-wavelet tests, the wavelet-based tests, unlike the BNS and JO tests, should also indicate the exact
location of the jump to be considered as powerful as the others.

Another noticeable pattern that emerges from Table 2 is that when the filter length used in the
wavelet-based tests increases, the power decreases. As previously indicated, this is a general result
and constitutes the reason why wavelet tests with higher filters are excluded from the tables.

Jump locations are introduced in a non-random manner at 30, 475 and 875 points (approximately
3, 45 and 85 percent, respectively, of the data). The results presented in Table 2 indicate that location is
not significantly important with respect to the power and size properties of the tests. It only appears
that jumps occurring near the beginning of the sample (at location 30, i.e., in the first three percent
of the data) cause some of the tests to be oversized. This result is expected since the spot volatility
estimate is consistent, but may provide weak results under small sample sizes. When the jump is
spread across the middle or the end of the sample, these size distortions disappear. Regarding power,
in some of the tests, we only observe a slight deterioration when the jump location moves towards the
end of the sample. Furthermore, the usage of a bootstrap or non-bootstrap version of the wavelet test
does appear to significantly affect the results.

5.2. Multiple Jumps

In this section, we evaluate the performance of the test statistics under two consecutive jumps,
and we accept the same jump magnitude for both. To control the impact of jump location and focus on
the effect of multiple jumps, we again do not adopt randomization of jump locations. Accordingly,
we fix the location of the first jump at the 300th period. The second jump will follow the first jump with
varying (non-random) distances. To save space, we only tabulate three different distance magnitudes
between the first and consecutive second jump, at 2, 10 and 20 data points, which is sufficient to
capture the main dynamics.

Table 3 summarizes the power results related to the first jump. Since the size results remain the
same as the single jump case, they are not included in this or following tables. Regarding wavelet-based
tests, the results depicted in the table are almost identical with those of the single jump case of Table 2.
This equivalence implies that the power and size properties of the first jump are independent of
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the presence of the second jump. This result is expected because the wavelet-based tests use the
information only up to the jump point (following the same logic, even if we introduced more jumps,
we would have observed similar results). In contrast, compared to the single jump results of Table 2,
the JO and BNS tests exhibit significantly more power when non-drift is present. This is also expected
because the presence of more than one jump apparently strengthens the capability of detecting them in
the JO and BNS tests as their conclusions are irrespective of the number of jumps. However, even in
this case, some wavelet-based tests are equally successful or even slightly better. It is also noted that
non-wavelet tests suffer from serious size distortions when non-zero drift manifests itself in the data.
Hence, the main conclusion from the previous section remains valid. It is also still valid to suggest
that wavelet-based test performances are relatively successful in terms of detecting the first jump even
when non-standard features of data are present compared to their alternatives.

We now focus on the power results of second jumps that constitute a more interesting case of
wavelet-based tests. Apparently, the results for the non-wavelet tests remain identical with the first
jump case as their conclusions are irrespective of the number of jumps. However, the results of
wavelet-based tests may differ as their success may differentiate among jumps. The power results are
tabulated in Table 4. Compared to previous tables, in the single and first jump cases of some wavelet
tests, we observed some significant power losses with moderate jump magnitudes (0.5σt) associated
with jump distances of ten or more. This new result causes those wavelets to become less powerful
compared to non-wavelet tests in the non-zero drift data, unlike before. Nonetheless, as the best of the
wavelets still perform better than non-wavelets in these cases, as well, the main conclusion previously
obtained is not altered.

5.3. Random Jumps

Thus far, we know that the jump characteristics such as number, location and magnitudes are
modelled as non-random and remained fixed across simulations. In this section, we consider the
implications of randomized jump behaviours and introduce random jump locations (or time) and
magnitudes. In randomized jump settings, as outlined in Section 4.3, the number of jumps is assumed
to be distributed as Poisson with rates λ, and random jump magnitudes are distributed as a truncated
version of the double exponential process with a truncation level of ψ. The Poisson rate λ determines
the average number of jumps, and the truncation point ψ indicates the minimum value that jump
magnitudes may assume (after drawing the random jump magnitudes using the truncation parameter,
actual jump sizes are obtained by multiplying this random quantity by the spot volatility at the
jump location). As usual, the tabulated λ and ψ values are illustrative with space considerations
(as explained in Section 4.3, once the number of jumps is determined, their locations are randomly
determined through a uniform distribution). We only include two values to represent large (ψ = 3) and
small (ψ = 0.5) jump magnitudes and three values to represent single (λ = 1) and multiple (λ = 3, 5)
jumps (As above, the results for test sizes remain the same. Note also that values such as ψ = 0 and
λ = 0, in this random setting, could not ensure the absence of jumps for all realizations if they had
been included).

The power results are illustrated in Table 5. The power for the wavelet tests is defined as the
detection of all jumps simultaneously. Failing in detecting even one of the jumps results in failure.
For non-wavelets, as before, we only check whether a jump is detected, regardless of the number of
jumps. The results are similar to those of the second jump case above (Table 4). We observe some
significant power losses in most of the wavelet-based tests and note that the jump magnitudes are
small (ψ = 0.5). Nonetheless, we do not observe the same power deterioration in d2, and the best of
the wavelet tests still demonstrates full power in all conditions.

6. Conclusions

In this paper, we analysed the performance of wavelet and non-wavelet jump tests under various
data characteristics. Wavelet jump tests have clear advantages in terms of detecting the exact number
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and points of jumps unlike the alternatives. In addition to these clear advantages, wavelet-based tests
are robust with respect to several non-standard data features. Our results indicate that this robustness
cannot be easily attained by the non-wavelet alternatives.

In this paper, we focus on smooth breaks in drift term and nonstationary stochastic volatility
in the diffusive variance of the price process. However, there are other important features that may
distort the jump detection procedures. One of these feature is the presence of microstructure noise
in price data. If data include a highly volatile microstructure noise, the jump detection methods may
require further refinements. We leave this discussion for a future comprehensive study.

It is also important to note that not all wavelet filters with different lengths exhibit the same
success in jump detection. Particularly, when the filter length increases, the power of the wavelet-based
test starts to be negatively affected. The reason behind this result may be the over-smoothing property
of the lengthier filters. As a result, we recommend practitioners use the wavelet filters d2, d4 or s4 in
their analysis.

Author Contributions: These authors contributed equally to this work.
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Appendix A

Table A1. Size and power results: single jump (stochastic spot volatility).

d2 d4 s4 s8 l4 c6 BNS JO

Model Location Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.995 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.985 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.975 1.000 1.000 1.000 1.000 1.000 1.000

30
0.5σt

1.000 1.000 0.783 0.775 0.755 0.754 0.062 0.068 0.794 0.793 0.284 0.271 0.925 0.979
475 1.000 1.000 0.729 0.713 0.748 0.723 0.048 0.034 0.704 0.683 0.258 0.238 0.972 1.000
875 1.000 1.000 0.719 0.694 0.711 0.701 0.060 0.055 0.707 0.690 0.254 0.219 0.956 0.997

30
no jump

0.014 0.010 0.023 0.020 0.019 0.016 0.016 0.018 0.017 0.012 0.019 0.018 0.021 0.014
475 0.010 0.006 0.013 0.009 0.015 0.013 0.016 0.007 0.022 0.013 0.013 0.012 0.012 0.020
875 0.015 0.010 0.017 0.014 0.023 0.016 0.012 0.010 0.016 0.011 0.025 0.018 0.011 0.011

µt = 1

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.994 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.979 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.954 1.000 1.000 1.000 1.000 0.995 1.000

30
0.5σt

1.000 1.000 0.754 0.748 0.761 0.762 0.070 0.072 0.796 0.787 0.292 0.300 0.397 1.000
475 1.000 1.000 0.727 0.701 0.750 0.723 0.055 0.049 0.726 0.713 0.247 0.239 0.568 1.000
875 1.000 1.000 0.694 0.678 0.724 0.710 0.071 0.066 0.709 0.680 0.266 0.255 0.634 1.000

30
no jump

0.005 0.005 0.022 0.018 0.015 0.011 0.014 0.013 0.023 0.023 0.016 0.014 0.581 1.000
475 0.010 0.006 0.020 0.015 0.010 0.007 0.020 0.015 0.011 0.008 0.013 0.006 0.550 0.999
875 0.008 0.006 0.014 0.013 0.016 0.017 0.013 0.012 0.026 0.020 0.017 0.019 0.550 1.000

µt = f (t)

30
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.989 1.000 1.000 1.000 1.000 1.000 1.000
475 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.984 1.000 1.000 1.000 1.000 1.000 1.000
875 1.000 1.000 1.000 1.000 1.000 1.000 0.978 0.970 1.000 1.000 1.000 1.000 1.000 1.000

30
0.5σt

1.000 1.000 0.763 0.768 0.732 0.757 0.082 0.089 0.785 0.781 0.293 0.291 0.427 0.963
475 1.000 0.999 0.735 0.729 0.715 0.717 0.064 0.061 0.714 0.695 0.274 0.248 0.584 0.997
875 0.998 0.997 0.693 0.686 0.681 0.670 0.066 0.057 0.675 0.672 0.265 0.237 0.564 1.000

30
no jump

0.011 0.005 0.015 0.015 0.024 0.025 0.021 0.021 0.016 0.014 0.022 0.016 0.479 0.635
475 0.004 0.002 0.017 0.016 0.013 0.013 0.021 0.017 0.017 0.016 0.012 0.010 0.477 0.639
875 0.011 0.007 0.018 0.015 0.018 0.019 0.024 0.019 0.028 0.024 0.029 0.026 0.468 0.608

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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Table A2. Power results: two consecutive jumps, first jump (stochastic spot volatility).

d2 d4 s4 s8 l4 c6 BNS JO

Model Distance Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.983 1.000 1.000 1.000 1.000 0.855 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.983 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.981 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.783 0.748 0.747 0.724 0.038 0.032 0.754 0.728 0.255 0.221 0.994 1.000
10 1.000 1.000 0.747 0.710 0.746 0.725 0.041 0.033 0.756 0.733 0.256 0.233 0.998 1.000
20 1.000 1.000 0.757 0.723 0.746 0.720 0.049 0.044 0.738 0.721 0.256 0.237 0.998 0.997

µt = 1

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.978 1.000 1.000 1.000 1.000 0.985 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.992 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.992 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.755 0.743 0.725 0.720 0.060 0.050 0.731 0.707 0.276 0.247 0.685 1.000
10 1.000 1.000 0.764 0.746 0.771 0.736 0.059 0.048 0.758 0.729 0.285 0.247 0.747 1.000
20 1.000 1.000 0.748 0.724 0.752 0.722 0.047 0.036 0.778 0.738 0.248 0.216 0.739 0.999

µt = f (t)

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.974 1.000 1.000 1.000 1.000 0.966 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.963 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.975 1.000 1.000 1.000 1.000 1.000 1.000

2
0.5σt

1.000 1.000 0.744 0.690 0.764 0.712 0.048 0.030 0.773 0.704 0.274 0.207 0.747 1.000
10 1.000 1.000 0.763 0.691 0.756 0.696 0.064 0.039 0.752 0.703 0.251 0.186 0.851 1.000
20 1.000 1.000 0.745 0.688 0.741 0.683 0.049 0.029 0.748 0.692 0.272 0.208 0.850 1.000

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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Table A3. Power results: two consecutive jumps, second jump (stochastic spot volatility).

d2 d4 s4 s8 l4 c6 BNS JO

Model Distance Jump Size JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.724 0.648 1.000 1.000 1.000 1.000 0.855 1.000
10 1.000 1.000 1.000 0.989 1.000 0.995 0.000 0.000 1.000 0.987 0.009 0.012 1.000 1.000
20 1.000 1.000 1.000 0.987 1.000 0.994 0.000 0.000 1.000 0.988 0.028 0.012 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.024 0.021 1.000 1.000 1.000 1.000 0.994 1.000
10 1.000 1.000 0.459 0.412 0.460 0.404 0.005 0.004 0.474 0.423 0.062 0.057 0.998 1.000
20 1.000 1.000 0.493 0.437 0.471 0.419 0.014 0.012 0.481 0.426 0.090 0.062 0.998 0.997

µt = 1

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.755 0.654 1.000 1.000 1.000 1.000 0.985 1.000
10 1.000 1.000 1.000 0.998 1.000 1.000 0.000 0.000 1.000 0.998 0.017 0.007 1.000 1.000
20 1.000 1.000 1.000 0.998 1.000 0.998 0.000 0.000 1.000 0.997 0.048 0.018 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.032 0.028 1.000 1.000 1.000 1.000 0.685 1.000
10 1.000 1.000 0.457 0.425 0.451 0.408 0.004 0.004 0.499 0.432 0.071 0.055 0.747 1.000
20 1.000 1.000 0.452 0.423 0.497 0.443 0.007 0.007 0.499 0.454 0.072 0.055 0.739 0.999

µt = f (t)

2
3σt

1.000 1.000 1.000 1.000 1.000 1.000 0.762 0.618 1.000 1.000 1.000 1.000 0.966 1.000
10 1.000 1.000 1.000 0.993 1.000 0.989 0.000 0.000 1.000 0.992 0.004 0.001 1.000 1.000
20 1.000 1.000 1.000 0.991 1.000 0.991 0.000 0.000 1.000 0.990 0.032 0.004 1.000 1.000

2
0.5σt

1.000 1.000 1.000 1.000 1.000 1.000 0.027 0.014 1.000 1.000 1.000 1.000 0.747 1.000
10 1.000 1.000 0.480 0.357 0.449 0.327 0.004 0.003 0.435 0.344 0.067 0.044 0.851 1.000
20 1.000 1.000 0.467 0.378 0.451 0.358 0.009 0.003 0.436 0.347 0.085 0.048 0.850 1.000

Note: JW is standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run 1000 times.
Location denotes the data point where the jump appears.
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Table A4. Power results: randomized jumps (stochastic spot volatility).

d2 d4 s4 s8 l4 c6 BNS JO

Model λ ψ JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W JW J∗W

µt = 0

1
3

1.000 1.000 0.700 0.488 0.975 0.969 0.125 0.125 0.661 0.672 0.119 0.111 1.000 1.000
3 1.000 1.000 0.939 0.848 1.000 1.000 0.99 0.991 1.000 1.000 0.906 0.890 1.000 1.000
5 1.000 1.000 0.939 0.848 1.000 1.000 0.990 0.991 1.000 1.000 0.906 0.890 1.000 1.000

1
0.5

1.000 1.000 0.705 0.680 0.570 0.513 0.014 0.008 0.471 0.501 0.244 0.204 0.998 1.000
3 1.000 1.000 0.726 0.722 1.000 1.000 0.088 0.077 1.000 1.000 0.658 0.629 1.000 0.996
5 1.000 1.000 0.726 0.722 1.000 1.000 0.088 0.077 1.000 1.000 0.658 0.629 1.000 0.996

µt = 1

1
3

1.000 1.000 0.691 0.552 0.587 0.414 0.342 0.332 0.806 0.675 0.271 0.230 0.998 1.000
3 1.000 1.000 1.000 1.000 0.986 0.994 0.994 0.991 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 0.986 0.994 0.994 0.991 1.000 1.000 1.000 1.000 1.000 1.000

1
0.5

1.000 1.000 0.622 0.631 0.237 0.245 0.037 0.030 0.841 0.810 0.179 0.171 0.946 0.989
3 0.999 0.999 0.849 0.832 0.685 0.674 0.050 0.033 0.899 0.879 0.973 0.968 0.971 0.974
5 0.999 0.999 0.849 0.832 0.685 0.674 0.050 0.033 0.899 0.879 0.973 0.968 0.999 0.987

µt = f (t)

1
3

1.000 1.000 0.814 0.681 0.952 0.93 0.222 0.222 0.379 0.223 0.896 0.855 1.000 1.000
3 1.000 1.000 0.985 0.948 0.973 0.984 0.250 0.250 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 0.985 0.948 0.973 0.984 0.250 0.250 1.000 1.000 1.000 1.000 1.000 1.000

1
0.5

1.000 1.000 0.443 0.420 0.914 0.858 0.192 0.189 0.510 0.484 0.222 0.216 0.709 1.000
3 1.000 1.000 1.000 1.000 0.946 0.927 0.074 0.057 1.000 0.998 0.297 0.243 0.988 1.000
5 1.000 1.000 1.000 1.000 0.946 0.927 0.074 0.057 1.000 0.998 0.297 0.243 1.000 0.998

Note: JW is the standard wavelet-based test, and J∗W is the bootstrapped version. BNS is the [7] ratio test, and JO is [10] difference test. All simulations are run
1000 times. Location denotes the data point where the jump appears.
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