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Abstract: We study the effect of the degeneracy factor in the energy levels of the well-known Landau
problem for a magnetic engine. The scheme of the cycle is composed of two adiabatic processes and
two isomagnetic processes, driven by a quasi-static modulation of external magnetic field intensity.
We derive the analytical expression of the relation between the magnetic field and temperature along
the adiabatic process and, in particular, reproduce the expression for the efficiency as a function of
the compression ratio.
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1. Introduction

Quantum thermodynamics is one of the most interesting topics in physics today. The possibility
to create an alternative and efficient nanoscale device, like its macroscopic counterpart, introduces the
concept of the quantum engine, which was proposed by Scovil and Schultz-Dubois in the 1950s [1].
The key point here is the quantum nature of the working substance and of course the quantum
versions of the laws of thermodynamics [2–18]. The combination of these two simple facts leads to very
interesting studies of well-known macroscopic engines of thermodynamics, such as Carnot, Stirling
and Otto, among others [2–4].

The classical Otto engine consists of two isochoric processes and two adiabatic processes. If the
working substance is a classical ideal gas, the first approximation for efficiency depends on the
quotient of the temperatures in the first adiabatic compression [19,20]. This expression is reduced
with the specific condition along the adiabatic trajectory for this kind of gas, given by TVγ−1 = cnt.,
where γ = CP/CV obtaining the expression η = 1 − 1

rγ−1 , where r is defined as a “compression
ratio” that is defined as V1/V2 (with V1 > V2) [19]. On the other hand, the quantum Otto engine
consists of two quantum adiabatic processes, which keeps invariant the probability occupation for
the level of energy, and two quantum isochoric processes, in order to keep constant some parameters
in the Hamiltonian. In this context, the quantum harmonic Otto cycle is a hot research topic [21–24],
fully addressed by Kosloff and Rezek [25]. In addition, a recent experimental result has been
achieved, employing a single ion confined in a linear Paul trap [26]. This research shed lights for a
possible realization of a quantum Otto cycle. In the magnetic scenario, it is useful to think that the
“isochoric processes” are replaced by “isomagnetic” ones where the constant value of the field in these
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strokes imply keeping constant value of the cyclotron frequency (or effective frequency depending on
the case) due to the proportional relation between both quantities. This kind of approach is developed
in the reference [13] for the case of a graphene under strain in the presence of an external magnetic
field, exhibiting that the Carnot efficiency is achieved more quickly with the combination of these two
effects as opposed to only applying strain to the sample.

The Landau levels of energy in condensed matter physics constitute a very well-known case and
a typical academic problem. The thermodynamics is fully addressed in the works of Kumar et al. [27]
where one important point is the degeneracy factor present in the partition function, and consequently
also in the entropy.

In this way, a thermodynamic cycle, where the magnetic field can be controlled along the adiabatic
trajectories will lead to very interesting new results which can be contrasted with the harmonic case.
On the other hand, the effects of the degeneracy of energy levels on the efficiency and power of an
engine quantum machine have been reported in many works in the past [21,22,28–30]. In this same
framework, we highlight the work of Mehta and Ramandeep [31], who worked on a quantum Otto
engine in the presence of level degeneracy, finding an enhancement of work and efficiency for two-level
particles with a degeneracy in the excited state. Also, Azimi et al. present the study of a quantum Otto
engine operating with a working substance of a single phase multiferroic LiCu2O2 tunable by external
electromagnetic fields [22] and is extended by Chotorlishvili et al. [21] under the implementation of
shortcuts to adiabaticity, finding a reasonable out power for the proposal machine. Physically it is
nowadays possible to confine electrons in 2D. For instance, quantum confinement can be achieved
in semiconductor hererojunctions, such as GaAs and AlGaAs. At T = 300 K, the band gap of GaAs
is 1.43 eV while it is 1.79 eV for AlxGa1-x As (x = 0.3). Thus, the electrons in GaAs are confined in a
1-D potential well of length L in the Z-direction. Therefore, electrons are trapped in 2D space, where a
magnetic field along Z-axis can be applied [32].

Consequently, the study of electrons under controllable external fields is a topic of growing
interest today. This work proposes to study the novel-magnetic cycle presented in the work [13] for
the Landau problem and to understand the role of the degeneracy factor along the cycle. In particular,
we found an analytical dependence between the magnetic field and temperature along the adiabatic
process, and we use these results to calculate the efficiency of this cycle. We compare this efficiency to
the one corresponding to the harmonic trap with the same parametrization to study how strong is the
influence of this factor on the results.

2. Partition Function for the Single-Particle Landau Problem

We consider the case for an electron with an effective mass m* and charge e placed in a
magnetic field, where the Hamiltonian of this problem working in the symmetric gauge leads to
the known expression

Ĥ =
1

2m∗

[(
px −

eBy
2

)2
+

(
py +

exB
2

)]
, (1)

and the corresponding Landau levels display the energy spectrum

En = h̄ωB

(
n +

1
2

)
. (2)

Here, n = 0, 1, 2, ... is the quantum number, and

ωB =
eB
m∗

, (3)

is the standard definition for the cyclotron frequency [12,13,27]. With the definition of the parameter
ωB, we can define the Landau radius that captures the effect of the intensity of the magnetic field,
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given by lB =
√

h̄/(m∗ωB). The energy spectrum for each level is degenerate with a degeneracy g(B)
given by [27]

g(B) =
eB

2πh̄
A, (4)

with A being the area of the box perpendicular to the magnetic field B. Therefore, with this approach
it is straightforward to calculate the partition function to Landau problem, and it turns out to be

Z =
m∗ωBA

4πh̄
csch

(
βh̄ωB

2

)
, (5)

which corresponds to standard partition function for a harmonic oscillator in the canonical ensemble,
with a degeneracy for level equal to g(B).

3. Thermodynamics and Magnetic Engine

3.1. The First Law of Thermodynamics: A Microscopic Approach.

The first law of quantum thermodynamics is fully addressed in many works [2–18] and gives us
the possibility to explore different quantum cycles and compare them with the classical analogues.
We will follow the treatment of [29,33,34], where they conceive a sequence of quasi-static process
that drives the subsystem along the sequence of equilibrium states. To derivate this law simply (in a
microscopic approach), consider a system describe by a density operator ρ̂ and a Hamiltonian with an
explicit dependence of some parameter that we will call ξ in a generic form [34]. So, you have a set of
eigenvectors of Ĥ that satisfy the eigenvalue problem

Ĥ|n; ξ〉 = En|n; ξ〉, (6)

where n represents a set of indexes that label the spectrum of the Hamiltonian and |n; ξ〉 constitutes
the set of eigenvectors of Ĥ. The variations of work and heat are in general defined as [29]

δW = Tr
{

ρ̂dĤ
}

(7)

δQ = Tr
{

Ĥdρ̂
}

(8)

On the other hand, when the eigenstates of the system Hamiltonian are used as the basis, and the
coupling between the system and the environment is weak, the system can be described by a canonical
distribution determined by Ĥ and the density matrix is diagonal in that representation [29]. Therefore,
the ensemble-average energy E = 〈Ĥ〉 is reduced to

E = ∑
n

Pn(ξ)En(ξ), (9)

for a given occupation distribution with probabilities Pn(ξ) in the nth eigenstate. So, we can describe
the system by the energy levels and states derived from the Hamiltonian [29]. The statistical ensemble
just described can be submitted to an arbitrary quasi-static process, involving the modulation of the
parameter ξ, and hence the ensemble average energy changes accordingly,

dE = ∑n (En(ξ)dPn(ξ) + Pn(ξ)dEn(ξ)) (10)

= δQ + δW.

The last equation corresponds to the microscopic formulation of the first law of
thermodynamics [2–18,25–27,31,34,35]. The first term in Equation (10) is associated with the energy
exchange, while the second term represents the work done. That is, the work performed corresponds to
the change in the eigenenergies En(ξ). This is in agreement with the fact that work can only be carried
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out through a change in generalized coordinates of the system, which in turn gives rise to a change in
the eigenenergies [9,10]. A very important assumption for Equation (10) is very well described in [29],
where it is mentioned that: “small changes in Ĥ, which can be considered as a first-order perturbation,
only shifts the energy levels of the systems and does not modify its eigenstates”.

The usual expression for the entropy is given by the von Neumann form and in the eigenenergy
basis can be rewritten as

S(ξ) = −kB ∑
n

Pn(ξ) ln [Pn(ξ)] , (11)

where the coefficients Pn(ξ) satisfy that 0 ≤ Pn(ξ) ≤ 1 with the normalization condition

∑
n

Pn(ξ) = 1. (12)

3.2. Magnetic Engine

As mentioned above, the result of the efficiency of the conventional Otto cycle can be written
in the form that the results only depend on the quotient of the temperatures in the first adiabatic
compression. By using the properties of the ideal gas, the efficiency can be rewritten as follows:

η = 1− 1
rγ−1 , (13)

where γ = CP/CV is the quotient of the two specific heat (at constant pressure and at constant volume)
and r is known as “compression ratio” which is defined as V1

V2
(with V1 > V2).

On the other hand, the quantum “conventional” Otto engine is composed of two quantum
isochoric processes and two quantum adiabatic processes. For the first mentioned process,
the occupation probabilities Pn(ξ) change and thus the entropy S changes, until the working substance
finally reaches thermal equilibrium with the heat bath. For the case of the quantum adiabatic process,
the population distributions remain unchanged, that is dPn(ξ) = 0. Thus, no transition occurs between
levels, and no heat is exchanged during this process. It is important to recall that in a classical adiabatic
process the occupation of each level is never invariant (unless the classical thermalization condition
is relaxed) [35]. This is a crucial point in the discussion for our magnetic engine, based on the work
presented [13]. In general, a quantum adiabatic stroke does not maintain the system in a thermal
state [28–30]. A power law potential can guarantee the thermal state condition when the degeneracy
does not change, as in the treatment of [36], but not in our case under the study, because the number of
states involved in the process should not increase, even if the degeneracy increases. So, if the cycle is
strictly quantum, the stage after the quantum adiabatic stroke necessarily is a non-equilibrium state
(only in the degenerate case), and cannot be represented for the partition function of Equation (5).
Therefore, our approach uses the condition of a classical thermodynamic adiabaticity, where the
process is identified in terms of the conservation of the entropy and the isolation of the system from
heat exchange with the thermal bath. We recall that we work in a semi-classical scenario where the
quantum part is related to the nature of the working substance and the classical part is due to the
condition imposed over the adiabatic strokes along the cycle that we propose.

The case of conventional quantum Otto engine has been considered in several works for differents
quantum systems [3,9,13,31,36] where the key findings are an expression for the efficiency present in
Equation (13) and establishing the value of γ for that case. For the magnetic case, the two isochoric
trajectories are replaced by two “isomagnetic” ones, in which the magnetic field intensity along the
process remains constant while heat is exchanged between the system and the reservoirs [13].

Let us consider a cycle by devising a sequence of quasi-static trajectories, as depicted in Figure 1.
First, the system, while submitted to an external magnetic field B1, is brought into thermal equilibrium
with macroscopic thermostats at temperature T1. In equilibrium, the probabilities Pn(ξ) take the
Boltzmann form and can work with a partition function in the canonical ensemble, Z(ξ, T). So, the
Helmholtz free energy can be defined by F(ξ, T) = −kBT ln Z(ξ, B) and the entropy given by
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Equation (11) can be written as S(ξ, T) = E(ξ,T)
T + kB ln Z(ξ, T), where the ensemble average energy is

given by

E(ξ, T) = kBT2 ∂

∂T
ln Z(ξ, T). (14)

Here, the ξ parameter is related to the intensity of the magnetic field, so ξ → B for the case under
the study. Then, the system is submitted to a quantum isoentropic process from 1 → 2, increasing
the magnitude of the magnetic field from B1 to B2. The systems performs work along the isoentropic
trajectory according to

W1→2 =
∫ B2

B1

dB
(

∂E
∂B

)
S
= E (T2, B2)− E (T1, B1) . (15)

For the case of the “isomagnetic” heating process with the intensity of magnetic field equal to B2

from 2→ 3, no work is done, but heat is absorbed. The heat absorbed (Q2→3) is given by the expression

Q2→3 =
∫ T3

T2

dT
(

∂E
∂T

)
B2

= E (T3, B2)− E (T2, B2) . (16)

In the same way discussed before, the isoentropic trajectory from 3→ 4, the system perform work
in the form

W3→4 = E (T4, B1)− E (T3, B2) . (17)

A physical interpretation of the work performed by the engine is obtained by considering the
statistical mechanical definition of the ensemble-average magnetization, M = −

(
∂E
∂B

)
S
. Hence, the

works defined in Equations (15) and (17) can also be interpreted as W = −
∫

MdB [12,13].
Similarly, we obtain the heat released to the low temperature sink in the quantum “isomagnetic”

cooling process from 4→ 1

Q4→1 =
∫ T1

T4

dT
(

∂E
∂T

)
B1

= E (T1, B1)− E (T4, B1) . (18)

The efficiency of the engine is then given by the expression

η =

∣∣∣∣W1→2 + W3→4

QH

∣∣∣∣ = 1−
∣∣∣∣E(T1, B1)− E(T4, B1)

E(T3, B2)− E(T2, B2)

∣∣∣∣ . (19)

Figure 1. Pictorial description for the novel-magnetic engine represented as an entropy versus a
magnetic field diagram.
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If we have the analytic function for the entropy, the intermediate temperatures T2 and T4 must be
determined to reduce the expression for efficiency and can take on two different forms:

• Deducting the relation between the magnetic field and the temperature along an isoentropic
trajectory solving the differential equation of first order given by

dS(B, T) =
(

∂S
∂B

)
T

dB +

(
∂S
∂T

)
B

dT = 0, (20)

which can be written as
dB
dT

= − CB

T
(

∂S
∂B

)
T

, (21)

where CB is the specific heat at constant magnetic field.

• The other possibility is connecting the value for the entropy in two isoentropic trajectories in
the form

S(B1, T1) = S(B2, T2)

S(B2, T3) = S(B1, T4),
(22)

finding the function for the magnetic field in terms of the temperature through numerical
calculation. Finally, we parametrize this dependency in the efficiency by defining the ratio

r =
lB1

lB2

, (23)

which represents the analogy of the compression ratio for the classical case. It is important to
remember that the Landau radius is inversely proportional to the magnitude of the magnetic
field. Therefore, for a major (minor) magnitude of the field, the Landau radius is smaller (bigger),
and the r parameter is well defined.

It is important to highlight the work of Zheng and Poletti [36], where they derived a general
form for the efficiency of quantum Otto cycles with power law trapping potentials, corresponding to
Equation (11), and showed that γ must be equal to three. We remark that this result requires that two
conditions are met. First, it is only valid for the non-degenerate cases, or more specifically, when the
degeneracy is independent of the parameter that rules the cycle. The second condition is that the
expansion process, when the system goes to ω′ → ω′′, must follow the following relation

κ ≡ En(ω′)

En(ω′′)
=

(
ω′

ω′′

)α

, (24)

where α depends on the power of the potentials under study. For example, for a conventional harmonic
trap, the spectrum of energy is always En = h̄ω

(
n + 1

2

)
and we quickly obtain the result previously

discussed. Moreover, this value of γ is valid for a family of trapping potentials that fulfills the state
equation PV = 2〈E〉 [36].

The case of the Landau problem is different. The energy spectrum of Equation (2) respects the
condition of Equation (24) and has the structure of a harmonic trap; however, the degeneracy factor is
a function of the magnetic field and the size of the system. Therefore, the results previously discussed
do not hold, because in the first (1 → 2) and third (3 → 4) process, the change in the intensity of
magnetic field leads to a change in the degeneracy factor, thus this problem must be analyzed carefully.
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Magnetic Engine for the Landau Problem

We show that the representation of the partition function for this case can be taken in the form of
Equation (5). The thermodynamic quantities are present in the work of Kumar et al. [27], given by

F = − 1
β

ln
[

g(B)
2

csch
(

βh̄ωB
2

)]
, (25)

E =
h̄ωB

2
coth

(
βh̄ωB

2

)
, (26)

SL =
h̄ωB
2T

coth
(

βh̄ωB
2

)
+ kB ln

[
g(B)

2
csch

(
βh̄ωB

2

)]
, (27)

and the specific heat

CB = kBβ2
(

h̄ωB
2

)2
csch2

(
βh̄ωB

2

)
, (28)

where β = 1
kBT . First, we highlight that Equation (25) imply as natural consequence that the entropy

contains the degeneracy terms, due to relation S = 1
T (E− F). It is in fact due to the structure of von

Neumann entropy, because the probability coefficients contain the information of the degeneracy factor.
For example, in thermal equilibrium, this coefficient takes the Boltzmann form, so

Pn(ξ) = [Z(ξ, T)]−1 g(ξ) e−
En(ξ)
kBT . (29)

An opposite case occurs for the expected value of energy and the specific heat at constant
field because these two physical quantities are obtained as the derivative in the temperature of the
partition function.

To clarify the importance of the degeneracy, we analyze the following case. Instead of the term
g(B)

2 appearing in Equations (25) and (27), we put a factor one, corresponding to treat a single oscillator,
and we call the entropy for that case just S(T, B). It is easy to show that the dependence of the
magnetic field on the temperature for the isoentropic trajectories in the non-degenerate scenario
obeys the proportionality B ∝ T. This trivial relation gives us the possibility to obtain the relations
between the temperatures along the cycle given by T1

T2
= T3

T4
, and the efficiency is reduced to a very

well-known expression

η = 1− ω(B1)

ω(B2)
, (30)

which can be rewritten as
η = 1− 1( lB1

lB2

)2 ≡ 1− 1
r3−1 , (31)

and we get the result γ = 3, as described in the work of Zheng and Poletti [36].

4. Results and Discussion

For the Landau case, it is useful to rewrite the term of the degeneracy factor in the entropy as
g
2 = Φ(B)

2Φ0
, where Φ(B) is the total magnetic flux and Φ0 is the universal quantum of magnetic flux,

given by h/2e. Moreover, we define this degeneracy term in the entropy as g
2 = λB, where λ = A

2Φ0
.

Thus, the entropy for this case given by Equation (27) depends on three variables, SL ≡ SL(T, B, λ).
If the dependence of magnetic field and temperature in the adiabatic process for the Landau

case is analyzed, we clearly see that the condition for entropy SL(T0, B0, λ) = SL(T, B, λ) yields a
relation between the magnetic field and temperature which will not depend on λ. This is because the
degeneracy term g(B) is associated with a logarithmic term, so the degeneracy effect in the cycle is only
reflected in the magnetic field dependence of g(B). To reinforce this idea, we calculate the structure of
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first order differential equation for the adiabatic processes through Equation (21), which for this case
has the form

dB
dT

= −
C2

1
B2

T3 csch2
(

C1
B
T

)
1
B − C2

1
B
T2 csch2

(
C1

B
T

) , (32)

where C1 is a constant given by C1 = eh̄
2kBm . This previous equation has an analytical solution

(see Appendix A for details) given by

C1
B
T

coth
(

C1
B
T

)
+ ln (C1B)− ln

[
sinh

(
C1

B
T

)]
= C2, (33)

where C2 is an integration constant. Note that the additional term in the differential equation which
provides g(B), is the factor (1/B) in the dominator of Equation (32). If this term does not exist,
the differential equation has a simple form dB

dT = B
T and obtains the result previously discussed for the

non-degenerate case.
In Figure 2, we see the behavior of the magnetic field versus the temperature along an isoentropic

trajectory, showing the linear dependence between the magnetic field and the temperature in the case
of g = 1 (non-degenerate) and for the case of high degeneracy. In order to see the scale of entropy
for SL(T, B, λ) for real values, we select λ ∝ 108 T−1, which means an active area of A ∝ 10−7 m2,
by using the fact that the universal flux quantum has an order of Φ0 ∝ 10−15 Wb. In the left panel
of Figure 2, we plot the solution for the case S(T, B) = S(10, 1), and in the right panel we plot the
solution for the case S(T, B, 108) = S(10, 1, 108). The contrast is evident: in the simple scenario an
increase in the magnetic field implies an increase in the temperature. However, for the case with
degeneracy, the rise in the magnetic field leads to a decrease in the temperature. The explanation of
this fact lies in the behavior of the entropy at low temperatures, because of S(T, B, λ)T→0 ∼ kB ln(g),
where g is directly proportional to B. This is discussed in Figure 3 where we show the entropy behavior
in these two different scenarios. In the non-degenerate case, when we increase the magnetic field,
the function S (T, B) intersects the starting value of the entropy always in a higher value than the initial
one, reflected in the left frame of Figure 3. This explains the linearity that we obtain in a plot B vs. T
for the left panel of Figure 2. The opposite occurs for the degenerate case, the function SL

(
T, B, 108),

which intersects the starting value of the entropy always in a lower value than the initial one, as we
see in the right frame of Figure 3. From this same figure, we can conclude that the entropy function for
the degenerate case collapses to approximately the same value for higher temperature for different
values of the magnetic field. Therefore, since the magnetic field is the external parameter that makes
the engine work, we have a region of temperature and magnetic field where it is valid to carry out
this cycle.

(a) (b)

Figure 2. Behavior of the magnetic field versus the temperature for the case without the degeneracy
factor (a) and the case with the degeneracy factor Φ(B)

2Φ0
(b). We select the factor A

2Φ0
∝ 108 T−1 for

this example.
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(a) (b)

Figure 3. The isoentropic trajectories behavior for the two cases under discussion. In (a) we plot the
non-degenerate case S(T, B) = S(10, 1) and in (b) the degenerate case SL(T, B, 108) = SL(10, 1, 108).

As discussed in Appendix A, with an adequate analysis of the asymptotic behaviours of
Equation (32), we found a critical temperature, given by

Tc = e(C2−1), (34)

which corresponds to the value of the temperature when the magnetic field goes to zero and a critical
value for the magnetic field when it starts to become constant, given by the expression

Bc =
eC2

2C1
. (35)

Therefore, we have the two points for an initial value constant C2 where it makes sense to carry
out the cycle. For the exponential form of Equation (35), the critical value of the constant magnetic
field is always a large quantity. For a real example of a starting field and temperature, we can consider
the example of Figure 2, where the initial values of the intensity field and temperature are 1 T and a
10 K, respectively. The approximate value for the critical values are Tc ≈ 10.1 K and Bc ≈ 20.1 T.

For the starting point previously indicated, we can consider a cycle for the degenerate case like
that in Figure 1 operating between the temperatures 4 K and 10 K. However, due to the behavior
of temperature along the adiabatic trajectory described in Figure 2, initially we brought the system
into thermal equilibrium at T1 > T3. Thus, for that case, the heat defined by Q4→1 corresponds to
the heat absorbed, and for the heat released the correct definition is given by Q2→3, contrary to the
non-degenerate case. To reinforce this idea, we display in the right frame of Figure 4 the behavior
of heat along the cycle for the degenerate case and non-degenerate case. The convention of the sign
(positive for heat absorbed) is satisfied along the entire operation of the engine. The positive work
condition, which plays an essential role for a well defined thermal engine, is shown in the left frame
of Figure 4 for both cases. From the same figure, we can extract relevant information about the
r parameter. For a machine operating between two reservoirs of 4 K and 10 K, we obtain

rmax
non−deg = 1.58 and rmax

deg = 4.47, (36)

which represents the maximum value that can be taken for the compression ratio along the cycle and
corresponds to the point where the Carnot efficiency is obtained. These results are natural only to
see Figure 3 for this example. For the non-degenerate case, it is only necessary to increase the field
by a factor of 2.5, but for the degenerate case it is necessary to increase the field by a factor of 20 to
reach the Carnot efficiency of the problem. However, the two points previously discussed have the
average work and power output equal to zero, as we see in the left panel of Figure 4 and the purpose
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of showing them is only conceptual. From Figure 4 we observe that the two points for the maximum
power output in the two different scenarios under discussion are given by

rW
non−deg ≈ 1.25 and rW

deg ≈ 3.66, (37)

with efficiency values η
(

rW
non−deg

)
≈ 0.34 and η

(
rW

deg

)
≈ 0.26, as we see in Figure 5. This combination

of values is the really important in our problem because it corresponds to the optimal operating region
of the proposed thermal machine.

(a) (b)

Figure 4. Total work (a) and input heat (b) versus the r parameter along the cycle for the case with
degeneracy (dot dashed line) and without degeneracy (dashed line).

In Figure 5 we compare the three efficiencies, where we see the effect of the degeneracy. One form
to understand this behavior corresponds to the approximation that we show in Appendix A for the
parametric solution, with the finality to “uncouple” the solution to magnetic field and the temperature
for the adiabatic trajectory getting a function in the form

B(T) =
k

2C1

(
1− e

−k
√

0.64
T2 (1−e T

k )
)

, (38)

where we define k = eC2 . Therefore, for this exponential form for the field as a function of temperature,
when we parametrize the efficiency vs. a function of the typical compression ratio (r), we obtain the
behavior presented in Figure 5.

Figure 5. Efficiency for different cases of interest. For this case, the dotted red line corresponds to the
value of Carnot cycle for a machine operating between the two temperatures T1 = 4 K and T3 = 10 K.

For the definition of work and its interpretation as W = −
∫

MdB, we study the magnetization
along the cycle defined as

M =
eh̄
2m

(
2

βh̄ωB
− coth

(
βh̄ωB

2

))
. (39)
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For the adiabatic trajectory, the temperature and the magnetic field change along the entire process,
so we can use a contour plot to see the value of magnetization displayed in Figure 6. Here, we clearly
see that the values of magnetization are always negative and the same occurs for the different curves in
the “isomagnetic” process, shown in Figure 7, indicating that the response of the system is diamagnetic.

Figure 6. Magnetization as a function of B and T along the adiabatic trajectories.

Figure 7. Magnetization along the first iso-magnetic trajectory as a function of T in the range of 4 K to
10 K. We selected the different values for B2 that we found from numerical calculations.

Our system was studied to prove a concept rather than a practical implementation protocol.
However, we believe the readers will find attractive the study of the “full” quantum version of this
cycle following the treatment of the works [28–30], where treated the magnetic substance under
degenerate conditions using non-equilibrium techniques. Besides, it is promising to treat the quantum
version of our formulation optimized following the work of Kosloff and Rezek [25], for the case of
frictionless adiabats using the methods of shortcuts to adiabaticity [37–39]. Moreover, this problem
can be extended taking in account the edge states of the systems for a more realistic approach.
Additionally, it is important to note that the regime of validity of this semi-classical approach deserves
further investigation.
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5. Conclusions

In this work, we explored the possibility of constructing a single-particle magnetic engine of the
Landau problem. In particular, we found an analytical solution for the dependence of the magnetic
field and temperature in the adiabatic trajectories. We used this relation to obtain the form of the
efficiency showing a radically different behavior of the typical harmonic case and found that a major
increase in the external magnetic field to reach the Carnot efficiency is necessary. We remark that the
useful work of this engine, related to change in the magnetization along the process, can be used for
example in the generation of induction current in other physical systems.

It is important to note that our one-particle approach must be refined to take into account a many
electrons scenario, which yields more precise calculations. However, the one electron case is important
due to simplicity and the arising of richer physics for comparatives cases. For example, we can work
with a one-particle system combining the effects of a cylindrical potential well, which physically
represents an accurate model for a semiconductor quantum dot, and an externally imposed magnetic
field, where the number of electrons can be controlled without problems; thus, the same analysis
presented in this work can be replicated.
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Appendix A

We need to solve the differential equation in the form

dB
dT

= −
C2

1
B2

T3 csch2
(

C1
B
T

)
1
B − C2

1
B
T2 csch2

(
C1

B
T

) . (A1)

We define the parameter u = C1

(
B
T

)
. So, differentiating respect to T, we obtain

du
dT

= −C1
B
T2 +

C1

T
dB
dT

. (A2)

Collecting these two last equations, we obtain the first order differential equation in the
u parameter in the form

du
dT

=
u

T
(

u2csch2(u)− 1
) , (A3)

which corresponds to a differential equation of separable variables that has a solution given by

u coth(u) + ln(u)− ln [sinh(u)] + ln(T) = C2, (A4)

where C2 is a constant of integration. We can compact this solution if we define the two variables
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y =
C1B

k
x =

T
k

, (A5)

where k is given by
k = eC2 , (A6)

with e as the Euler number. So, the solution takes the parametric form

y = e−u coth u sinh u x =
1
u

e−u coth u sinh u. (A7)

The asymptotic behaviors of these solutions is very interesting. The expression in the case of
u << 1, which corresponds to high-temperature or small magnetic field limit, takes the form

y =
1
e

√
6 (1− ex), (A8)

so, we have a critical value, xc, when y→ 0 given by

xc =
1
e

. (A9)

It gives us a critical temperature Tc when the magnetic field goes to zero, and is strongly dependent
on initial values of the problem under study, given by

Tc =
k
e
≡ e(C2−1). (A10)

In the other case, for u >> 1, which corresponds to low temperature or high magnetic field limit,
we obtain

yc =
1
2

, (A11)

and, this represents a critical constant value for the magnetic field, given by

Bc =
k

2C1
≡ eC2

2C1
, (A12)

Thus, it is important to keep in mind that, when we consider a variation of the magnetic field
as the cause for effective work in the system, the limits discussed before impose physical variable
restrictions to operate the quantum machine proposed in the text.

To understand the magnetic field behavior in an explicit form along the adiabatic process,
we propose an approximated curve in the form

y =
1
2

(
1− e

−
√

0.64(1−ex)
x

)
. (A13)

The exact parametric solution, the asymptotic behavior for the limiting cases (u >> 1 and u << 1)
and our proposal function are displayed in Figure A1.



Entropy 2017, 19, 639 14 of 15

Figure A1. A parametric solution of the differential equation along the adiabatic trajectories for the
Landau case. The dotted line represents the exact solution and the dot-dashed line the asymptotic case
for u << 1. We can clearly see the constant value 0.5 for the solution in the case of u >> 1 from the
dotted line in the figure. The solid line represents the proposal curve given by Equation (A13) showing
a good fit for the problem under study.
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