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Abstract: To maximize the benefit that can be derived from the information implicit in big data,
ensemble methods generate multiple models with sufficient diversity through randomization or
perturbation. A k-dependence Bayesian classifier (KDB) is a highly scalable learning algorithm with
excellent time and space complexity, along with high expressivity. This paper introduces a new
ensemble approach of KDBs, a k-dependence forest (KDF), which induces a specific attribute order
and conditional dependencies between attributes for each subclassifier. We demonstrate that these
subclassifiers are diverse and complementary. Our extensive experimental evaluation on 40 datasets
reveals that this ensemble method achieves better classification performance than state-of-the-art
out-of-core ensemble learners such as the AODE (averaged one-dependence estimator) and averaged
tree-augmented naive Bayes (ATAN).

Keywords: k-dependence forest; diversity; conditional dependencies

1. Introduction

Classification is a basic task in data analysis and pattern recognition that requires the learning of
a classifier, which assigns labels or categories to instances described by a set of predictive variables
or attributes. The induction of classifiers from datasets of preclassified instances is a central problem
in machine learning. Given class label C and predictive attributes X = {X1, · · · , Xn} ( capital letters,
such as X, Y and Z, denote attribute names, and lowercase letters, such as x, y and z, denote the specific
values taken by those attributes. Sets of attributes are denoted by boldface capital letters, such as X,
Y and Z, and assignments of values to the attributes in these sets are denoted by boldface lowercase
letters, such as x, y and z), discriminative learning [1–4] directly models the conditional probability
P(c|x). Unfortunately, P(c|x) cannot be decomposed into a separate term for each attribute, and there
is no known closed-form solution for the optimal parameter estimates. Generative learning [5–8]
approximates the joint probability P(c, x) with different factorizations according to Bayesian network
classifiers, which are powerful tools for knowledge representation and inference under conditions
of uncertainty. Naive Bayes (NB) [9], which is the simplest kind of Bayesian network classifier
that assumes the attributes are independent given the class label, are surprisingly effective. After the
discovery of NB, many state-of-the-art algorithms, for example, tree-augmented naive Bayes (TAN) [10]
and a k-dependence Bayesian classifier (KDB) [11], are proposed to relax the independence assumption
by allowing conditional dependence between attributes Xi and Xj, which is measured by conditional
mutual information I(Xi; Xj|C). In order to improve predictive accuracy relative to a single model,
ensemble methods [12,13], for example, averaged one-dependence estimator (AODE) [14] and averaged
tree-augmented naive Bayes (ATAN) [15] methods, generate multiple global models from a single
learning algorithm through randomization (or perturbation).
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An ideal Bayesian network classifier should provide the maximum value of mutual information
I(C; X) for classification; that is, I(C; X) should represent strong mutual dependence between C and
X. However,

max I(Xi; Xj|C) < max I(C; Xi, Xj), ∀i, j, i 6= j

The strong conditional dependence between attributes Xi and Xj may not help to improve
classification performance. As shown in Figure 1, the proportional distribution of I(Xi; Xj|C) differs
greatly to that of I(C; Xi, Xj).

Figure 1. (a) The proportional distribution of conditional mutual information I(Xi; Xj|C);
(b) the proportional distribution of mutual information I(C; Xi, Xj). The predictive attributes
{buying, maint, doors, persons, lug_boot, sa f ety} of Car are represented by {X1, X2, ..., X6}.

The KDB is a form of a restricted Bayesian network classifier with numerous desirable properties in
the context of learning from large quantities of data. It achieves a good trade-off between classification
performance and structure complexity with a single parameter, k. KDB uses mutual information
I(C; Xi) to predetermine the order of predictive attributes and conditional mutual information
I(Xi; Xj|C) to measure the conditional dependence between predictive attributes.

In this paper, we extend the KDB. The contributions of this paper are as follows:

• We propose a new sorting method to predetermine the order of predictive attributes. This sorting
method considers not only the dependencies between predictive attributes and the class variable,
but also the dependencies between predictive attributes.

• We extend the KDB from one single k-dependence tree to a k-dependence forest (KDF). A KDF
reflects more dependencies between predictive attributes than the KDB. We show that our algorithm
achieves comparable or lower error on University of California at Irvine (UCI) datasets than a range
of popular classification learning algorithms.

The rest of this paper is organized as follows. Section 2 introduces some state-of-the-art Bayesian
network classifiers. Section 3 explains the basic idea of the KDF and introduces the learning procedure
in detail. Section 4 compares experimental results on datasets from the UCI Machine Learning
Repository. Section 5 draws conclusion.

2. Bayesian Network Classifiers

A Bayesian network [16], BN =< G, Θ >, is a directed acyclic graph with a conditional
probability distribution for each node, collectively represented by Θ, which quantifies how much a
node depends on its parents. Nodes and arcs in G represent random variables and the probability
dependence between variables, respectively. The full Bayesian network classifier [17] fully reflects



Entropy 2017, 19, 651 3 of 20

the dependencies between predictive attributes and can be regarded as the optimal Bayesian network
classifier. The corresponding joint probability is

P(c, x) = P(c)P(x1|c)
n

∏
i=2

P(xi|c, x1, · · · , xi−1) (1)

From Equation (1), we can see that the true complexity in such an unrestricted model (i.e., no
independencies) comes from the large number of attribute dependence arcs that are present in
the model. As the number of attributes and arcs increase, the computational complexity of the
joint probability grows exponentially until it becomes an NP-hard problem [18]. In order to
address this issue, researchers have proposed some state-of-the-art classifiers to simplify the network
structure [9,19–21]. The functional domain of one single classifier may be limited as a result of ignoring
the dependencies between some attributes. Classifiers that use the forest or ensemble method
are commonly applied to fill the gap [12,14,15]. In the following subsection, we first introduce NB and
its corresponding ensemble classifier, that is, AODE. Then, we introduce TAN and its corresponding
ensemble classifier, that is, ATAN. Lastly, we introduce the KDB in detail.

2.1. NB and AODE

NB, which is the simplest Bayesian network classifier, supposes that all the predictive attributes
are independent of each other given class variable C, transforming Equation (1) into

P(c, x) ∝ P(c)
n

∏
i=1

P(xi|c) (2)

NB has exhibited a high level of predictive competence with other learning algorithms, such as
decision trees [22]. However, in the real world, attributes in many learning tasks are correlated to each
other, so the conditional independence assumption rarely holds and it may degrade the classification
performance. How to relax the conditional independence assumption and simultaneously retain NBs’
efficiency have attracted much attention, and many approaches have been proposed already [11,14,19].

AODE is an ensemble augmentation of NB that utilizes a restricted class of one-dependence
estimators (ODEs) and aggregates the predictions of all qualified estimators within this class. A single
attribute Xi, called a superparent, is selected as the parent of all the other attributes in each ODE.
For each ODE, AODE utilizes an assumption that the attributes are independent given the class
variable and any predictive attribute Xi, estimating Equation (1) by

P(c, x) ∝
n

∑
i=1

P(c, xi)
n

∏
j=1,j 6=i

P(xj | xi, c) (3)

AODE achieves lower classification error than NB, because it involves a weaker attribute
independence assumption and the ensemble mechanism. Figure 2 shows graphically the structural
differences between NB and AODE.

Figure 2. (a) An example of naive Bayes (NB); (b) an example of averaged one-dependence estimator (AODE).
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2.2. TAN and ATAN

TAN is a structural augmentation of NB in which every attribute has the class and at most one
other attribute as parents. The structure is determined by using an extension of the Chow–Liu tree [23],
which utilizes conditional mutual information to find a maximum spanning tree. By learning from
the maximum weighted spanning tree (MWST), TAN can represent all significant one-dependence
relationships and is commonly regarded as the optimal one-dependence classifier [24]. Rather than
obtaining a spanning tree, Ruz and Pham [25] suggest that Kruskal’s algorithm be stopped whenever a
Bayesian criterion controlling the likelihood of the data and the complexity of the TAN structure holds.

ATAN is an ensemble augmentation of TAN. It takes not a random node, but each predictive
variable as a root node and then builds the corresponding MWST conditioned to that selection.
Finally, the posterior probabilities of ATAN are given by the average of the n TAN classifier posterior
probabilities. Figure 3 shows graphically the structural differences between TAN and ATAN.

Figure 3. (a) An example of tree-augmented naive Bayes (TAN), which takes X1 as the root node;
(b) a subclassifier of averaged TAN (ATAN), which takes X2 as the root node.

2.3. KDB

The KDB allows each attribute to have a maximum of k parents, except the class variable.
The attribute order is predetermined by comparing mutual information I(Xi; C) between the predictive
attribute and class variable, starting with the highest. Once Xi enters the model, its parents are
selected by choosing the k variables Xj in the model with the highest values of the conditional mutual
information I(Xi; Xj|C). We note that the first k variables added to the model will have fewer than k
parents. We suppose that the attribute order is {X1, X2, · · · , Xn}; then Xi will have i− 1 parents when
i ≤ k, and the remaining n− k variables have exactly k parents. Then Equation (1) turns out to be

P(c, x) ∝ P(c)
n

∏
i=1

P(xi|c, xi1, · · · , xip) (4)

where Xi1, · · · , Xip are the parent attributes of Xi and p = min(i− 1, k). Figure 4 shows graphically an
example of a KDB.
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Figure 4. An example of k-dependence Bayesian classifier (KDB; k = 2).

3. The k-Dependence Forest Algorithm

The KDB is supplied with both a database of preclassified instances, a DB, and the k value
for the maximum allowable degree of attribute dependence. The structure learning procedure of a
KDB can be partitioned into two parts: attribute sorting and dependence analysis. During the sorting
procedure, the KDB uses mutual information I(C; Xi) to predetermine the order of predictive attributes.
The KDB ensures that the predictive attributes that are most dependent on the class variable should
be considered first and added to the structure. However, mutual information can only measure the
dependencies between predictive attributes and the class variable, while it ignores the dependencies
between predictive attributes. The sorting process of the KDB only embodies the dependency between
each single attribute and class variable, which may result in a suboptimal order. The proposed
algorithm, the KDF, uses a new sorting method to address this issue.

According to the chain rule of information theory, mutual information I(C; X) can be expanded
as follows:

I(C; X) =I(C; X1) + I(C; X2|X1) + · · ·+ I(C; Xi|X1, · · · , Xi−1)

+ · · ·+ I(C; Xn|X1, · · · , Xn−1)
(5)

In the ideal case, in classification, we would like to obtain the maximum value of I(C; X).
From Equation (5), we can find that the computational complexity of I(C; Xi|X1, · · · , Xi−1) grows
exponentially as the number of attributes increases. The space to store the conditional probability
distribution grows exponentially. How to approximate the probability estimation is challenging.
In order to address this issue, we replace I(C; Xi|X1, · · · , Xi−1) with the following:

Sum_CMIi = I(C; Xi|X1) + I(C; Xi|X2) + · · ·+ I(C; Xi|Xi−1) (6)

Equation (6) considers both the mutual dependence and the conditional dependence for
classification. On the basis of this, we propose a new approach to predetermine the sequence of
predictive attributes by comparing the value of Sum_CMIi. From Equation (6), we can find that the
first attribute of a sequence does not reflect the conditional dependence. Thus we use each attribute as
the root node Xroot in turn. The next attribute, which will be added to the sequence, is the attribute that
is most informative about C conditioned on the first attribute (which is measured by I(Xi; C|Xroot)).
Subsequent attributes are chosen to be the most informative about C conditioned on previously chosen
attributes (which is measured by Sum_CMIi). Because of the n different root nodes, we can obtain n
sequences {S1, · · · , Sn}. On the basis of the n sequences, n subclassifiers can be generated. The sorting
algorithm (Algorithm 1) is depicted below.
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Algorithm 1: KDF: Sorting

Input: Preclassified dataset DB with n predictive attributes {X1, · · · , Xn}.
Output: Sequences {S1, · · · , Sn}.
For each sequence Si , i ∈ {1, · · · , n}:

1. Let Si be empty.
2. Let predictive attribute Xi, i ∈ {1, · · · , n} be the root node.
3. Add the root node to Si.
4. Repeat until Si includes all domain attributes:

(a) Compute Sum_CMI j for the predictive attribute Xj (j 6= i), which is not in Si.
(b) Select Xmax, which has the maximum value of Sum_CMI j.
(c) Add Xmax to Si.

In order to identify the graphical structure of the resulting classifier, the KDB adopts a greedy
search strategy. The weight of conditional dependence between Xi and its parent Xj is measured by con-
ditional mutual information I(Xi; Xj|C). However, the dependency relationships between Xj and other
parents of Xi are neglected, whether they are independent or strongly correlated. From Equation (1),
we can see that, for the full Bayesian network classifier, the parent of X2 is X1, the parent of X3 is
{X1, X2}, the parent of X4 is {X1, X2, X3}, and so forth. Then we can achieve an implicit chain rule,
that X1 is the parent of X2, X2 is the parent of X3 (or X1 is the grandparent of X3), X3 is the parent of X4

(or X1 is the great grandparent of X4), and so forth. Thus, as shown in Figure 5, there should exist
hierarchical dependency relationships among the parents. If X4 is one parent of attribute Xi, we should
follow the dotted line shown in Figure 5 to find the other parents. To make our idea clear, we first
introduce the definition of an ancestor node.

X 4 X 3(parent of X4) X 2(grandparent of X4) X 1(great grandparent of X4)

X 2(parent of X3) X 1(grandparent of X3)

X 1(parent of X2)

Figure 5. An example of the hierarchical dependency relationship.

Definition 1. Suppose that Xj is the parent of Xi. The ancestor attributes of Xi include Xj’s parents,
grandparents, great grandparents, and so forth.

During the procedure of dependence analysis, Xi first selects the attribute Xj that corresponds
to the largest value of I(Xi; Xj|C) as its parent. For the other k − 1 parents, Xi will select among
its ancestor attributes. Figure 6a shows an example of the KDF subclassifier, for example, KDFi.
We suppose that X4 = arg max I(Xi; X5|C). When X5 is added to KDFi, X4 will be selected as the first
parent of X5. The corresponding parent–child relationships are shown in Figure 6b, from which we can
see that the ancestor attributes of X5 are {X2, X3}

∨{X1, X2}
∨

X1, that is, {X1, X2, X3}. Other parents
of X5 will be selected from {X1, X2, X3} by comparing I(Xi; X5|C)(1 ≤ i ≤ 3). This strategy helps to
reduce the search space of attribute dependencies. The detailed procedure of dependence analysis
(Algorithm 2) is depicted below.
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Figure 6. (a) An exmple of a subclassifier of k-dependence forest (KDF) and supposing the
predetermined attribute sequence Si is {X1, X2, X3, X4, X5} and k = 2. (b) The corresponding
parent-child relationships.

Algorithm 2: KDF: Dependence Analysis

Input: Sequences {S1, · · · , Sn}.
Output: Subclassifiers {KDF1, · · · , KDFn}.

1. Compute I(Xi; Xj|C), for each pair of attributes Xi and Xj, where i 6= j.
2. For each sequence Si, i ∈ {1, · · · , n}:

(1) Let the KDFi being constructed begin with a single class node, C.
(2) Repeat until KDFi includes all attributes:

(a) Select the attribute X f irst, which is the first attribute in Si and not in KDFi.
(b) Add a node to KDFi representing X f irst.
(c) Add an arc from C to X f irst in KDFi.
(d) Select Xj, which is in KDFi and has the largest value of I(X f irst; Xj|C), as the first parent

of X f irst.
(e) Select other b− 1 parents from ancestor attributes of Xj by comparing the value of

I(X f irst; Xp|C), where Xp is one of the ancestor attributes of Xj, b = min(d, k) and d is the

number of the ancestor attributes of Xj.
3. Compute the conditional probability tables inferred by the structure of KDFi by using counts

from DB, and output KDFi.

After training multiple learning subclassifiers, ensemble learning treats these as a “committee” of
decision makers and combines individual predictions appropriately. The decision of the committee
should have better overall accuracy, on average, than any individual committee member. There exist
numerous methods for model combination, for example, the linear combiner, the product combiner
and the voting combiner. For the subclassifier KDFi, an estimate of the probability of class c given
input x is Pi(c|x). The linear combiner is used for models that output real-valued numbers; thus it is
applicable for the KDF. The ensemble probability estimate is

P̂(c|x) =
n

∑
i=1

wiPi(c|x)

If the weights wi = 1/n, ∀i, this is a simple uniform averaging of the probability estimates.
The notation clearly allows for the possibility of a nonuniformly weighted average. If the classifiers
have different accuracies on the data, a nonuniform combination could in theory give a lower error than
a uniform combination. However, in practice, the difficulty is of estimating the wi parameters without
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overfitting and the relatively small gain that is available. Thus, in practice, we use the uniformly rather
than nonuniformly weighted average.

The KDF collects the statistics to perform calculations of conditional mutual information of each
pair of attributes given the class for structure learning. As an entry must be updated for every training
instance and every combination of two attribute values for that instance, the time complexity of forming
the three-dimensional probability table is O(n2mcv2), where m is the number of training instances, n is
the number of attributes, c is the number of classes, and v is the maximum number of discrete values
that any attribute may take. To calculate the conditional mutual information, the KDF must consider
every pairwise combination of their respective values in conjunction with each class value O(c(nv)2).
For each subclassifier KDFi, attribute ordering and parent assignment are O(n log n) and O(n2 log n),
respectively. KDFi requires n tables of k + 2 dimensions, with O(cnvk+1). Because the KDF needs to
average the results of n subclassifiers, the time complexity of classifying a single testing instance is
O(n2ck) time.

The parameter k is closely related to the classification performance of a high-dependence classifier.
A higher value of k may result in higher variance and lower bias. Unfortunately there is no a priori
means to preselect an appropriate value of k that can help to achieve the lowest error for a given
training set, as this is a complex interplay between the data quantity and the complexity and strength
of the interactions between the attributes proved by Martinez et al. [8]. From the discussion above,
we can see that, for each KDFi, the space complexity of the probability table increases exponentially as
k increases; to achieve the trade-off between classification performance and efficiency, we restrict the
structure complexity to be two-dependence, which is also adopted by Webb et al. [26].

4. Experiments and Results

In order to verify the efficiency and effectiveness of the proposed KDF algorithm, experiments
were conducted on 40 benchmark datasets from the UCI Machine Learning Repository [27]. Table 1
summarizes the characteristics of each dataset, including the number of instances, attributes and
classes. All the datasets were ordered by dataset scale. Missing values for qualitative attributes were
replaced with modes, and those for quantitative attributes were replaced with means from the training
data. For each original dataset, we discretized numeric attributes using minimum description length
(MDL) discretization [28]. All experiments were conducted on a desktop computer with an Intel(R)
Core(TM) i3-6100 CPU @ 3.70 GHz, 64 bits and 4096 MB of memory. All the experiments for the
Bayesian algorithms used C++ software specifically designed to deal with classification methods.
The running efficiency of the KDF was good. For example, for a Poker hand dataset, it took 281 s for
the KDF to obtain classification results. The following algorithms were compared:

• NB, standard naive Bayes.
• TAN, tree-augmented naive Bayes.
• AODE, averaged one-dependence estimator.
• KDB, k-dependence Bayesian classifier.
• KDBS, the KDB that only performs the sorting method proposed above.
• ATAN, averaged tree-augmented naive Bayes.
• RF100, random forest containing 100 trees.
• RFn, random forest containing n trees, where n is the number of predictive attributes.
• KDF, k-dependence forest.
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Table 1. Datasets.

Index Dataset # Instance Attribute Class Index Dataset # Instance Attribute Class

1 Post-operative 90 8 3 21 Contraceptive-mc 1473 9 3
2 Zoo 101 16 7 22 Car 1728 6 4
3 Promoters 106 57 2 23 Segment 2310 19 7
4 Echocardiogram 131 6 2 24 Kr vs. kp 3196 36 2
5 Lymphography 148 18 4 25 Sick 3772 29 2
6 Hepatitis 155 19 2 26 Spambase 4601 57 2
7 Autos 205 25 7 27 Optdigits 5620 64 10
8 Glass-id 214 9 3 28 Satellite 6435 36 6
9 Heart 270 12 2 29 Mushrooms 8124 22 2

10 Hungarian 294 13 2 30 Thyroid 9169 29 20
11 Heart disease-c 303 13 2 31 Sign 12,546 8 3
12 Ionosphere 351 34 2 32 Nursery 12,960 8 5
13 House votes-84 435 16 2 33 Magic 19,020 10 2
14 Chess 551 39 2 34 Adult 48,842 14 2
15 Breast cancer-w 699 9 2 35 Shuttle 58,000 9 7
16 Pima-Ind diabetes 768 8 2 36 Connect-4 67,557 42 3
17 Vehicle 846 18 4 37 Waveform 100,000 21 3
18 Anneal 898 39 6 38 Census income 299,285 41 2
19 Tic-tac-toe 958 9 2 39 Covtype 581,012 54 7
20 Vowel 990 13 11 40 Poker hand 1,025,010 10 10

Kohavi and Wolpert presented a bias-variance decomposition of the expected misclassification
rate [29], which is a powerful tool from sampling theory statistics for analyzing supervised learning
scenarios. Supposing c and ĉ are the true class label and that generated by a learning algorithm,
respectively, the zero-one loss function is defined as

ξ(c, ĉ) = 1− ∑
ĉ,cεC

P(c = ĉ)

The bias term measures the squared difference between the average output of the target and the
algorithm. This term is defined as follows:

bias =
1
2 ∑

ĉ,cεC
[P(ĉ|x)− P(c|x)]2

where x is the combination of any attribute value. The variance term is a real-valued non-negative
quantity that equals zero for an algorithm that always makes the same guess regardless of the training
set. The variance increases as the algorithm becomes more sensitive to changes in the training set. It is
defined as follows:

variance =
1
2
[1−∑

ĉεC
P(ĉ|x)2]

Given the definite Bayesian network structure, P(c, x) can be calculated as follows:

P(c, x) = P(c)
n

∏
i=1

P(xi|c, Pa(xi))

The conditional probability P(c|x) in the bias term can be rewritten as

P(c|x) = P(c, x)
P(x)

=
P(c, x)

∑
C

P(c, x)

Given a dataset containing e test instances, the values of zero-one loss, bias and variance for this
dataset can be achieved by averaging the result of zero-one loss, bias and variance for all test instances.

In order to clarify the performance of the KDF over datasets of a different scale, we propose a
new scoring criterion, which is called goal difference (GD).
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Definition 2. Goal difference (GD) is a scoring criterion to compare the performance of two classifiers.
Given two classifiers A and B, GD is defined as

GD(A; B|T ) = |win| − |loss| (7)

where T is the collection of datasets for experimental study, and |win| and |loss| represent the number of datasets
on which A outperforms or underperforms B by comparing the results of the evaluation function (e.g., zero-one
loss, bias, and variance), respectively.

Diversity has been recognized as a very important characteristic in classifier combination.
However, there is no strict definition of what is intuitively perceived as diversity of classifiers.
Many measures of the connection between two classifier outputs can be derived from the statistical
literature. There is less clarity on the subject when three or more classifiers are concerned.
Supposing that each subclassifier votes for a particular class label, given a test instance Tk and
assuming equal weights, the proportion that n subclassifiers agree on class label cj is

Prk(j) =
1
n

n

∑
i=1

fij (8)

where fij =

{
1; if KDFi votes for label cj

0; otherwise
Entropy is a good measure of dispersion in bootstrap estimation during classification. Given a test

set containing M instances, an appropriate measure to evaluate diversity among ensemble members is

Div = −
M

∑
k=1

|C|

∑
j=1

Prk(j) log Prk(j) (9)

Clearly, when all subclassifiers always vote for the same label, Div will have a minimum value of 0.
We argue that the KDF benefits from the sorting method, dependence analysis and ensemble

mechanism. In the following, we propose experiments for these three aspects.

4.1. Impact of Sorting Method

To illustrate the impact of the sorting method on the performance of classification, we consider
another version of the KDB, that is, KDBS. KDBS performs the sorting method proposed above to
replace the sorting method of KDB. We note that the root node of KDBS is consistent with that of the
KDB to make sure the result is fair. Table A1 in Appendix A presents for each dataset the zero-one
loss, which is estimated by 10-fold cross-validation to give an accurate estimation of the average
performance of an algorithm. The best result is emphasized with bond font. Runs with the various
algorithms are carried out on the same training sets and evaluated on the same test sets. In particular,
the cross-validation folds are the same for all of the experiments on each dataset. By comparing via a
two-tailed binomial sign test with a 95% confidence level, we present summaries of win/draw/loss
(W/D/L) records in Table 2. A win indicates that the algorithm has significantly lower error than the
comparator. A draw indicates that the differences in error are not significant. We can easily find that
KDBS achieves lower error on 13 datasets over KDB. This proves that the better performance of KDBS

on 13 datasets can be attributed to the sorting method.
In order to further demonstrate the superiority of this sorting method, Figure 7 shows the scatter

plot of KDBS and KDB in terms of zero-one loss. The X-axis represents the zero-one loss results of KDB
and the Y-axis represents the zero-one loss results of KDBS. We can see that there are a lot of datasets
under the diagonal line, such as Chess, Hepatitis, Lymphography and Echocardiogram, which means
that KDBS has a clear advantage over the KDB. Simultaneously, aside from Nursery, Kr vs. kp and
Poker hand, the other datasets fall close to the diagonal line. That means that KDBS has much higher
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classification error than KDB on only these three datasets. For some datasets, this sorting method did
not affect the classification error. However, for many datasets, it substantially reduced the classification
error, for example, the reduction from 0.1871 to 0.1290 for the Hepatitis dataset.

Table 2. Win/draw/loss comparison results between KDBS and k-dependence Bayesian classifier
(KDB) in terms of zero-one loss.

W/D/L KDB

KDBS 13/19/8

Figure 7. The scatter plot of KDBS and k-dependence Bayesian classifier (KDB) in terms of zero-one loss.

4.2. Impact of Dependence Analysis

To show the superior performance of dependence analysis (i.e., the selection of ancestor attributes)
of the KDF, we clarify from the viewpoint of conditional mutual information I(Xi; Xj|C), which can be
used to quantitatively evaluate the conditional dependence between Xi and Xj given C. We propose
the definition of average conditional mutual information, that is, Avg_CMI, to measure the intensity of
conditional dependence between predictive attributes for the classifier. Avg_CMI is defined as follows:

Avg_CMI =
∑n

i=1 ∑XjεPa(Xi)
I(Xi; Xj|C)

Sum_arc
(10)

where Pa(Xi) is the parent of Xi, and Sum_arc is the sum of numbers of arcs between predictive
attributes. The comparison results of Avg_CMI between KDF and KDB are shown in Figure 8. We can
find that KDF has a significant advantage over KDB for almost all the datasets. According to Figure 8,
we can see that the W/D/L of KDF against KDB is 35/1/4. That is to say, KDB has a higher value
of Avg_CMI than KDF on only four datasets. The experimental results prove that the selection of
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ancestor attributes of the KDF can fully demonstrate conditional dependence between predictive
attributes; for example, the value of Avg_CMI increases from 0.2947 to 0.4991 for the Vowel dataset.

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8
A

vg
_C

M
I

KDB

KDF

index number of datasets

Figure 8. The comparison results of Avg_CMI between k-dependence forest (KDF) and k-dependence
Bayesian classifier (KDB).

4.3. Further Experimental Analysis

This part of the experiments compared the KDF with the out-of-core classifiers described in
Section 4 in terms of zero-one loss. According to the zero-one loss results in Table A1 in Appendix A,
we present summaries of W/D/L records in Table 3. When the dependence complexity increases,
the performance of TAN and the KDB becomes better than that of NB. The two-dependence relationship
helps the KDB to achieve a slightly better performance than TAN (16 wins and 13 losses). It is clear
that AODE performs far better than NB (27 wins and 4 losses). However, the ensemble mechanism
does not help ATAN to achieve superior performance to TAN (2 wins and 1 loss). The KDF performs
the best. For example, when compared with the KDB, the KDF wins on 23 datasets and loses on
5 datasets. This advantage is more apparent when comparing the KDF with ATAN (26 wins and
2 losses). The KDF also provides better classification performance than AODE (26 wins and 5 losses).

Table 3. Win/draw/loss comparison results of zero-one loss on all datasets.

NB TAN AODE KDB ATAN

TAN 30/3/7 — — — —
AODE 27/9/4 10/16/14 — — —
KDB 27/4/9 16/11/13 16/10/14 — —

ATAN 30/3/7 2/37/1 14/15/11 12/13/15 -
KDF 31/5/4 25/12/3 26/9/5 23/12/5 26/12/2

To clarify from the viewpoints of the ensemble mechanism and structure complexity, we only
compare the KDF with three classifiers, that is, KDB, ATAN and AODE. We present the fitting curve of
GD in terms of zero-one loss in Figure 9. Given datasets {D1, · · · , Dm}, the X-axis in Figure 9 represents
the index number of datasets, and the Y-axis represents the value of GD(A; B|Si), where Si is the
collection of datasets {D1, · · · , Dî|î < m} for experimental study. In the following discussion, we first
compare the KDF with other two ensemble classifiers, that is, ATAN and AODE. Then, the KDF is
compared with the KDB in the case of the same value of k. As shown in Figure 9, the KDF only performs
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a little worse than ATAN when dealing with small datasets with less than 131 instances, for example,
Echocardiogram. This indicates that fewer instances are not enough to support discovering significant
dependencies for the KDF. However, as more instances are utilized for the training classifier, the sorting
method of the KDF and the higher value of k will help to ensure that more dependencies will appear
and be expressed in the joint probability distribution. This makes the KDF perform much better than
ATAN (the maximum value of GD(KDF; ATAN|Si) is 24). Owing to the same reason, the fitting curve
of GD(KDF; AODE|Si) has a similar trend compared with the fitting curve of GD(KDF; ATAN|Si).
When we compare the KDF with the KDB, the fitting curve shows a different trend. It is clear from
Figure 9 that the KDF always performs much better than the KDB on datasets of different scale.
This superior performance is due to the ensemble mechanism of the KDF. The KDF has n subclassifiers,
where n is the number of predictive attributes, and each subclassifier of the KDF reflects almost
the same quantities of mutual dependencies and conditional dependencies compared with the KDB.
Moreover, diversity among the subclassifiers of the KDF is also a key part in the superior performance
of the KDF. In order to prove this point, we show the results of average entropy diversity in the
following discussion.
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Figure 9. The fitting curves of goal difference (GD) in terms of zero-one loss.

For the purpose of calculating the average entropy diversity of the KDF over datasets of a different
scale and simultaneously ensuring the consistency of the data distribution, we take the Poker hand
dataset as an example. Before the segmentation, 200 instances were selected as a test set and the
remaining instances were for training. The training set is divided into 17 parts of different sizes.
The scale of these 17 parts is in an exponential growth of 2 (from 23 to 219). Figure 10a shows the
fitting curve of average entropy diversity of the KDF on the Poker hand dataset. As can be seen,
there is a strong diversity among the subclassifiers of the KDF, and the maximum value is close to
0.48 when the dataset contains less than 212 instances (4096 instances). The reason for this result is that
fewer training instances make each subclassifier learn diverse mutual dependencies and conditional
dependencies. As the quantities of instance increase, each subclassifier can be trained well and tends to
vote for the same label. Therefore, the fitting curve of the average entropy diversity has a downward
trend. However, the slight decrease in diversity does not produce a bad performance in classification
accuracy. Figure 10b shows the corresponding fitting curve of zero-one loss of the KDF. We can find
that as more instances are utilized for training, the KDF still achieves better classification performance
in terms of zero-one loss.
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(a) (b)

Figure 10. The fitting curve of (a) average entropy diversity, and (b) zero-one loss of k-dependence
forest (KDF) on Poker hand dataset.

4.3.1. Comparison with In-Core Random Forest

A random forest (RF) is a powerful in-core learning algorithm that is state-of-the-art. To further
illustrate the performance of the KDF, here we first compare the KDF with the RF, which contains
100 trees (RF100) with respect to zero-one loss. From Table A1 in Appendix A, we can see that RF100
seems to perform better than the KDF on several datasets. In order to know how much RF100 wins
by, we present the scatter plot in Figure 11a, where the X-axis represents the zero-one loss results of
RF100 and the Y-axis represents the zero-one loss results of the KDF. We note that we do not obtain the
results for RF100 on such two datasets as Covtype and Poker hand because of the limited memory;
thus we remove these two points in the plot. We can see that the dataset Anneal is under the diagonal
line, which means the KDF could beat RF100 on the Anneal dataset. Except for Vowel, Tic-tac-toe,
Promoters and Sign, the other datasets fall close to the diagonal line. This means the performance
of the KDF is close to the performance of RF100 on most datasets. It is worthwhile to keep in mind
that the number of subclassifiers of the KDF (the maximum number is 64 on the Optdigits dataset) is
much smaller than that of RF100.

Figure 11. The scatter plot of (a) k-dependence forest (KDF) and random forest 100 (RF100), and (b) KDF
and random forest n (RFn) in terms of zero-one loss.
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It is unfair to make a comparison between the KDF and RF when they have a different number
of subclassifiers. Thus we present another experiment that limits the RF with n trees (RFn), just as for
KDF. Table A1 in Appendix A presents the zero-one loss in detail. We also present the scatter plot in
Figure 11b, where the X-axis represents the zero-one loss results of RFn and the Y-axis represents the
zero-one loss results of the KDF. From Figure 11b, we can easily find that most datasets are under the
diagonal line, for example, Anneal, Car, Chess, Hungarian, Promoters, and so on, which means the
KDF performs much better than RFn on these datasets. Except for Vowel and Sign, the other datasets
fall close to the diagonal line, which means the performance of the KDF is close to that of RFn on the
remaining datasets. The superior performance of the RF can be partially attributed to the great number
of decision trees. The experiment results show that the KDF is competitive with the RF when they
contain the same number of subclassifiers.

4.3.2. Bias Results

Bias can be used to evaluate the extent to which the final model learned from training data
fits the entire dataset. To further illustrate the performance of the proposed KDF, the experimental
results of average bias are shown in Table A2 in Appendix A. Only 18 large datasets (size > 2310) are
selected for comparison because of statistical significance. Table 4 shows the corresponding W/D/L
records. From Table 4, we can see that the fitness of NB is the poorest because its structure is definite
regardless of the true data distribution. Although the structure of AODE is also definite, it shows
a great advantage over NB (17 wins). The main reason may be that it averages all models from
a restricted class of one-dependence classifiers and reflects more dependencies between predictive
attributes. ATAN and TAN almost have the same bias results (18 draws). The KDF still performs
the best, although the advantage is not significant. By sorting attributes and training n subclassifiers,
the ensemble mechanism can help the KDF make full use of the information that is supplied by the
training data. The complicated relationship among attributes are measured and depicted from the
viewpoint of information theory. Thus, performance robustness can be achieved. The W/D/L records
of the KDF compared to AODE show that the advantage is obvious (11 wins and 4 losses) for bias.
We can also find that more often than not, the KDF obtains lower bias than ATAN (8 wins and 4 losses)
and the KDB (7 wins and 5 losses).

Table 4. Win/draw/loss comparison results of bias on large datasets.

NB TAN AODE KDB ATAN

TAN 16/2/0 — — — —
AODE 17/1/0 3/10/5 — — —
KDB 16/2/0 8/6/4 8/5/5 — —

ATAN 16/2/0 0/18/0 5/10/3 4/6/8 —
KDF 17/0/1 8/7/3 11/3/4 7/6/5 8/6/4

Figure 12 shows the fitting curve of GD in terms of bias. The results indicate that the KDF
is competitive to AODE (the minimum value of GD(KDF; AODE|Si) is −1 and the maximum
value of GD(KDF; AODE|Si) is 7). We believe the reason for the KDF performing better is that
the sorting method means it reflect more dependencies than AODE. The KDF performs much better
than ATAN (the maximum value of GD(KDF; ATAN|Si) is 6) when dealing with relatively small
datasets containing less than 67,557 instances, for example, the Connect-4 dataset. As the quantities of
instance increase, dependencies between predictive attributes are completely represented, and the final
structure of both the KDF and ATAN fits the entire dataset well. Thus, the KDF wins on two out of the
last four datasets. The comparison results between the KDF and KDB in terms of GD(KDF; KDB|Si)

show another trend. From the fitting curve, we can find that the KDB is competitive to the KDF for the
first four datasets, which contain less than 4601 instances. The minimum value of GD(KDF; KDB|Si)

is as low as −4. The reason for this result is that KDF cannot discover enough dependencies when
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the dataset contains lower quantities of data. As the quantities of instance increase, the KDF achieves
greater advantage in terms of bias.
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Figure 12. The fitting curve of goal difference (GD) in terms of bias.

4.3.3. Variance Results

Table A3 in Appendix A shows the experimental results of average variance on 18 large datasets.
Table 5 shows corresponding W/D/L records. A higher degree of attribute dependence means more
parameters, which increases the risk of overfitting. An overfitted model does not perform well on
data outside the training data. It is clear that NB performs the best among these algorithms, because
its network structure is definite and is therefore insensitive to changes in the training set, as shown
in Table 5. Owing to the same reason, AODE also has a competitive performance. ATAN has almost
the same performance (17 draws) compared to TAN. By contrast, the KDB performs the worst. When
the value of k increases, the resulting network tends to have a complex structure. The KDF wins on
13 out of 18 datasets compared to the KDB. AODE wins over the KDF, although the advantage is not
significant (7 wins and 9 losses).

Table 5. Win/draw/loss comparison results of variance on large datasets.

NB TAN AODE KDB ATAN

TAN 5/1/12 — — — —
AODE 4/4/10 11/0/7 — — —
KDB 4/2/12 5/3/10 4/2/12 — —

ATAN 5/1/12 0/17/1 7/0/11 10/2/6 —
KDF 5/4/9 7/6/5 7/2/9 13/1/4 7/6/5

Figure 13 shows the fitting curve of GD of in terms of variance. NB and AODE are neglected,
because they are insensitive to the changes in the training set. TAN is not considered, because of almost
the same performance as ATAN. The KDF obtains a significant advantage over the KDB, but performs
similarly to ATAN. ATAN can only represent the most significant one-dependence relationships
between attributes and thus performs similarly to TAN. The ensemble mechanism helps the KDF fully
represent many non-significant dependencies. This may be the main reason why ATAN and the KDF
are not sensitive to the changes in data distribution. In contrast, although the KDB can also represent
significant dependencies, some non-significant dependencies will be affected by the training data,
particularly when the dataset size is relatively large.
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Figure 13. The fitting curve of goal difference (GD) in terms of variance.

5. Conclusions

The KDB delivers fast and effective classification with a clear theoretical foundation. The current
work is motivated by the desire to obtain the accuracy improvements derived by the sorting method
and ensemble mechanism. Our new classification technique averages all models from a restricted
class of k-dependence classifiers, the class of all such classifiers that have a diverse network structure
depending on a different attribute order. Our experiments have shown its superiority from the
comparison results of zero-one loss, bias, variance and diversity. However, the subclassifiers of the
KDF are trained using the same training set, which may lead to overfitting. Moreover, the number of
subclassifiers of the KDF is determined by the number of predictive attributes and is not as many as
for the RF. In all, we believe that we have been successful in our goal of developing a classification
learning technique that retains the direct theoretical foundation of the KDB while fully representing
conditional dependencies among attributes.

Acknowledgments: This work was supported by the National Science Foundation of China (Grant No. 61272209)
and the Agreement of Science & Technology Development Project, Jilin Province (No. 20150101014JC).

Author Contributions: All authors have contributed to the study and to the preparation of the article. They have
read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Tables of the Experimental Section

Table A1. Experimental results of average zero-one loss.

Dataset NB TAN AODE KDB ATAN RF100 RFn KDBS KDF

Post-operative 0.3444 0.3667 0.3333 0.3778 0.3667 0.3667 0.3778 0.3667 0.3667
Zoo 0.0297 0.0099 0.0297 0.0495 0.0198 0.0297 0.0396 0.0396 0.0297
Promoters 0.0755 0.1321 0.1321 0.2547 0.1226 0.0943 0.3208 0.2453 0.2075
Echocardiogram 0.3359 0.3282 0.3206 0.3435 0.3282 0.3359 0.3359 0.3130 0.3130
Lymphography 0.1486 0.1757 0.1689 0.2365 0.1689 0.1554 0.2432 0.1757 0.1554
Hepatitis 0.1935 0.1677 0.1806 0.1871 0.1742 0.1613 0.2387 0.1290 0.1806
Autos 0.3122 0.2146 0.2049 0.2049 0.2146 0.1610 0.1805 0.2049 0.1854
Glass-id 0.2617 0.2196 0.2523 0.2196 0.2196 0.1449 0.1682 0.1963 0.2056
Heart 0.1778 0.1926 0.1704 0.2111 0.1926 0.1815 0.2593 0.2000 0.1741
Hungarian 0.1599 0.1701 0.1667 0.1803 0.1769 0.1837 0.2653 0.1667 0.1497
Heart disease-c 0.1815 0.2079 0.2013 0.2244 0.2046 0.1782 0.2607 0.2046 0.1980
Ionosphere 0.1054 0.0684 0.0741 0.0741 0.0684 0.0741 0.0813 0.0769 0.0712
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Table A1. Cont.

Dataset NB TAN AODE KDB ATAN RF100 RFn KDBS KDF

House votes-84 0.0943 0.0552 0.0529 0.0506 0.0529 0.0391 0.0736 0.0483 0.0483
Chess 0.1125 0.0926 0.0998 0.0998 0.0926 0.0799 0.1815 0.0780 0.0744
Breast cancer-w 0.0258 0.0415 0.0358 0.0744 0.0415 0.0386 0.0601 0.0815 0.0386
Pima-Ind diabetes 0.2448 0.2383 0.2383 0.2448 0.2370 0.2422 0.2734 0.2500 0.2422
Vehicle 0.3924 0.2943 0.2896 0.2943 0.2943 0.2470 0.2754 0.2872 0.2861
Anneal 0.0379 0.0111 0.0089 0.0089 0.0111 0.0479 0.0568 0.0089 0.0078
Tic-tac-toe 0.3069 0.2286 0.2651 0.2035 0.2276 0.0261 0.2046 0.2004 0.1983
Vowel 0.4242 0.1303 0.1495 0.1818 0.1263 0.0172 0.0515 0.1616 0.1273
Contraceptive-mc 0.5037 0.4888 0.4942 0.5003 0.4895 0.4854 0.5132 0.5003 0.4929
Car 0.1400 0.0567 0.0816 0.0382 0.0567 0.0550 0.0856 0.0492 0.0376
Segment 0.0788 0.0390 0.0342 0.0472 0.0398 0.0216 0.0316 0.0476 0.0372
Kr vs. kp 0.1214 0.0776 0.0842 0.0416 0.0776 0.0075 0.0532 0.0795 0.0463
Sick 0.0308 0.0257 0.0273 0.0223 0.0255 0.0159 0.0358 0.0276 0.0236
Spambase 0.1015 0.0669 0.0672 0.0635 0.0669 0.0450 0.0932 0.0700 0.0552
Optdigits 0.0767 0.0407 0.0311 0.0372 0.0404 0.0185 0.0326 0.0372 0.0262
Satellite 0.1806 0.1214 0.1148 0.1080 0.1209 0.0825 0.1046 0.1103 0.1051
Mushrooms 0.0196 0.0001 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000
Thyroid 0.1111 0.0720 0.0701 0.0706 0.0719 0.0477 0.0525 0.0794 0.0654
Sign 0.3586 0.2755 0.2821 0.2539 0.2755 0.1187 0.1485 0.2473 0.2365
Nursery 0.0973 0.0654 0.0730 0.0289 0.0655 0.0093 0.0281 0.0586 0.0416
Magic 0.2239 0.1675 0.1752 0.1637 0.1674 0.1200 0.1655 0.1656 0.1526
Adult 0.1592 0.1380 0.1493 0.1383 0.1380 0.1487 0.1931 0.1350 0.1317
Shuttle 0.0039 0.0015 0.0008 0.0009 0.0013 0.0001 0.0002 0.0007 0.0007
Connect-4 0.2783 0.2354 0.2420 0.2283 0.2354 0.1751 0.2515 0.2380 0.2145
Waveform 0.0220 0.0202 0.0180 0.0256 0.0202 0.0136 0.0168 0.0197 0.0195
Census income 0.2363 0.0628 0.1004 0.0508 0.0628 0.0470 0.0587 0.0526 0.0626
Covtype 0.3158 0.2517 0.2389 0.1421 0.2516 − − 0.1311 0.1291
Poker hand 0.4988 0.3295 0.4812 0.1961 0.3295 − − 0.2254 0.2204

NB, standard naive Bayes. TAN, tree-augmented naive Bayes. AODE, averaged one-dependence
estimator. KDB, k-dependence Bayesian classifier. KDBS, the KDB that only performs the sorting
method proposed above. ATAN, averaged tree-augmented naive Bayes. RF100, random forest
containing 100 trees. RFn, random forest containing n trees, where n is the number of predictive
attributes. KDF, k-dependence forest.

Table A2. Experimental results of bias on large datasets.

Dataset NB TAN AODE KDB ATAN KDF

Segment 0.0857 0.0454 0.0393 0.0392 0.0450 0.0434
Kr vs. kp 0.1105 0.0668 0.0699 0.0390 0.0669 0.0450
Sick 0.0232 0.0228 0.0242 0.0208 0.0223 0.0291
Spambase 0.0965 0.0656 0.0669 0.0504 0.0658 0.0558
Optdigits 0.0655 0.0308 0.0295 0.0285 0.0306 0.0241
Satellite 0.1661 0.0941 0.0801 0.0810 0.0941 0.0849
Mushrooms 0.0399 0.0002 0.0010 0.0002 0.0002 0.0002
Thyroid 0.1014 0.0749 0.0664 0.0751 0.0734 0.0593
Sign 0.3109 0.2464 0.2500 0.2154 0.2455 0.2316
Nursery 0.0729 0.0507 0.0519 0.0418 0.0512 0.0367
Magic 0.1987 0.1357 0.1613 0.1321 0.1356 0.1370
Adult 0.1485 0.1125 0.1182 0.1135 0.1124 0.1099
Shuttle 0.0066 0.0023 0.0023 0.0028 0.0023 0.0023
Connect-4 0.2327 0.1829 0.1921 0.1788 0.1830 0.1798
Waveform 0.0314 0.0138 0.0151 0.0180 0.0138 0.0146
Census income 0.1271 0.0513 0.0499 0.0541 0.0500 0.0532
Covtype 0.2288 0.2257 0.2148 0.2238 0.2259 0.1309
Poker hand 0.3266 0.2265 0.2627 0.3306 0.2267 0.2684
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Table A3. Experimental results of variance on large datasets.

Dataset NB TAN AODE KDB ATAN KDF

Segment 0.0173 0.0212 0.0179 0.0261 0.0211 0.0172
Kr vs. kp 0.0249 0.0185 0.0233 0.0101 0.0184 0.0128
Sick 0.0058 0.0068 0.0045 0.0056 0.0065 0.0087
Spambase 0.0104 0.0171 0.0139 0.0238 0.0169 0.0171
Optdigits 0.0247 0.0280 0.0236 0.0322 0.0279 0.0243
Satellite 0.0207 0.0413 0.0491 0.0529 0.0413 0.0400
Mushrooms 0.0081 0.0006 0.0003 0.0005 0.0006 0.0007
Thyroid 0.0357 0.0388 0.0411 0.0368 0.0389 0.0340
Sign 0.0786 0.0779 0.0974 0.0966 0.0784 0.0789
Nursery 0.0270 0.0380 0.0295 0.0447 0.0377 0.0376
Magic 0.0409 0.0792 0.0613 0.0818 0.0794 0.0805
Adult 0.0355 0.0640 0.0446 0.0717 0.0634 0.0555
Shuttle 0.0038 0.0008 0.0021 0.0021 0.0009 0.0010
Connect-4 0.0953 0.0883 0.1103 0.1044 0.0881 0.0873
Waveform 0.0044 0.0119 0.0068 0.0102 0.0118 0.0086
Census income 0.0468 0.0223 0.0477 0.0226 0.0224 0.0200
Covtype 0.1232 0.1665 0.1329 0.1623 0.1752 0.1887
Poker hand 0.2091 0.2311 0.2141 0.3284 0.2305 0.2693
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