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Abstract: As one of the most critical issues for target track, α-jerk model is an effective maneuver
target track model. Non-Gaussian noises always exist in the track process, which usually lead to
inconsistency and divergence of the track filter. A novel Kalman filter is derived and applied on
α-jerk tracking model to handle non-Gaussian noise. The weighted least square solution is presented
and the standard Kalman filter is deduced firstly. A novel Kalman filter with the weighted least
square based on the maximum correntropy criterion is deduced. The robustness of the maximum
correntropy criterion is also analyzed with the influence function and compared with the Huber-based
filter, and, moreover, the kernel size of Gaussian kernel plays an important role in the filter algorithm.
A new adaptive kernel method is proposed in this paper to adjust the parameter in real time. Finally,
simulation results indicate the validity and the efficiency of the proposed filter. The comparison study
shows that the proposed filter can significantly reduce the noise influence for α-jerk model.

Keywords: Kalman filter; α-jerk model; maximum correntropy criterion; non-Gaussian noise;
robustness; influence function; kernel size

1. Introduction

Target track is a real-time estimation process to obtain the position, the velocity and other motion
parameters for the tracked target through the measurement data. Because of the uncertainty and
nonlinearity of the maneuver target motion process and the target measurement process, a lot of
algorithms were researched and proposed for the maneuver target track in the past [1,2]. To sum up,
the track algorithms study has been focused on two parts, i.e., maneuver target modeling and nonlinear
filter design.

For the maneuver target modeling, many models were proposed to describe the target maneuvers.
Singer model [3] is a classic model proposed by Singer in 1970. In 1982, Bar-shalom and Birmiwal [4]
proposed a maneuver target track model with the maneuver detection. In 1984, Zhou and Kumar [5]
proposed the current statistical model based on the Singer model. The jerk model proposed by
Mehrotra [6] was another valid method to track the maneuver target. Among the models above, jerk
model has the highest order. A higher model order can present higher mobility of target. Jerk model
broadens the adaptive target maneuver form and is more suitable for high maneuver targets [5].
However, for the traditional jerk model, “jerk” α should be predefined and may be time-varying in the
practical process. Therefore, Luo proposed α-jerk model [7], which considered α as a parameter to be
estimated by the expanding-dimension method in the real-time filter process.
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For the nonlinear filter design, a lot of techniques were proposed according to the different
optimization rules, including the function approximation, the posteriori probability density approximation
and the stochastic model approximation [8–11]. Extended Kalman Filter (EKF) is a typical technique
of the function approximation based on Taylor series expansion. Unscented Kalman Filter (UKF) is
the most common way of the sampling-based moment approximation [12,13]. The stochastic model
approximation [14] can approximate the nonlinear function in some probabilistic senses. However,
it has not gained popularity mainly because the expectations involved are not easy to evaluate.
No matter what nonlinear filter methods are used, they are applied on the state estimation with
Gaussian white noises in most time.

However, in practical applications, especially in the maneuver target track system, non-Gaussian
noises do exist and have substantial effects on the state estimation. Up to now, some practical models
are proposed, such as Gaussian mixture noise model [15], glint noise model [16] and so on.

In a non-Gaussian process, the performance of many nonlinear filters can break down [17]. However,
the filter robustness against non-Gaussian noises can be improved by the following approaches:

1. The first approach is to develop filters for the systems with non-Gaussian noises directly.
Noise distributions such as heavy-tailed distributions and t-distributions are considered in
these filters [18,19]. However, it is difficult to handle more than one dimension, which limits
its applicability [20].

2. Approximating the posteriori probability density is another practical approach to handle the
non-Gaussian noises. The unscented Kalman filter (UKF) uses the unscented transformation (UT)
technique to capture the mean and the covariance of the state estimation with sigma points [21].
The ensemble Kalman filter (EnKF) is a method to approximate the state estimation with a set
of samples to handle non-Gaussian noises [22]. Gaussian sum filter (GSF) is an algorithm to
obtain the filtering distribution and the predictive distribution recursively approximated as
Gaussian mixtures [23–25].

3. Huber-based robust filter is a classical method to handle the non-Gaussian noises and outliers [26].
It has become the research focus these past several years and been applied in the field of the
navigation and the target track [27–30].

4. A new robust Kalman filter is proposed by Chang [31] in recent years. It handles the outliers based
on the hypothesis testing theory, which defines a judging index as the square of the Mahalanobis
distance from the observation to its prediction. It can effectively resist the heavy-tailed distribution
of the observation noises and the outliers in the actual observations.

5. Multi-sensor data fusion Kalman filter is a fuzzy logical method proposed by Rodger [32]. It can
effectively improve the computational burden and the robustness of Kalman filter. Furthermore,
it has been applied on the vehicle health maintenance system.

6. Maximum correntropy criterion is the latest optimization criterion that is used for improving
Kalman filter. Maximum correntropy Kalman filter (MCKF) is a newly proposed filter to process
the non-Gaussian noises [33]. In addition, several improved MCKF algorithms have been
proposed and applied on state estimation [34–37].

Maximum correntropy criterion Kalman filter (MCCKF) [20] is the latest approach to handle
the non-Gaussian noises with Gaussian kernel. It is different from the MCKF in the form and the
derivation process. The aforementioned MCCKF has been proved to have higher accuracy than other
approaches in a benchmark navigation problem with the non-Gaussian noises. However, it does not
have an optimal rule for the kernel size selection, which is important for the robustness of MCCKF.
Furthermore, it has not been applied on the maneuver target track. Thus, we adopt the Kalman filter
based on the maximum correntropy criterion for α-jerk model with the non-Gaussian process to realize
the maneuver target track.

The key contributions of this paper are as follows. Firstly, the robustness of Kalman filter algorithm
based on the maximum correntropy criterion is introduced in the presence of the non-Gaussian noises.
Then, the influence function of the filter algorithm, for the first time, is analyzed in this paper. Moreover,
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an optimal kernel size is obtained by a novel adaptive size adjusting skill. Finally, the large outliers
and the Gaussian mixture noises in the maneuver target track with α-jerk model are properly handled
by MCCKF.

The organization of this paper proceeds as follows. The α-jerk model is briefly reviewed in
Section 2. In Section 3, we design the algorithm steps for MCCKF, analyze the robustness performance
with the influence function and propose a novel kernel size selection method. In Section 4, simulation
results are presented to compare the performances of different filter algorithms with respect to different
noise conditions. Finally, conclusions are drawn in Section 5.

2. α-Jerk Model

Jerk model is a classical target tracking model. “Jerk” means the acceleration rate [6]. It is
described as follows:

j̇ (t) = −αj (t) + ω (t) , (1)

where j (t) =
...
x (t) is the target “jerk”, x (t) is the target position, α is the correlation parameter

permitting the modeling of different classes of targets, ω (t) is the process noises with the zero mean
and the variance σ2

ω = 2ασ2
j , and σ2

j is the variance for the target “jerk”. In the model, α is a fixed value.
However, it is difficult to predefine and may be time-varying in the practical process.

α-jerk model considers α as a parameter to be estimated and supposes that α is a state variable.
In this way, it will be real-time estimated in the filter process. Consider the following equation:

α̇ (t) = ε (t) , (2)

where ε(t) denotes the zero mean Gaussian noises with the variance σ2
ε .

Combined with Equation (2) and Jerk model [6], the state equation for the continuous time α-jerk

when only one variable, x, in the state variable vector
[

x y z
]T

, is considered, the α-jerk model
can be written as

d
dt


x
ẋ
ẍ
...
x
α

 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 −α 0
0 0 0 0 0




x
ẋ
ẍ
...
x
α

+


0
0
0

ω (t)
ε (t)

 , (3)

where x,ẋ,ẍ,
...
x represent the position, the velocity, the acceleration and the jerk of the aerial target in

the x-direction, respectively. Denote X =
[

x ẋ ẍ
...
x α

]T

W (t) =
[

0 0 0 ω (t) ε (t)
]T (4)

and

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 −α 0
0 0 0 0 0

 . (5)
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The state equation can be expressed as:

Ẋ = AX + W (t) . (6)

Equation (6) is discretized as:

Xk = Φk|k−1Xk−1 + Wk, (7)

where

Φk|k−1 = exp (AT) , (8)

where T is the time interval and Φk|k−1 is the state transition matrix; Wk is the process noises at time k.
From Equation (8), the discrete state transition matrix can be written as:

Φk|k−1 =


1 T T2/2 p1 0
0 1 T q1 0
0 0 1 r1 0
0 0 0 s1 0
0 0 0 0 1

 , (9)

where

p1 =
(
2− 2αT + α2T2 − 2e−αT) /

(
2α3)

q1 =
(
e−αT − 1 + αT

)
/α2

r1 =
(
1− e−αT) /α

s1 = e−αT

. (10)

The variance of the process noises Wk is

Q (k) =


q11σ2

ω q12σ2
ω q13σ2

ω q14σ2
ω 0

q21σ2
ω q22σ2

ω q23σ2
ω q24σ2

ω 0
q31σ2

ω q32σ2
ω q33σ2

ω q34σ2
ω 0

q41σ2
ω q42σ2

ω q43σ2
ω q44σ2

ω 0
0 0 0 0 Tσ2

ε

 , (11)

where

q11 =
(
1/2α7) (α5T5/10− α4T4/2 + 4α3T3/3
+2αT − 2α2T2 − 3 + 4e−αT + 2α2T2e−αT − e−2αT)

q12 = q21 =
(
1/2α6) (1− 2αT + 2α2T2 − α3T3 + α4T4/4
+e−2αT + 2αTe−αT − 2e−αT − α2T2e−αT)

q13 = q31 =
(
1/2α5) (α3T3/3 + 2αT − α2T2 − 3
+4e−αT + α2T2e−αT − e−2αT)

q14 = q41 =
(
1/2α4) (1− 2e−αT − α2T2e−αT + e−2αT)

q22 =
(
1/2α5) (1− e−2αT + 2α3T3/3 + 2αT − 2α2T2 − 4αTe−αT)

q23 = q32 =
(
1/2α4) (1− 2αT + α2T2 + 2αTe−αT + e−2αT − 2e−αT)

q24 = q42 =
(
1/2α3) (1− 2αTe−2αT − e−2αT)

q33 =
(
1/2α3) (4e−αT + 2αT − e−2αT − 3

)
q34 = q43 =

(
1/2α2) (1− 2e−αT + e−2αT)

q44 = (1/2α)
(
1− e−2αT) .

(12)
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The measurement equation can be expressed as:

Zk = HkXk + Vk, (13)

where Hk is the measurement matrix at time k; Vk is the measurement noises and independent of the
process noises Wk.

In most situations, Vk is the Gaussian white noises. However, in practice, due to the target
glint, the scattering of the radar tracking equipment and the faults of the operators [16,38] and so on,
the measurement noises may be non-Gaussian or some outliers exist in the measurement data. It can
behave as:

Vk = V (1)
k + V (2)

k (14)

or

Vk = V (1)
k + ∆Vk, (15)

where V (1)
k denotes the Gaussian white noises, V (2)

k obeys another Gaussian distribution different from

V (1)
k , and ∆Vk denotes the outliers.

In this paper, a new filter algorithm will be proposed to deal with the non-Gaussian noises like
Equations (14) and (15).

3. Design for Maximum Correntropy Criterion Kalman Filter with Non-Gaussian Noise

3.1. Standard Kalman Filter

From Section 2, α-jerk model for the maneuver target track can be expressed as:{
Xk = Φk|k−1Xk−1 + Wk,
Zk = HkXk + Vk.

(16)

Assume Wk and Vk are independent Gaussian white noises, satisfying

E(WkWT
j ) =

{
Qk, k = j,
0, k 6= j,

, E(VkVT
j ) =

{
Rk, k = j,
0, k 6= j,

(17)

where Qk and Rk are known positive definite matrix.
In the KF, the predicted state X̂k|k−1 satisfies

E
[(

Xk − X̂k|k−1

) (
Xk − X̂k|k−1

)T
]
= Pk|k−1, (18)

where Pk|k−1 is the predicted covariance. One very reasonable estimate Xk, taking into account the
measurement Zk, is the weighted least squares estimate, which we call X̂k. For this estimate, we choose
X̂k as the value of Xk that minimizes the quadratic form

J = 1
2

[(
Xk − X̂k|k−1

)T
P−1

k|k−1

(
Xk − X̂k|k−1

)
+(Zk − HkXk)

TR−1
k (Zk − HkXk)

]
.

(19)
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Note that the weighting matrices, P−1
k|k−1 and R−1

k , are the inverse matrices of the prior expectations

of
(

Xk−X̂k|k−1

)(
Xk−X̂k|k−1

)T
and (Zk−HkXk)(Zk−HkXk)

T, respectively, and the predicted state is
obtained as follows:

X̂k|k−1 = Φk|k−1Xk−1. (20)

The value X̂k = arg min
Xk

J (Xk) will be the best estimate. The detailed proof is given in [39] to

show that Kalman filter can be deduced by Equation (19).
Therefore, Kalman filter can be deduced by solving

∂J
∂X̂k

= 0. (21)

Therefore, Kalman filter equations are expressed as:

X̂k|k−1 = Φk|k−1X̂k−1

Pk|k−1 = Φk|k−1Pk−1|k−1ΦT
k|k−1 + Qk

Kk = Pk|k−1HT
k

(
HkP−1

k|k−1HT
k + R−1

k

)−1

X̂k = Φk|k−1X̂k|k−1 + Kk

(
Zk − HkX̂k|k−1

)
Pk|k = (I − Kk Hk)Pk|k−1.

(22)

The standard Kalman filter has been applied in many fields. However, it is under the assumptions
that the process noises and the measurement noises are both Gaussian white noises. Therefore, it cannot
have a good performance in a non-Gaussian condition, which is introduced in Section 2. Thus, some
robust Kalman filtering algorithms were developed [40]. In this paper, a latest robust Kalman filter,
maximum correntropy criterion Kalman filter, is deduced based on correntropy therory. It has higher
accuracy than some other approaches in the presence of non-Gaussian noises.

3.2. Design of Maximum Correntropy Criterion Kalman Filter

3.2.1. Correntropy

Correntropy [41] defines a metric in the data space and it is directly related to information entropy.
It induces a new metric in the sample space that is equivalent to the 2-norm distance [42–44]. Given
two random variables, A, B ∈ R with the joint probability density function (PDF) p (a, b). Then,
the definition of the correntropy between two random variables is as follows:

Definition 1. Correntropy is a generalized similarity measure between two arbitrary scalar random variables
A and B defined by

Cλ (A, B) = E [κ (A, B)] =
∫∫

κλ (a, b) p (a, b)dadb, (23)

where E is the expectation and κλ (�, �) is any continuous positive definite kernel function, λ > 0 is the kernel size.

In this paper, the kernel function is chosen as the Gaussian kernel given by

κλ (a, b) = Gλ (e) = exp
(
− e2

2λ2

)
, (24)

where e = a− b.
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In practice, the joint PDF p (a, b) is unknown and a finite number of sample data are available.
Therefore, the correntropy can be estimated by the sample mean estimator:

Ĉλ (A, B) =
1
N

N

∑
i=1

Gλ (ei) , (25)

where ei = ai − bi, with {ai, bi}N
i=1 being N samples drawn from p (a, b).

When λ = 1, ai ∈ [0, 10], bi ∈ [0, 10] and the samples number is 50, the correntropy can be shown
as Figure 1:

0

5
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10
0

0.5

1
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C
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Figure 1. Correntropy when λ = 1.

As can be seen from Figure 1, the correntropy can be used as a similarity measure in the joint
space. In addition, when ai = bi, the correntropy reaches the maximum value. The cost function that
incarnates the maximum correntropy criterion (MCC) is:

JMCC = max
N

∑
i=1

Gλ (ei). (26)

MCC has a probabilistic meaning of maximizing the error probability density at the origin [41],
and it has the advantages that it is a local criterion of similarity and it is very useful for non-Gaussian
noise [45]. In other words, compared with the mean square error (MSE), MCC is local along the bisector
of the joint space, which means that the maximum correntropy value is mainly decided by the kernel
function along the line A = B [46].

3.2.2. Maximum Correntropy Criterion Kalman Filter Algorithm

Similar to Equation (19), the maximum correntropy criterion Kalman filter (MCCKF) is designed
based on the MCC theory. We have the correntropy-based objective function:

X̂k = arg max
Xk

J (Xk) , (27)

where

J (Xk) = Gλ

(∥∥∥Xk −Φk|k−1X̂k−1

∥∥∥
P−1

k|k−1

)
+ Gλ

(
‖Zk − HkXk‖R−1

k

)
, (28)

where R−1
k and P−1

k|k−1 are chosen as the weighting matrices.
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The derivative of Equation (28) with respect to Xk is:

Gλ

(∥∥∥Xk −Φk|k−1X̂k−1

∥∥∥
P−1

k|k−1

)
P−1

k|k−1

(
Xk −Φk|k−1X̂k−1

)
−Gλ

(
‖Zk − HkXk‖R−1

k

)
HT

k R−1
k (Zk − HkXk) = 0.

(29)

Therefore, X̂k is the solution of Equation (29). Let

P−1
k|k−1

(
X̂k −Φk|k−1X̂k−1

)
=Lk HT

k R−1
k

(
Zk − HkX̂k

)
, (30)

where Lk =
Gλ

(
‖Zk−HkX̂k‖R−1

k

)
Gλ

(
‖X̂k−Φk|k−1X̂k−1‖P−1

k|k−1

) . Then,
(

Lk HT
k R−1

k HkX̂k|k−1

)
is added and subtracted on the

right-hand side of Equation (30) to obtain

P−1
k|k−1

(
X̂k −Φk|k−1X̂k−1

)
=

Lk HT
k R−1

k
(
Zk − HkX̂k

)
+ Lk HT

k R−1
k HkX̂k|k−1 − Lk HT

k R−1
k HkX̂k|k−1,

(31)

P−1
k|k−1X̂k − P−1

k|k−1Φk|k−1X̂k−1 = P−1
k|k−1X̂k − P−1

k|k−1X̂k|k−1 =

Lk HT
k R−1

k Zk − Lk HT
k R−1

k HkX̂k
+Lk HT

k R−1
k HkX̂k|k−1 − Lk HT

k R−1
k HkX̂k|k−1,

(32)

(
P−1

k|k−1+Lk HT
k R−1

k Hk

)
X̂k

= P−1
k|k−1X̂k|k−1+Lk HT

k R−1
k HkX̂k|k−1+Lk HT

k R−1
k

(
Zk − HkX̂k|k−1

)
=
(

P−1
k|k−1+Lk HT

k R−1
k Hk

)
X̂k|k−1+Lk HT

k R−1
k

(
Zk − HkX̂k|k−1

)
,

(33)

X̂k = X̂k|k−1+
(

P−1
k|k−1+Lk HT

k R−1
k Hk

)−1
Lk HT

k R−1
k

(
Zk−HkX̂k|k−1

)
= X̂k|k−1+Kk

(
Zk − HkX̂k|k−1

)
.

(34)

In addition, then the MCCKF algorithm can be derived from Equation (34) as follows:

1. State Prediction

X̂k|k−1 = Φk|k−1X̂k−1, (35)

2. Covariance Prediction

Pk|k−1 = Φk|k−1Pk−1|k−1ΦT
k|k−1 + Qk, (36)

3. Filter Gain

Kk =
(

P−1
k|k−1 + Lk HT

k R−1
k Hk

)−1
Lk HT

k R−1
k , (37)

4. State Update

X̂k = X̂k|k−1 + Kk

(
Zk − HkX̂k|k−1

)
, (38)
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5. Covariance Update

Pk|k = (I − Kk Hk)Pk|k−1(I − Kk Hk)
T + KkRkKT

k . (39)

3.3. Robustness of MCCKF

The advantage of MCCKF is that the algorithm uses a method similar to Huber-based
filter (HF) [47], which can resist the non-Gaussian noises because the robust function of HF does
not increase rapidly as the estimate residual grows. Next, the algorithm robustness is analyzed with
the influence function [48] in theory and is compared with HF through the weighting function.

HF is achieved by introducing the concept of the robustness in the maximum likelihood as
proposed by Huber [47]. Recall that the maximum likelihood estimator is from a data observation
Z = {z1, ..., zN}, a state variable X = {x1, ..., xN}. Assuming that e = Z− HX obeys the distribution
and p (e; X) is known except for the parameters X, the MLE of X can be written as

X̂MLE = arg max
X

p (e1, ..., eN ; X) . (40)

If e1, ..., eN are i.i.d. observations, it can be rewritten as

X̂MLE = arg max
X

N
∏
i=1

p (ei; X) = arg max
X

N
∑

i=1
ln p (ei; X)

= arg min
X

N
∑

i=1
(− ln p (ei; X)) .

(41)

Assume that ρ is a function that satisfies ρ (ei; X) = a (− ln p (ei; X)) + b, where a > 0 and b is
irrelevant to X. Therefore, X̂MLE satisfies

N

∑
i=1

ρ (ei; X) =
N

∑
i=1

ρ (zi − Hxi) = min
X

N

∑
i=1

ρ (ei; X) . (42)

For some parametric models, if the errors in the target track model are assumed as purely
stochastic white and follow a Gaussian distribution with zero mean and constant variance σ2, then the
maximum likelihood estimation can be solved. However, in practice, the measurement equipment
are affected by external environment or break down. Therefore, the measurement outliers cannot be
avoided. In addition, some errors obey the Gaussian distributions with different mean values and
variances with most errors. For example, for one error, its distribution can be described as follows:

F (ei; X) = (1− υ) F0 (ei; X) + υFc (ei; X) , (43)

where F (�) denotes the mixture distribution, F0 (�) is a known normal distribution, Fc (�) is a
contaminated distribution that is unknown, υ denotes the contamination ratio [49], which is usually
much smaller than 1. For Equation (43), it is impractical to solve the maximum likelihood estimation
by Equation (42).

For this problem, Huber promoted that ρ can change freely within limits. The method to solve
Equation (42) is called M-estimation.

Huber defined the M-estimators as a generalization of maximum likelihood as

min
X

N

∑
i=1

ρ (ei; X) or
N

∑
i=1

ϕ (ei; X) = 0 with ϕ (ei; X) =
dρ (ei; X)

dei
, (44)
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where ρ (e) is called the cost or penalty function [48] and must obey the properties:

1. ρ (e) ≥ 0
2. ρ (0) = 0
3. ρ (e) = ρ (−e)
4. ρ (ei) ≥ ρ

(
ej
)

, |ei| >
∣∣ej
∣∣ .

(45)

Let

ρMCC (ei) =
(

1− exp
(
−ei

2/2λ2
))/√

2πλ. (46)

It is trivial to check that it obeys the properties of Equation (45). Furthermore,

min
N
∑

i=1
ρMCC (ei)

= min
N
∑

i=1

(
1− exp

(
−ei

2/2λ2))/√2πλ

⇔ max
N
∑

i=1
exp

(
−ei

2/2λ2)/√2πλ

= max
N
∑

i=1
Gλ (ei) .

(47)

In other words, there is a connection with MCC and Equation (46) [50,51]:

min
X

N

∑
i=1

ρMCC (ei) is equivalent to MCC = max
X

N

∑
i=1

Gλ (ei) .

Considering the M-estimation problem, the weighting function ψMCC (ei) is defined by

ψMCC (ei) =
ρMCC

′ (ei)

ei
, (48)

where ρMCC
′ (ei) =

dρMCC(ei)
dei

. Therefore,

ψMCC (ei) = exp
(
−ei

2/2λ2
)/√

2πλ3. (49)

Based on the penalty function and the weighting function above, we will analyze the robustness
with influence function and compare it with Huber-filter to prove the superiority of MCCKF.

3.3.1. Influence Function of MCCKF

Influence function (IF) is a quantitative measure to evaluate the robustness of Kalman filter [52].
The conventional definition of IF is defined as:

Definition 2. For any l ∈ R, R is the real set, δl is the probability distribution that is degraded in l and the
mixture distribution is:

F = (1− υ) F0 + υδl (0 ≤ υ ≤ 1) , (50)

where F0 is the main distribution, and υ is the contamination ratio, and then if the limit

IF (l; F0, T) = lim
υ→0

T (F)− T (F0)

υ
=

dT (F)
dυ

∣∣∣∣
υ=0

(51)
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exists, where T (F)is one functional expression of the distribution function F, then IF (l; F0, T) is called the
influence function about T (F).

The traditional definition of IF describes the relative influence of a contaminated measurement on
functional T. The smaller the IF is, the more insensitive the reflection on the contaminated measurement
of T is. In other words, for the fixed distribution F, the change of IF reflects the different influences on
different measurements. Thus, it can effectively reflect the robustness of Kalman filter.

However, the traditional form of IF is sometimes complex to analyze the performance of Kalman
filter. For analyzing the robustness of Kalman filter more clearly, Chang [48] derived a new form of the
influence function. According to Equation (16), construct a following pseudo-measurement

ZZZ k =

[
X̂k|k−1

Zk

]
=

[
Xk

HkXk

]
+

[
δX̂k|k−1

Vk

]
=HHHkXk +VVV k (52)

with

E (VVV k) = 0, E
[
(VVV k) (VVV k)

T
]
=RRRk = PVVV k

=

[
PX̂k|k−1,X̂k|k−1

O

O Rk

]
, (53)

withZZZ k as the measurement and Xk as the parameter to be estimated. Equation (52) is exactly a classic
linear regression problem with the known statistics of the measurements, which can be solved using
the weighted least square methods as

X̂k =
(
HHHT

kRRR
−1
k HHHk

)−1
HHHT

kRRR
−1
k ZZZ k, (54)

PX̂kX̂k
=
(
HHHT

kRRR
−1
k HHHk

)−1
. (55)

Define
^

ZZZ k =RRR−1/2
k ZZZ k, (56)

^

HHHk =RRR−1/2
k HHHk, (57)

^

VVV k =RRR−1/2
k VVV k, (58)

whereRRR−1/2
k =

(
RRR1/2

k

)−1
andRRR1/2

k

(
RRR1/2

k

)T
=RRRk. Then,

^

ZZZ k =
^

HHHkXk +
^

VVV k, (59)

E
[
^

VVV k

]
= 0, P^

VVV k ,
^
VVV k

= I. (60)

For the sake of brevity, the subscript k is omitted and let m = nx + ny in the sequel, where nx,
ny denotes the dimension of the state vector and the measurement vector. Find the ML solution to
Equation (59) through maximizing the following likelihood function

L
(
X̂, r

)
=

m

∏
j=1

F
(
rj
)

, (61)

where r =
^

ZZZ k−
^

HHHkX̂k, F (�) denotes the probability distribution. Similar to Equation (41), Equation (61)
is equal to the following form:

J
(
X̂, r

)
= − ln

[
L
(
X̂, r

)]
=

m

∑
i=1
− ln p

(
rj
)
=

m

∑
i=1

ρ (ri) , (62)
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where ρ (�) is the cost or penalty function. Then, a necessary condition for the minimizer in Equation (62) is

m

∑
i=1

ρ′ (ri)
∂ri

∂X̂
=

m

∑
i=1

φ (ri)
∂ri

∂X̂
=

m

∑
i=1

φ (ri)
^

h
T

i = 0, (63)

where
φ (�) = ρ′ (�) (64)

and
^

h i is the corresponding column vector of
^

HHH
T

(the measurement matrix). By taking transpose,
Equation (63) is equivalent to

m

∑
i=1

φ (ri)
^

h i = 0. (65)

Define an estimator as E (F) explicating that it is a functional of the distribution F. Then, based
on the description above, the new form of IF for the distribution Equation (43) is as follows:

IF
(

^

h, F0, E
)
= lim

υ→0

E (F0 (1− υ) + Fcυ)− E (F0)

υ
=

∂E (Fυ)

∂υ

∣∣∣∣
υ=0

, (66)

where
^

h is the generalization of
^

h j representing the corresponding column vector of
^

HHH
T

, υ ↓ 0 stands
for the limit from right. It evaluates the infinitesimal influence on the estimator E of any single
measurement whose residual is r, which comes from the neighborhood of the distribution F0 through

the designing matrix
^

h
T

. Let the method of estimating X̂ for the m-sample data be denoted as Em.
Then, according to the relation between X̂ and r, Chang [48] transformed the definition of IF in another
form to obtain the IF of Em. It is derived in Ref. [48] in detail. The IF to assess the influence of one of
the m elements of the pseudo-measurement vector in Equation (59) is defined as :

IF
(

r,
^

h, F0, E
)
=

φ
(
rj
)

EF0 [φ
′ (r)]

(
^

HHH
T ^

HHH
)−1

^

h j, j = 1, 2, ..., m, (67)

where rj is the j-th element of r.
Three requirements about the IF are needed for an estimator to be infinitesimally robust, i.e.,

boundedness, continuity, and linearity at the center [48].
Next, we will prove that MCCKF satisfies the requirements above.
According to the Equation (46), the estimator of MCCKF with its cost function as

φMCC (e) = ρ′MCC (e) =
e√

2πλ3
exp

(
− e2

2λ2

)
(68)

and

φ′MCC (e) =
1√

2πλ3
exp

(
− e2

2λ2

)
− e2
√

2πλ5
exp

(
− e2

2λ2

)
. (69)

Then,

EF0

[
φ′MCC (e)

]
=
∫ +∞

−∞
φ′MCC (e) dF0

=

(
λ2 + σ2)−√2π

√
2πλ2 (λ2 + σ2)

√
λ2 + σ2

,
(70)
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where σ is the standard deviation of distribution F0. Therefore, we have the IF of MCC expressed as:

IFMCC

(
r,

^

h, F0, E
)

=
φMCC

(
rj
)

EF0 [φ
′
MCC (r)]

(
^

HHH
T ^

HHH
)−1

^

h j,
(71)

where EF0 [φ
′
MCC (r)] is a constant (proved in Equation (70)) and

(
HHHTHHH

)−1
hj is a known constant

matrix. It is trivial to check that the IF in Equation (71) satisfies continuity and linearity at the center.
Next, we will prove the boundedness of Equation (71).

According to the statement above, the boundedness of IF depends on φMCC
(
rj
)
.

Remark 1. φMCC (r) is a bounded function in the interval (−∞,+∞).

Proof.

φMCC (r) =
r√

2πλ3
exp

(
− r2

2λ2

)
=

r√
2πλ3

/
exp

(
r2

2λ2

)
.

(72)

It is evident that φMCC (r) is a continuous function, so it satisfies the boundedness in any closed
intervals. Furthermore, it is an odd function.

1. Fix ε > 0, and φMCC (r) is bounded in the interval [−ε, ε].
2. In the interval [ε,+∞), according to the L’Hospital’s rule [53], Equation (72) can be transformed as:

lim
r→∞

φMCC (r)

= lim
r→∞

1√
2πλ3

/√
2πλr exp

(
r2

2λ2

)
= 0.

(73)

Therefore, φMCC (r) is bounded in [ε,+∞). According to the characteristic of the odd function,
it is also bounded in (−∞,−ε].

Hence, the IF of MCCKF satisfies all three of the requirements of a robust estimator, i.e.,
boundedness, continuity, and linearity at the center.

HF is another filter whose robustness is also proved with IF in [48]. Next, we will compare the
MCCKF with HF.

3.3.2. Comparison with Huber Filter

In fact, the Huber-based filter (HF) estimates by minimizing the following cost function [54]

JHF = min

(
N

∑
i=1

ρHF (ei)

)
, (74)

where ρHF (�) is the designed robust function that is bounded and convex. In other words, a Huber-based
filter can resist the non-Gaussian noises because the robust function does not increase rapidly as
the estimate residual grows. In addition, the M-estimation function with the expression shown in
Equation (74) has several forms. Huber M-estimator [46] is a common one that can be shown as:
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ρHuber (ei) =

{
e2

i /2, |ei| ≤ δ,

δ
(
|ei| − δ/2

)
, |ei| > δ.

(75)

Its weighting function is

ψHuber (ei) =

{
1, |ei| ≤ δ,

δ/ |ei|, |ei| > δ,
(76)

where δ is the tuning parameter. In a similar manner, Equation (46) can seem like a new ρ (�) function
in which the kernel size λ plays a role similar to δ.

Suppose only one measurement is adopted. Figure 2 shows the ψMCC of the MCC in Equation (49)
and ψHuber in Equation (76) with different errors, in which λ = 1 and δ = 1, respectively. The result is
also presented in Ref. [46].

−5 0 5
0

0.2

0.4

0.6

0.8

1

Error

ψ

 

 

MCC
Huber

Figure 2. ψ with different estimation errors in different weighting functions.

The weighting function of MCC and Huber reduces as the error value increases. It means that
both methods can reduce the weight of the measurements containing large outliers. However, MCC
has a higher speed to zero compared to that of Huber. It means that Huber may employ more large
outliers into the estimation process than that of MCC, although their impacts are reduced. In other
words, MCC selects those measurements with smaller errors and discards those with a large outlier.
MCC can completely remove the inappropriate measurements from the estimation processes and have
a better performance. That is, Kalman filter under the MCC can improve the robustness.

From Equation (49), the kernel size λ plays an important role in the weighting function.
The robustness is decided by the kernel size.

3.4. Kernel Size Selection

Due to the close relationship between M-estimation and correntropy, choosing an appropriate
kernel size in the correntropy criterion becomes practical [54]. In the MCCKF algorithm, or the same
input data, different kernel sizes lead to different filter results. If the kernel size is too large, the filter
system will degrade into linear regression. If the kernel size is too small, all the data will look distinct
and the system cannot infer on unseen samples falling between the training points [55]. Therefore, the
kernel size can be adaptively adjusted as other parameters.

There are not many accessible values to the problem for us. However, the measurements,
the dynamic system model and the noise parameters are accessible. It is a new thought to make
use of this information in the adaption of the kernel size selection. In fact, Cinar et al. [56] has proposed
that the best kernel sizes are in the range of the observation errors and half of the cost function has the
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observation error as the argument and a similar kernel size will get a better result. Based on the idea,
he heuristically chose the kernel size at each time instant to be the observation error as shown below:

λk =
∥∥∥Zk − HkX̂k

∥∥∥ . (77)

In this paper, inspired by Equation (77) and combined with the the weighted least square thought,
we proposed that the kernel size selection method can be adjusted to

λ0k
=

∥∥∥∥(Zk − HkX̂k

)T
R−1

k

(
Zk − HkX̂k

)∥∥∥∥ . (78)

In fact, Equations (77) and (78) reflect the Euclidean distance and the Mahalanobis distance,
respectively. Equation (78), which is a novel kernel size selection method proposed in the article, can
overcome the influence of the covariance due to the advantages of Mahalanobis distance. It is much
more sensitive to the small change of data.

To show the different results of different kernel size, the weights are shown under the different
sizes for λ in Equation (77) and for λ0 in Equation (78) as follows.

From Figure 3, λ0 has a higher speed to zero compared to λ. λ0 can employ less outliers than
λ, although both impacts are reduced. Therefore, λ0 can select the measurements with smaller error
and remove more inappropriate measurements from the estimation processes. Therefore, λ0 is more
appropriate than λ.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Error

ψ

 

 

λ
λ

0

Figure 3. ψ with different kernel size selection methods (where λ0 is the novel kernel size selection method).

4. Simulation

In this section, we mainly demonstrate the performances of the MCCKF in the presence of large
outliers and mixture Gaussian noises. The estimation performances are compared based on the
following indices:

Residual (k) = Xk − X̂k|k, k = 1, ..., N, (79)

RMSE =
1
M

M

∑
m=1

√√√√ 1
N

N

∑
i=1

(
Xk − X̂k|k

)2
, m = 1, ..., M, (80)

where N is the entire time steps in every Monte Carlo run and M represents the total Monte Carlo runs.

4.1. Simulation Conditions

In this section, simulation experiments are conducted to validate the proposed algorithm for
restricting the non-Gaussian noises. The α-Jerk model results obtained by the Huber-based filter (HF),
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ensemble Kalman filter (EnKF), unscented Kalman filter (UKF), Gaussian sum filter (GSF) and
maximum correntropy criterion Kalman filter (MCCKF) are compared here.

The target tracking parameters are set as below: time interval is T = 1 s; 500 independent
Monte Carlo runs have been conducted, i.e., M = 500; the measurement noise covariance is
R = diag

([
2 2 2

])
; the standard deviation of input is σε = 0.7; the standard deviation of the

target ‘jerk’ is σj = 0.2; and the state vector in three dimensions is

X =
[

x ẋ ẍ
...
x y ẏ ÿ

...
y z ż z̈

...
z
]T

,

which contains the position, the velocity, the acceleration and the ‘jerk’, respectively; the initial true
state is

x (0) = 30000, ẋ (0) = 300, ẍ (0) = 1,
...
x (0) = 0,

y (0) = 60000, ẏ (0) = 400, ÿ (0) = 1,
...
y (0) = 0,

z (0) = 90000, ż (0) = 500, z̈ (0) = 1,
...
z (0) = 0.

and the initial covariance matrix of the states are chosen as

P0|0 = diag
([

10000 1000 100 10 10000 1000 100 10 10000 1000 100 10
])

.

The initial values in three dimensions are αx = αy = αz = 0.5.

4.2. The Kernel Size Adaptive Method

To choose a better kernel size adaptive method, a simulation is made in this section with
Equations (77) and (78), respectively. The simulation conditions are the same as Section 4.1. Figure 4
shows the trajectories in a two-dimensional plane under two kernel size selection methods.

As can be seen from Figures 4 and 5, MCCKF with the new adaptive method ensures a higher
accuracy than the other in most time.
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Figure 4. Target trajectories of two kernel size adaptive methods on α-jerk model where λ0 is the novel
kernel size adaptive method.
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Figure 5. Residual of estimated position with two kernel size adaptive methods where λ0 is the novel
kernel size adaptive method.

Tables 1–3 show that the newly proposed kenel size selection method in this paper (λ0) indeed
has a higher accuracy on the whole.

Table 1. RMSE of every state variable in the x-direction of two different kernel size selection methods.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

λ0 1.2331 1.3251 0.7766 0.3512 0.2637
λ 1.2821 1.3590 0.7961 0.3531 0.2764

Table 2. RMSE of every state variable in the y-direction of two different kernel size selection methods.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

λ0 1.2325 1.2203 0.6863 0.3248 0.3232
λ 1.2538 1.2451 0.6905 0.32 0.3232

Table 3. RMSE of every state variable in the z-direction of two different kernel size selection methods.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

λ0 1.3477 1.3768 0.8037 0.3581 0.7747
λ 1.3747 1.3968 0.8256 0.3682 0.7936

4.3. The Presence of Gaussian Noise

In this section, we will apply the MCCKF on α-jerk model in the presence of Gaussian noises to
present the performance of MCCKF. The simulation parameters and the initial state are the same as
Section 4.1.

To explain the advantages of MCCKF, we use EnKF, UKF, GSF and HF algorithms to track
target with α-jerk model compared with MCCKF. Figure 6 demonstrates the real target trajectory
and the estimated target trajectories with EnKF, GSF, UKF, HF and MCCKF in a two-dimensional
plane. Figure 7 demonstrates the residual defined in Equation (79) with EnKF, UKF, GSF, HF and
MCCKF. Tables 4–6 summarize the corresponding RMSE of every state variable with five algorithms
in three directions.
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Figure 6. Target trajectories of different filter algorithms on the α-jerk model in the presence of
Gaussian noises.
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Figure 7. Residual of estimated position with different filter algorithms in the presence of Gaussian noises.

As can be seen from Figures 6 and 7, MCCKF does not have the best performance most of the
time. Furthermore, it can be seen that the performance of MCCKF may be worse than UKF in general
combined with Tables 4–6.

Table 4. RMSE of every state variable in the x-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 7.0350 4.7926 2.3029 0.5543 1.7291
UKF 1.2892 1.3825 0.8940 0.4424 1.6125
GSF 1.5990 1.2220 0.8072 0.4202 1.6125
HF 1.2843 1.2220 0.8072 0.4202 1.6125

MCCKF 1.2901 1.2252 0.8076 0.4201 1.6125
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Table 5. RMSE of every state variable in the y-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 3.2812 3.9866 2.1125 0.5019 3.2963
UKF 1.2856 1.5343 0.9418 0.4299 1.1582
GSF 1.5749 1.3181 0.8666 0.4245 1.1582
HF 1.2695 1.3181 0.8666 0.4245 1.1582

MCCKF 1.2695 1.3195 0.8685 0.4245 1.1582

Table 6. RMSE of every state variable in the z-direction of EnKF, UKF, GSF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 4.5702 3.5353 1.9189 0.5649 1.9978
UKF 1.2178 1.4724 0.9319 0.4700 1.1227
GSF 1.5931 1.2563 0.8887 0.4738 1.1227
HF 1.2071 1.2562 0.8887 0.4738 1.1227

MCCKF 1.2125 1.2617 0.8907 0.4741 1.1227

4.4. The Presence of Large Outliers

In this section, we will apply the MCCKF on α-Jerk model in the presence of large outliers to verify
the robustness of MCCKF. The simulation parameters and the initial state are the same as Section 4.1.
The constant outliers are added, respectively, from 251 s to 260 s and from 351 s to 360 s. The magnitude
of the outliers is 10.

To explain the advantages of MCCKF, we use the EnKF, UKF, GSF, and HF algorithms to track
targets with α-jerk models compared with MCCKF. Figure 8 demonstrates the real target trajectory
and the estimated target trajectories with EnKF, GSF, UKF, HF and MCCKF in a two-dimensional
plane. Figure 9 demonstrates the residual defined in Equation (79) with EnKF, UKF, GSF, HF and
MCCKF. Tables 7–9 summarize the corresponding RMSE of every state variable with five algorithms
in three directions.
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Figure 8. Target trajectories of different filter algorithms on α-jerk model in the presence of large outliers.
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Figure 9. Residual of estimated position with different filter algorithms in the presence of large outliers.

As can be seen from Figure 8, MCCKF has a higher accuracy in most time. From Figure 9, it can be
evidently seen that EnKF, UKF and GSF have divergence during the time of outliers. HF and MCCKF
have a stable behavior in the whole process. Tables 7–9 show that MCCKF has a better performance
than others, including HF.

Table 7. RMSE of every state variable in x-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 6.9390 6.4846 3.7753 0.6530 1.3750
UKF 3.3104 1.7170 0.9083 0.4238 0.9707
GSF 3.0822 1.5156 0.8306 0.4258 0.9707
HF 2.3903 1.4708 1.7734 1.3180 1.0783

MCCKF 1.4252 1.3336 0.8153 0.4245 0.9707

Table 8. RMSE of every state variable in y-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 3.7977 2.8730 1.7031 0.5630 5.5318
UKF 3.3085 1.6968 0.9586 0.4464 0.3219
GSF 3.5637 1.6479 0.8553 0.4259 0.3219
HF 2.2420 3.2366 1.6525 1.3194 0.8478

MCCKF 1.3119 1.2571 0.8020 0.4244 0.3219

Table 9. RMSE of every state variable in z-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 11.6641 9.4672 4.7836 0.8071 2.8136
UKF 3.1840 1.6303 0.9613 0.4324 0.6726
GSF 2.8279 1.3632 0.8259 0.4192 0.6726
HF 2.2469 3.2751 1.6901 1.3161 0.9380

MCCKF 1.3696 1.2799 0.8209 0.4188 0.6726

4.5. The Presence of Gaussian Mixture Noises

In this section, we will apply the MCCKF on the α-Jerk model in the presence of Gaussian mixture
noises to verify the advantage of MCCKF. The simulation parameters and the initial state are also the
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same as Section 4.1. In the measurement process, we add the Gaussian mixture noise. The Gaussian
mixture noise model is as follows:

Vk = (1− υ) N
(

µ1, σ2
1

)
+ υN

(
µ2, σ2

2

)
, (81)

where µ1 =
[
0 0 0

]
, µ2 =

[
0 0 0

]
, σ2

1 = R, σ2
2 = diag

([
10 10 10

])
and υ = 0.01.

The accuracy of the MCCKF is compared with the EnKF, UKF, GSF, and HF. Figure 10 demonstrates
the real target trajectory and the estimated target trajectories with EnKF, UKF, GSF, HF and MCCKF.
Figure 11 demonstrates the residual defined in Equation (79) with EnKF, GSF, UKF, HF and MCCKF in
a two-dimensional plane. Tables 8–10 summarize the corresponding RMSE of every state variable with
five algorithms in three directions.
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Figure 10. Target trajectories of different filter algorithms on the α-jerk model in the presence of
Gaussian mixture noises.
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Figure 11. Residual of estimated position with different filter algorithms in the presence of Gaussian
mixture noises.

Similar to the presence of large outliers, MCCKF has a higher accuracy in most time compared to
other methods from Figures 10 and 11. Furthermore, it can be seen that it has a better performance
than others from Tables 10–12.
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Table 10. RMSE of every state variable in the x-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 6.4009 6.4574 3.3219 0.5756 2.0893
UKF 1.3171 1.5839 1.0426 0.4578 0.9669
GSF 1.6669 1.4316 0.9840 0.4498 0.9669
HF 1.5411 1.4907 0.9834 0.4703 0.9669

MCCKF 1.3080 1.4194 0.9714 0.4497 0.9669

Table 11. RMSE of every state variable in the y-direction of EnKF, UKF, GSF, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 5.6661 6.9973 3.8323 0.6798 1.6025
UKF 1.2481 1.4203 0.9216 0.4233 1. 5972
GSF 1.6537 1.2715 0.8655 0.412 1. 5972
HF 1.2348 1.2715 0.8655 0.4122 1. 5972

MCCKF 1.0214 1.2607 0.8226 0.4117 1.5972

Table 12. RMSE of every state variable in the z-direction of EnKF, UKF, GS, HF and MCCKF algorithms.

Position (m) Velocity (m/s) Accelaration (m/s2) Jerk (m/s3) α

EnKF 2.4590 2.6990 1.5505 0.5314 3.0559
UKF 1.2806 1.5766 1.0119 0.4717 0.4726
GSF 1.5664 1.3625 0.9533 0.4678 0.4726
HF 1.2877 1.3625 0.9529 0.4678 0.4726

MCCKF 1.2548 1.3602 0.9134 0.4678 0.4726

5. Conclusions

α-jerk model, a modified jerk model, can estimate the parameter α in real time during the process
of target tracking. In the process of tracking targets, the measurement noise is a research focus. Large
outliers and Gaussian mixture noises are the most popular non-Gaussian noises in the measurement
process. Maximum Correntropy Criterion Kalman Filter is deduced with the weighted least square
algorithm, which is proved to be rational based on the correntropy theory. Its robustness in the state
estimation is analyzed with influence function for the first time. It proves that the filter algorithm can
overcome the influence of non-Gaussian noises. Furthermore, a novel kernel size selection is proposed,
which can improve the robustness of the filter algorithm. Simulated experimental results demonstrate
that it provides effective performance to control the non-Gaussian noises of α-jerk model.
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