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Abstract: We propose a quantum version of the well known minimum distance classification model
called Nearest Mean Classifier (NMC). In this regard, we presented our first results in two previous
works. First, a quantum counterpart of the NMC for two-dimensional problems was introduced,
named Quantum Nearest Mean Classifier (QNMC), together with a possible generalization to any
number of dimensions. Secondly, we studied the n-dimensional problem into detail and we showed
a new encoding for arbitrary n-feature vectors into density operators. In the present paper, another
promising encoding is considered, suggested by recent debates on quantum machine learning.
Further, we observe a significant property concerning the non-invariance by feature rescaling of
our quantum classifier. This fact, which represents a meaningful difference between the NMC and
the respective quantum version, allows us to introduce a free parameter whose variation provides,
in some cases, better classification results for the QNMC. The experimental section is devoted:
(i) to compare the NMC and QNMC performance on different datasets; and (ii) to study the effects of
the non-invariance under uniform rescaling for the QNMC.
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1. Introduction

In recent years, we observed an increasing interest toward the use of quantum formalism in
non-microscopic domains [1–4]. The idea is that the powerful predictive properties of quantum
mechanics, used for describing the behavior of microscopic phenomena, turn out to be particularly
beneficial also in non-microscopic domains. Indeed, the real power of quantum computing consists in
exploiting the strength of particular quantum properties in order to implement algorithms which are
much more efficient and faster than the respective classical counterpart. For this purpose, several non
standard applications involving the quantum mechanical formalism have been proposed, in research
fields such as game theory [5], economics [6], cognitive sciences [7], signal processing [8], and so on.
Further, particular applications, interesting for the specific topics of the present paper, concern the
areas of machine learning and pattern recognition.

Quantum machine learning aims at using quantum computation advantages in order to find
new solutions to pattern recognition and image understanding problems. Regarding this, we can find
several efforts exploiting quantum information properties for the resolution of pattern recognition
problems in [9], while a detailed overview concerning the application of quantum computing
techniques to machine learning is presented in [10].

In this context, there exist different approaches involving the use of quantum formalism in
pattern recognition and machine learning. We can find, for instance, procedures that exploit quantum
properties in order to reach advantages on a classical computer [11–13] or techniques supposing the
existence of a quantum computer in order to perform in an inherently parallel way all the required
operations, taking advantage of quantum mechanical effects and providing high performance in terms
of computational efficiency [14–16].
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One of the main aspects of pattern recognition is focused on the application of quantum
information processing methods [17] to solve classification and clustering problems [18,19].

The use of quantum states for representing patterns has a twofold motivation: as already
discussed, first of all it permits the exploitation of quantum algorithms for enhancing the computational
efficiency of the classification procedure. Secondly, it is possible to use quantum-inspired models in
order to reach some benefits with respect to classical problems. With regards to the first motivation,
in [15,16], it was proved that the computation of distances between d-dimensional real vectors
takes time O(log d) on a quantum computer, while the same operation on a classical computer is
computationally much harder. Therefore, the introduction of a quantum algorithm for the purpose of
classifying patterns based on our encoding gives potential advantages to rush the whole procedure.

Even if in literature we can find techniques proposing some kind of computational benefits [20],
the main problem to find a more convenient encoding from classical to quantum objects is currently
an open and interesting matter of debate [9,10]. Here, our contribution consists of constructing a
quantum version of a minimum distance classifier in order to reach some convenience, in terms of
the error in pattern classification, with respect to the corresponding classical model. We have already
proposed this kind of approach in two previous works [21,22], where a “quantum counterpart” of the
well known Nearest Mean Classifier (NMC) has been presented.

In both cases, the model is based on the introduction of two main ingredients: first, an appropriate
encoding of arbitrary patterns into density operators; second, a distance between density matrices,
representing the quantum counterpart of the Euclidean metric in the “classical” NMC. The main
difference between the two previous works is the following one: (i) firstly [21], we tested our quantum
classifier on two-dimensional datasets and we proposed a purely theoretical generalization to an
arbitrary dimension; (ii) secondly [22], a new encoding for arbitrary n-dimensional patterns into
quantum states has been proposed, and it was tested on different real-world and artificial two-class
datasets. Anyway, in both cases we observed a significant improvement of the accuracy in the
classification process. In addition, we found that, by using the encoding proposed in [22] and for
two-dimensional problems only, the classification accuracy of our quantum classifier can be further
improved by performing a uniform rescaling of the original dataset.

In this work we propose a new encoding of arbitrary n-dimensional patterns into quantum objects,
extending both the theoretical model and the experimental results to multi-class problems, which
preserves information about the norm of the original pattern. This idea has been inspired by recent
debates on quantum machine learning [9], according to which it is crucial to avoid loss of information
when a particular encoding of real vectors into quantum states is considered. Such an approach
turns out to be very promising in terms of classification performance compared to the NMC. Further,
differing from the NMC, our quantum classifier is not invariant under uniform rescaling. In particular,
the classification error provided by the QNMC changes by feature rescaling. As a consequence,
we observe that, for several datasets, the new encoding exhibits a further advantage that can be gained
by exploiting the non-invariance under rescaling, and also for n-dimensional problems (conversely to
the previous works). To this end, some experimental results have been presented.

The organization of this paper is as follows. In Section 2, the classification process and the formal
structure of the NMC for multi-class problems are described. Section 3 is devoted to the definition of a
new encoding of real patterns into quantum states. In Section 4, we introduce the quantum version
of the NMC, called Quantum Nearest Mean Classifier (QNMC), based on the new encoding previously
described. In Section 5, we show experimental results related to the NMC and QNMC comparison
which generally exhibit better performance of our quantum classifier (in terms of error and other
meaningful classification parameters) with respect to the NMC. Further, starting from the fact that the
QNMC is not invariant under uniform coordinate rescaling (contrary to the corresponding classical
version), we also show that for some datasets it is possible to provide a benefit from this non-invariance
property. Finally, the last section includes conclusions and probable future developments.
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The present work is an extended version of the paper presented at the conference Quantum and
Beyond 2016, Vaxjo, 13–16 June 2016 [23], significantly enlarged in theoretical discussion, experimental
section and bibliography.

2. Minimum Distance Classification

Pattern recognition [24,25] is the machine learning branch whose purpose is to design algorithms
able to automatically recognize “objects”.

Here, we deal with supervised learning, whose goal is to infer a map from labeled training objects.
The purpose of pattern classification, which represents one of the main tasks in this context, consists in
assigning input data to different classes.

Each object is univocally identified by a set of features; in other words, we represent a d-feature
object as a d-dimensional vector ~x = [x(1), . . . , x(d)] ∈ X , where X ⊆ Rd is generally a subset of
the d-dimensional real space representing the feature space. Consequently, any arbitrary object is
represented by a vector ~x associated with a given class of objects (but, in principle, we do not know
which one). Let Y = {1, . . . , L} be the class label set. A pattern is represented by a pair (~x, y),
where ~x is the feature vector representing an object and y ∈ Y is the label of the class which ~x is
associated with. A classification procedure aims at attributing (with high accuracy) to any unlabeled
object the corresponding label (where the label attached to an object represents the class which the
object belongs to), by learning about the set of objects whose class is known. The training set is
given by Str = {(~xn, yn)}N

n=1, where ~xn ∈ X , yn ∈ Y (for n = 1, . . . , N) and N is the number of
patterns belonging to Str. Finally, let Nl be the cardinality of the training set associated to the l-th
class (for l = 1, 2, . . . , L) such that ∑L

l=1 Nl = N.
We now introduce the well known Nearest Mean Classifier (NMC) [24], which is a particular kind

of minimum distance classifier widely used in pattern recognition. The strategy consists in computing
the distances between an object ~x (to classify) and other objects chosen as prototypes of each class
(called centroids). Finally, the classifier associates to ~x the label of the closest centroid. So, we can
resume the NMC algorithm as follows:

1. Computation of the centroid (i.e., the sample mean [26]) associated to each class, whose
corresponding feature vector is given by:

~µl =
1
Nl

Nl

∑
n=1

~xn, l = 1, 2, . . . , L, (1)

where l is the label of the class;
2. Classification of the object ~x, provided by:

argminl=1,...LdE(~x,~µl), with dE(~x,~µl) = ‖~x−~µl‖2, (2)

where dE is the standard Euclidean distance. In this framework, argmin plays the role of classifier,
i.e., a function that associates to any unlabeled object the correspondent label.

Generally, it could be that a pattern of a given class is closer to the centroid of another class.
This fact can depend on the specific data distribution for instance. Consequently, if the algorithm
would be applied to this pattern, it would fail. Hence, for an arbitrary object ~x which belongs to an
a priori not known class, the classification method output has the following four possibilities [27]:
(i) True Positive (TP): pattern belonging to the l-th class and correctly classified as l; (ii) True Negative (TN):
pattern belonging to a class different than l, and correctly classified as not l; (iii) False Positive (FP):
pattern belonging to a class different than l, and incorrectly classified as l; (iv) False Negative (FN):
pattern belonging to the l-th class, and incorrectly classified as not l.
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Generally, a given classification method is evaluated via a standard procedure which consists of
dividing the original labeled dataset S of size N′, into a set Str of N training patterns and a set Sts of
(N′ − N) test patterns, i.e., S = Str ∪ Sts where Sts is the test set [24], defined as Sts = {(~xn, yn)}N′

n=N+1.
As a consequence, we can examine the classification algorithm performance by considering the

following statistical measures associated to each class l depending on the quantities listed above:

• True Positive Rate (TPR): TPR = TP
TP+FN ;

• True Negative Rate (TNR): TNR = TN
TN+FP ;

• False Positive Rate (FPR): FPR = FP
FP+TN = 1− TPN;

• False Negative Rate (FNR): FNR = FN
FN+TP = 1− TPR.

Further, other standard statistical coefficients [27] used to establish the reliability of a classification
algorithm are:

• Classification error (E): E = 1− TP
N′−N ;

• Precision (P): P = TP
TP+FP ;

• Cohen’s Kappa (K): K = Pr(a)−Pr(e)
1−Pr(e) , where

Pr(a) = TP+TN
N′−N , Pr(e) = (TP+FP)(TP+FN)+(FP+TN)(TN+FN)

(N′−N)2 .

The classification error represents the percentage of misclassified patterns, the precision is a
measure of the statistical variability of the considered model and the Cohen’s Kappa represents the
degree of reliability and accuracy of a statistical classification and it can assume values ranging from−1
to +1. In particular, if K= +1 (K= −1), we correctly (incorrectly) classify all the test set patterns.
Let us note that these statistical coefficients have to be computed for each class. Then, the final value of
each statistical coefficient related to the classification algorithm is the weighted sum of the statistical
coefficients of each class.

3. Mapping Real Patterns into Quantum States

As already discussed, quantum mechanical formalism seems to be promising in non-standard
scenarios, in our case to solve for instance pattern classification tasks. To this end, in order to provide
our quantum classification model, the first ingredient we have to introduce is an appropriate encoding
of real patterns into quantum states. Quoting Schuld et al. [9], “in order to use the strengths of
quantum mechanics without being confined by classical ideas of data encoding, finding ‘genuinely
quantum’ ways of representing and extracting information could become vital for the future of
quantum machine learning.”

Generally, given a d-dimensional feature vector, there exist different ways to encode it into a
density operator [9]. As already mentioned, finding the “best” encoding of real vectors into quantum
states (i.e., outperforming all the possible encodings for any dataset) is still an open and intricate
problem. This fact is not so surprising because, on the other hand, in pattern recognition is not possible
to establish an absolute superiority of a given classification method with respect to the other ones, and
the reason is that each dataset has unique and specific characteristics (this point will be deepened in
the numerical section).

In [21], the proposed encoding was based on the use of the stereographic projection [28]. In particular,
it uniquely maps a point~r = (r1, r2, r3) on the surface of a radius-one sphere S2 (except for the north
pole) into a point ~x = [x(1), x(2)] in R2, i.e.,

SP : (r1, r2, r3) 7→
( r1

1− r3
,

r2

1− r3

)
= [x(1), x(2)], (3)

whose image plane passes through the center of the sphere. The inverse of the stereographic
projection is:

SP−1 : [x(1), x(2)] 7→
[ 2x(1)

||~x||2 + 1
,

2x(2)

||~x||2 + 1
,
||~x||2 − 1
||~x||2 + 1

]
= (r1, r2, r3), (4)
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where ||~x||2 = [x(1)]2 + [x(2)]2. By imposing that r1 = 2x(1)
||~x||2+1 , r2 = 2x(2)

||~x||2+1 , r3 = ||~x||2−1
||~x||2+1 , we consider

r1, r2, r3 as Pauli components of the density operator ρ~x ∈ Ω2 (where the space Ωd of density operators
for d-dimensional systems consists of positive semidefinite matrices with unitary trace) associated to
the pattern ~x = [x(1), x(2)], defined as:

ρ~x =
1
2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
=

1
||~x||2 + 1

(
||~x||2 x(1) − ix(2)

x(1) + ix(2) 1

)
. (5)

The proposed encoding offers the advantage of visualizing a bi-dimensional vector on the Bloch
sphere [21]. In the same work, we also introduced a generalization of our encoding to the d-dimensional
case, which allows to represent d-dimensional vectors as points on the hypersphere Sd by writing a
density operator ρ as a linear combination of the d-dimensional identity and d2 − 1 (d× d)-matrices
{σi} (i.e., generalized Pauli matrices [29,30]).

To this end, we introduced the generalized stereographic projection [31], which maps any
point~r = (r1, . . . , rd+1) ∈ Sd into an arbitrary point ~x = [x(1), . . . , x(d)] ∈ Rd, i.e.,

SP : (r1, . . . , rd+1) 7→
( r1

1− rd+1
,

r2

1− rd+1
, . . . ,

rd
1− rd+1

)
= [x(1), . . . , x(d)]. (6)

However, even if it is possible to map points on the d-hypersphere into d-feature patterns, they are
not density operators as a rule and the one-to-one correspondence between them and density matrices
is guaranteed only on particular regions [29,32,33].

An alternative encoding of a d-feature vector ~x into a density operator was proposed in [22]. It is
obtained by: (i) by mapping ~x ∈ Rd into a (d + 1)-dimensional vector ~x′ ∈ Rd+1 according to the
generalized version of Equation (4), i.e.,

SP−1 : [x(1), . . . , x(d)] 7→ 1
||~x||2 + 1

[
2x(1), . . . , 2x(d), ||~x||2 − 1

]
= (r1, . . . , rd+1), (7)

where ||~x||2 = ∑d
i=1[x

(i)]2; (ii) by considering the projector ρ~x = ~x′ · (~x′)T .
Here, a different kind of quantum minimum distance classifier is considered, based on a

new encoding again and we show that it exhibits interesting improvements by also exploiting the
non-invariance under feature rescaling. Accordingly with [9,15], when a real vector is encoded
into a quantum state, in order to avoid a loss of information it is important that the quantum state
keeps information on the original real vector norm. In light of this fact, we introduce the following
alternative encoding.

Let ~x = [x(1), . . . , x(d)] ∈ Rd be a d-dimensional vector.

1. We map the vector ~x ∈ Rd into a vector ~x′ ∈ Rd+1, whose first d features are the components of
the vector ~x and the (d + 1)-th feature is the norm of ~x. Formally:

~x = [x(1), . . . , x(d)] 7→ ~x′ = [x(1), . . . , x(d), ||~x||]. (8)

2. We obtain the vector ~x′′ by dividing the first d components of the vector ~x′ for ||~x||:

~x′ 7→ ~x′′ =
[ x(1)

||~x|| , . . . ,
x(d)

||~x|| , ||~x||
]
. (9)

3. We compute the norm of the vector ~x′′, i.e., ||~x′′|| =
√
||~x||2 + 1 and we map the vector ~x′′ into

the normalized vector ~x′′′ as follows:

~x′′ 7→ ~x′′′ =
~x′′

||~x′′|| =
[ x(1)

||~x||
√
||~x||2 + 1

, . . . ,
x(d)

||~x||
√
||~x||2 + 1

,
||~x||√
||~x||2 + 1

]
. (10)
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Now, we provide the following definition.

Definition 1 (Density Pattern). Let ~x = [x(1), . . . , x(d)] be a d-dimensional vector and (~x, y) the
corresponding pattern. Then, the density pattern associated with (~x, y) is represented by the pair (ρ~x, y), where
the matrix ρ~x, corresponding to the feature vector ~x, has the following form:

ρ~x
.
= ~x′′′ · (~x′′′)†, (11)

where the vector ~x′′′ is given by Equation (10) and y is the label of the original pattern.

Hence, this encoding maps real d-dimensional vectors ~x into (d + 1)-dimensional pure states ρ~x.
In this way, we obtain an encoding that takes into account the information about the initial real vector
norm and, at the same time, allows to easily encode arbitrary real d-dimensional vectors.

Clearly, there exist different ways to encode patterns into quantum states by maintaining
some information about the vector norm. However, the one we show has been inspired by simple
considerations concerning the two-dimensional encoding on the Bloch sphere, naturally extended to the
d-dimensional case. To this end, in [21] it was analytically proved that the encoding of ~x = [x(1), x(2)]
into the density operator ρ~x given by Equation (5) can be exactly recovered if we consider as
starting point the vector [x(1) + ix(2), ||~x||] and by applying the set of transformations given by
Equations (9)–(11).

4. Density Pattern Classification

In this section, a quantum counterpart of the NMC is provided, named Quantum Nearest Mean
Classifier (QNMC). It can be seen as a particular kind of minimum distance classifier between quantum
objects (i.e., density patterns). First of all, the use of this new quantum formalism could provide
potential advantages in reducing the computational complexity of the problem if we consider a
possible implementation of our framework on a quantum computer (as already explained in the
Introduction). Secondly, it permits to fully compare the NMC and the QNMC performance by using
a classical computer only. About the second point, we reiterate that our aim is not to assert that the
QNMC outperforms all the other supervised classical procedures, but to prove (as we will show by
numerical simulations) that it performs better than its “natural” classical counterpart (i.e., the NMC).

In order to provide a quantum counterpart of the NMC, we need: (i) an encoding from real
patterns to quantum objects (defined above); (ii) a quantum version of the classical centroid (i.e., a sort
of quantum class prototype), that will be named quantum centroid; and (iii) an appropriate quantum
distance between density patterns, corresponding to the Euclidean metric for the NMC. In such a
quantum framework, the quantum version Sq of the dataset S is given by:

Sq = Sq
tr ∪ S

q
ts, Sq

tr = {(ρ~xn , yn)}N
n=1, Sq

ts = {(ρ~xn , yn)}N′
n=N+1,

where (ρ~xn , yn) is the density pattern associated to the pattern (~xn, yn). Consequently, Sq
tr and Sq

ts
represent the quantum versions of the training and test set respectively, i.e., the sets of all the density
patterns corresponding to the patterns in Str and Sts. Now, we can naturally define the quantum
version of the classical centroid ~µl , given in Equation (1).

Definition 2 (Quantum Centroid). Let Sq be a labeled dataset of N′ density patterns such that Sq
tr ⊆ Sq is a

training set composed of N density patterns. Further, let Y = {1, 2, . . . , L} be the class label set. The quantum
centroid of the l-th class is given by:

ρl =
1
Nl

Nl

∑
n=1

ρ~xn , l = 1, . . . , L, (12)
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where Nl is the number of density patterns of the l-th class in Sq
tr, such that ∑L

l=1 Nl = N.

Let us stress that the quantum centroids are generally mixed states and we cannot get them by
mapping the classical centroids ~µl , i.e.,

ρl 6= ρ~µl
, ∀l ∈ {1, . . . , L}. (13)

Therefore, the quantum centroid has a completely new meaning because it is no longer a pure
state and does not have any classical counterpart. This is the main reason that establishes the deep
difference between both classifiers. At this purpose, it is easy to verify [21] that, unlike the classical
case, the expression of the quantum centroid is sensitive to the dataset dispersion.

Now, we recall the definition of trace distance between quantum states (see, e.g., [34]), which can
be considered as a suitable metric between density patterns.

Definition 3 (Trace Distance). Let ρ1 and ρ2 be two arbitrary density operators belonging to the same
dimensional Hilbert space. The trace distance between ρ1 and ρ2 is:

dT(ρ1, ρ2) =
1
2

Tr|ρ1 − ρ2|, (14)

where |A| =
√

A† A.

Clearly dT , as the true metric for density operators, satisfies the standard properties of positivity,
symmetry and triangle inequality. The use of the trace distance in our quantum framework is naturally
motivated by the fact that it is the simplest possible choice among other possible metrics in the density
matrix space [35]. Consequently, it can be seen as the “authentic” quantum counterpart of the Euclidean
distance, which represents the simplest choice in the starting space. However, the trace distance exhibits
some limitations and downsides (in particular, it is monotone but not Riemannian [36]). On the other
hand, the Euclidean distance in some pattern classification problems is not enough to fully capture
for instance the dataset distribution. For this reason, other kinds of metrics in the classical space are
adopted to avoid this limitation [24]. To this end, as a future development of the present work, it could
be interesting to compare different distances in both quantum and classical framework, able to treat
more complex situations (we will deepen this point in the conclusions).

We are ready to introduce the QNMC procedure consisting, as the classical one, of the following steps:

• Constructing the sets Sq
tr, S

q
ts by mapping each pattern of the sets Str, Sts via the encoding

introduced in Definition 1;
• Calculating the quantum centroids ρl (∀l ∈ {1, . . . L}), by using the quantum training set Sq

tr,
in accordance with Definition 2;

• Classifying a density pattern ρ~x ∈ Sq
ts by means of the optimization problem:

argminl=1,...,LdT(ρ~x, ρl), (15)

where dT is the trace distance introduced in Definition 3.

5. Experimental Results

This section is devoted to showing a comparison between the NMC and the QNMC performances
in terms of the statistical coefficients introduced in Section 2. We use both classifiers to analyze
twenty-seven datasets, divided into two categories: artificial datasets (Gaussian (I), Gaussian (II),
Gaussian (III), Moon, Banana) and the remaining ones which are real-world datasets, extracted both
from the UCI (UC Irvine Machine Learning Repository) [37] and KEEL (Knowledge Extraction based
on Evolutionary Learning) [38] repositories. Further, among them we can find also imbalanced datasets,
whose main characteristic is that the number of patterns in a given class is significantly lower than
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those belonging to the other classes. Let us note that, in real situations, we usually deal with data
whose distribution is unknown, then the most interesting case is the one in which we use real-world
datasets. However, the use of artificial datasets following known distribution, and in particular
Gaussian distributions with specific parameters, can help to catch precious information.

5.1. Comparison between QNMC and NMC

In Table 1 we summarize the characteristics of the datasets involved in our experiments. In particular,
for each dataset we list the total number of patterns, the number of each class and the number of features.
Let us note that, although we mostly confine our investigation to two-class datasets, our model can be
easily extended to multi-class problems (as we show for the three-class datasets Balance, Gaussian (III),
Hayes-Roth, Iris).

In order to make our results statistically significant, we apply the standard procedure which
consists in randomly splitting each dataset into two parts, the training set (representing the 80% of the
original dataset) and the test set (representing the 20% of the original dataset). Finally, we perform
10 runs for each dataset, with a random partition at each experiment. Let us stress that the results
appear robust with respect to different partitions of the original dataset. Further, we consider only
10 runs because, for a greater number, the standard deviation of the classification error mean value is
substantially the same.

Table 1. Characteristics of the datasets used in our experiments. The number of each class is shown
between brackets.

Data Set Class Size Features (d)
Appendicitis 106 (85 + 21) 7

Balance 625 (49 + 288 + 288) 4
Banana 5300 (2376 + 2924) 2
Bands 365 (135 + 230) 19

Breast Cancer (I) 683 (444 + 239) 10
Breast Cancer (II) 699 (458 + 241) 9

Bupa 345 (145 + 200) 6
Chess 3196 (1669 + 1527) 36

Gaussian (I) 400 (200 + 200) 30
Gaussian (II) 1000 (100 + 900) 8
Gaussian (III) 2050 (50 + 500 + 1500) 8
Hayes-Roth 132 (51 + 51 + 30) 5

Ilpd 583 (416 + 167) 9
Ionosphere 351 (225 + 126) 34

Iris 150 (50 + 50 + 50) 4
Iris0 150 (100 + 50) 4
Liver 578 (413 + 165) 10
Monk 432 (204 + 228) 6
Moon 200 (100 + 100) 2

Mutagenesis-Bond 3995 (1040 + 2955) 17
Page 5472 (4913 + 559) 10
Pima 768 (500 + 268) 8
Ring 7400 (3664 + 3736) 20

Segment 2308 (1979 + 329) 19
Thyroid (I) 215 (180 + 35) 5
Thyroid (II) 215 (35 + 180) 5

TicTac 958 (626 + 332) 9

In Table 2, we report the QNMC and NMC performance for each dataset, evaluated in terms of
mean value and standard deviation (computed on ten runs) of the statistical coefficients, discussed in
the previous section. For the sake of simplicity, we omit the values of FPR and FNR because they can
be easily obtained by TPR and TNR values (i.e., FPR = 1 − TNR, FNR = 1 − TPR).
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Table 2. Comparison between QNMC and NMC performances.

QNMC
Dataset E TPR TNR P K

Appendicitis 0.124 ± 0.058 0.876 ± 0.058 0.708 ± 0.219 0.886 ± 0.068 0.553 ± 0.223
Balance 0.148 ± 0.018 0.852 ± 0.018 0.915 ± 0.014 0.862 ± 0.022 0.767 ± 0.029
Banana 0.316 ± 0.017 0.684 ± 0.017 0.660 ± 0.017 0.684 ± 0.018 0.350 ± 0.034
Bands 0.394 ± 0.053 0.606 ± 0.053 0.528 ± 0.071 0.606 ± 0.058 0.133 ± 0.112

Breast Cancer (I) 0.386 ± 0.038 0.614 ± 0.038 0.444 ± 0.045 0.583 ± 0.044 0.062 ± 0.069
Breast Cancer (II) 0.040 ± 0.015 0.946 ± 0.023 0.986 ± 0.016 0.993 ± 0.009 0.912 ± 0.033

Bupa 0.389 ± 0.044 0.610 ± 0.044 0.641 ± 0.052 0.359 ± 0.052 0.066 ± 0.044
Chess 0.256 ± 0.017 0.744 ± 0.017 0.747 ± 0.016 0.748 ± 0.016 0.488 ± 0.033

Gaussian (I) 0.274 ± 0.051 0.726 ± 0.051 0.728 ± 0.049 0.745 ± 0.048 0.452 ± 0.099
Gaussian (II) 0.210 ± 0.025 0.790 ± 0.025 0.744 ± 0.061 0.900 ± 0.019 0.308 ± 0.058
Gaussian (III) 0.401 ± 0.036 0.599 ± 0.036 0.558 ± 0.026 0.654 ± 0.041 0152 ± 0.043
Hayes-Roth 0.413 ± 0.039 0.588 ± 0.039 0.780 ± 0.025 0.602 ± 0.063 0.339 ± 0.060

Ilpd 0.351 ± 0.037 0.649 ± 0.037 0.705 ± 0.056 0.734 ± 0.041 0.292 ± 0.073
Ionosphere 0.165 ± 0.049 0.835 ± 0.049 0.764 ± 0.059 0.842 ± 0.051 0.624 ± 0.105

Iris 0.047 ± 0.031 0.953 ± 0.031 0.977 ± 0.014 0.957 ± 0.028 0.929 ± 0.045
Iris0 0 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Liver 0.342 ± 0.037 0.607 ± 0.057 0.783 ± 0.059 0.870 ± 0.039 0.318 ± 0.061
Monk 0.132 ± 0.034 0.869 ± 0.034 0.885 ± 0.030 0.891 ± 0.025 0.738 ± 0.065
Moon 0.156 ± 0.042 0.857 ± 0.063 0.831 ± 0.066 0.841 ± 0.066 0.683 ± 0.085

Mutagenesis-Bond 0.266 ± 0.021 0.734 ± 0.021 0.281 ± 0.017 0.662 ± 0.040 0.023 ± 0.021
Page 0.154 ± 0.009 0.846 ± 0.009 0.471 ± 0.039 0.869 ± 0.010 0.274 ± 0.035
Pima 0.304 ± 0.030 0.696 ± 0.030 0.690 ± 0.044 0.720 ± 0.030 0.365 ± 0.066
Ring 0.098 ± 0.006 0.902 ± 0.006 0.903 ± 0.006 0.905 ± 0.006 0.805 ± 0.012

Segment 0.194 ± 0.017 0.807 ± 0.017 0.718 ± 0.045 0.864 ± 0.015 0.401 ± 0.041
Thyroid (I) 0.078 ± 0.040 0.922 ± 0.040 0.747 ± 0.148 0.923 ± 0.043 0.695 ± 0.153
Thyroid (II) 0.081 ± 0.034 0.919 ± 0.034 0.754 ± 0.122 0.923 ± 0.035 0.684 ± 0.121

Tic Tac 0.410 ± 0.032 0.590 ± 0.032 0.597 ± 0.039 0.629 ± 0.036 0.172 ± 0.061
NMC

Dataset E TPR TNR P K
Appendicitis 0.218 ± 0.086 0.782 ± 0.086 0.724 ± 0.167 0.835 ± 0.070 0.423 ± 0.201

Balance 0.267 ± 0.038 0.733 ± 0.038 0.969 ± 0.014 0.925 ± 0.025 0.686 ± 0.034
Banana 0.453 ± 0.019 0.548 ± 0.019 0.552 ± 0.020 0.556 ± 0.020 0.098 ± 0.038
Bands 0.435 ± 0.048 0.565 ± 0.048 0.582 ± 0.055 0.605 ± 0.054 0.135 ± 0.092

Breast Cancer (I) 0.442 ± 0.037 0.558 ± 0.037 0.464 ± 0.046 0.551 ± 0.039 0.022 ± 0.076
Breast Cancer (II) 0.042 ± 0.015 0.973 ± 0.015 0.931 ± 0.032 0.963 ± 0.017 0.908 ± 0.033

Bupa 0.530 ± 0.029 0.470 ± 0.029 0.625 ± 0.030 0.620 ± 0.036 0.066 ± 0.044
Chess 0.307 ± 0.018 0.693 ± 0.018 0.707 ± 0.016 0.714 ± 0.016 0.393 ± 0.033

Gaussian (I) 0.322 ± 0.042 0.679 ± 0.042 0.680 ± 0.043 0.685 ± 0.042 0.355 ± 0.085
Gaussian (II) 0.320 ± 0.032 0.680 ± 0.032 0.588 ± 0.102 0.860 ± 0.032 0.129 ± 0.055
Gaussian (III) 0.530 ± 0.029 0.470 ± 0.029 0.625 ± 0.030 0.620 ± 0.036 0.066 ± 0.044
Hayes-Roth 0.503 ± 0.066 0.497 ± 0.066 0.689 ± 0.063 0.514 ± 0.075 0.180 ± 0.121

Ilpd 0.470 ± 0.037 0.530 ± 0.037 0.757 ± 0.041 0.761 ± 0.037 0.193 ± 0.051
Ionosphere 0.323 ± 0.051 0.677 ± 0.051 0.676 ± 0.051 0.680 ± 0.051 0.351 ± 0.102

Iris 0.110 ± 0.052 0.890 ± 0.052 0.946 ± 0.033 0.904 ± 0.041 0.831 ± 0.087
Iris0 0.023 ± 0.021 0.977 ± 0.021 0.990 ± 0.009 0.980 ± 0.018 0.946 ± 0.050
Liver 0.472 ± 0.048 0.388 ± 0.057 0.891 ± 0.055 0.905 ± 0.045 0.193 ± 0.060
Monk 0.224 ± 0.022 0.776 ± 0.022 0.775 ± 0.022 0.779 ± 0.022 0.550 ± 0.043
Moon 0.234 ± 0.065 0.772 ± 0.089 0.762 ± 0.085 0.771 ± 0.091 0.528 ± 0.130

Mutagenesis-Bond 0.481 ± 0.013 0.519 ± 0.013 0.525 ± 0.029 0.630 ± 0.020 0.034 ± 0.029
Page 0.215 ± 0.013 0.785 ± 0.013 0.205 ± 0.028 0.809 ± 0.014 -0.010 ± 0.024
Pima 0.375 ± 0.033 0.625 ± 0.033 0.546 ± 0.045 0.622 ± 0.037 0.173 ± 0.075
Ring 0.238 ± 0.011 0.763 ± 0.011 0.761 ± 0.011 0.768 ± 0.011 0.524 ± 0.022

Segment 0.311 ± 0.022 0.689 ± 0.022 0.824 ± 0.041 0.870 ± 0.014 0.286 ± 0.038
Thyroid (I) 0.134 ± 0.042 0.867 ± 0.042 0.739 ± 0.150 0.887 ± 0.040 0.545 ± 0.139
Thyroid (II) 0.134 ± 0.048 0.866 ± 0.048 0.777 ± 0.159 0.897 ± 0.046 0.542 ± 0.157

Tic Tac 0.439 ± 0.031 0.561 ± 0.031 0.571 ± 0.042 0.606 ± 0.036 0.119 ± 0.063

We observe, by comparing QNMC and NMC performances (see Table 2), that the first provides a
significant improvement with respect to the standard NMC in terms of all the statistical parameters we
have considered. In several cases, the difference between the classification error for both classifiers
is very high, up to 22% (see Mutagenesis-Bond). Further, the new encoding, for two-feature datasets,
provides better performance than the one considered in [21] (where the QNMC error with related
standard deviation was 0.174± 0.047 for Moon and 0.419± 0.015 for Banana) and it generally exhibits a
quite similar performance with respect to the one in [22] for multi-dimension datasets or a classification
improvement of about 5%, generally.

The artificial Gaussian datasets may deserve a brief comment. Let us discuss the way in which the
three Gaussian datasets have been created. Gaussian (I) [39] is a perfectly balanced dataset (i.e., both



Entropy 2017, 19, 659 10 of 14

classes have the same number of patterns), patterns have the same dispersion in both classes, and
only some features are correlated [40]. Gaussian (II) is an unbalanced dataset (i.e., classes have a very
different number of patterns), patterns do not exhibit the same dispersion in both classes and features
are not correlated. Gaussian (III) is composed of three classes and it is an unbalanced dataset with
different pattern dispersion in all the classes, where all the features are correlated.

For this kind of Gaussian data, we remark that the NMC does not offer the best performance in
terms of pattern classification [24] because of the particular characteristics of the class distribution.
Indeed, the NMC does not keep into consideration the pattern dispersion. Conversely, by looking
at Table 2, the improvements of the QNMC seem to exhibit some kind of sensitivity of the classifier
with respect to the data dispersion. A detailed description of this problem will be addressed in a
future work.

Further, we can note that the QNMC performance is better also for imbalanced datasets (the most
significant cases are Balance, Ilpd, Segment, Page, Gaussian (III)), which are usually difficult to deal with
standard classification models. At this purpose, we can note that the QNMC exhibits a classification
error much lower than the NMC, up to a difference of about 12%. Another interesting and surprising
result concerns the Iris0 dataset, which represents the imbalanced version of the Iris dataset: as we can
observe looking at Table 2, our quantum classifier is able to perfectly classify all the test set patterns,
conversely to the NMC.

We remark that, even if it is possible to establish whether a classifier is “good” or “bad” for a given
dataset by the evaluation of some a priori data characteristics, generally it is no possible to establish
an absolute superiority of a given classifier for any dataset, thanks to the No Free Lunch Theorem [24].
In any case, the QNMC seems to be particularly convenient when the data distribution is difficult to
treat with the standard NMC.

5.2. Non-Invariance Under Rescaling

The final experimental results that we present in this paper regard a significant difference between
NMC and QNMC. Let us suppose that all the components of the feature vectors ~xn (∀n = 1, . . . , N′)
belonging to the original dataset S are multiplied by the same parameter γ ∈ R, i.e., ~xn 7→ γ~xn. Then,
the whole dataset is subjected to an increasing dispersion (for |γ| > 1) or a decreasing dispersion
(for |γ| < 1) and the classical centroids change according to ~µl 7→ γ~µl (∀l = 1, . . . , L). Therefore,
pattern classification for the rescaled problem consists of solving:

argminl=1,...,LdE(γ~xn, γ~µl) = γargminl=1,...,LdE(~xn,~µl), ∀n = N + 1, . . . , N′.

For any value of the parameter γ it can be proved [22] that, while the NMC is invariant under
rescaling, for the QNMC this invariance fails. Interestingly enough, it is possible to consider the
failure of the invariance under rescaling as a resource for the classification problem. In other
words, through a suitable choice of the rescaling factor is possible, in principle, to get a decreasing
of the classification error. To this end, we have studied the variation of the QNMC performance
(in particular of the classification error) in terms of the free parameter γ and in Figure 1 the results
for the datasets Appendicitis, Monk and Moon are shown. In the figure, each point represents the
mean value (with corresponding standard deviation represented by the vertical bar) over ten runs
of the experiments. Finally, we have considered, as an example, three different ranges of the
rescaling parameter γ for each dataset. We can observe that the resulting classification performance
strongly depends on the γ range. Indeed, in all the three cases we consider, we obtain completely
different classification results based on different choices of the γ values. As we can see, in some
situations we observe an improvement of the QNMC performance with respect to the unrescaled problem
(subfigures (b), (c), (e), (h)), in other cases we get worse classification results (subfigures (a), (d), (g), (i)) and
sometimes the rescaling parameter does not offer any variation of the classification error (subfigure (f)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Comparison between NMC (Nearest Mean Classifier) and QNMC (Quantum Nearest Mean
Classifier) performance in terms of the classification error for the datasets (a–c) Appendicitis, (d–f) Monk,
(g–i) Moon. In all the subfigures, the simple dashed line represents the QNMC classification error
without rescaling, the dashed line with points represents the NMC classification error (which does not
depend on the rescaling parameter), points with related error bars (red for Appendicitis, blue for Monk
and green for Moon) represent the QNMC classification error for increasing values of the parameter γ.

In conclusion, the range of the parameter γ for which the QNMC performance improves,
is generally not unique and strongly depends on the considered dataset. As a consequence, we do not
generally get an improvement in the classification process for any γ ranges. On the contrary, there
exist some intervals for the parameter γ where the QNMC classification performance is worse than
the case without rescaling. Then, each dataset has specific and unique characteristics (in complete
accord to the No Free Lunch Theorem) and the incidence of the non-invariance under rescaling in the
decreasing of the error, in general, should be determined by empirical evidences.

6. Conclusions and Future Developments

In this work we have introduced a quantum minimum distance classifier, named Quantum
Nearest Mean Classifier, which can be seen as a quantum version of the well known Nearest Mean
Classifier. In particular, it is obtained by defining a suitable encoding of real patterns, i.e., density
patterns, and by recovering the trace distance between density operators.

A new encoding of real patterns into a quantum objects have been proposed, suggested by recent
debates on quantum machine learning according to which, in order to avoid a loss of information
caused by encoding a real vector into a quantum state, we need to consider the normalized vector
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keeping some information about its norm simultaneously. Secondly, we have defined the quantum
centroid, i.e., the pattern chosen as the prototype of each class, which is not invariant under uniform
rescaling of the original dataset (unlike the NMC) and seems to exhibit a kind of sensitivity to the
data dispersion.

In the experiments, both classifiers have been compared in terms of significant statistical
coefficients. In particular, we have considered 27 different datasets having different nature (real-world
and artificial). Further, the non-invariance under rescaling of the QNMC has suggested to study
the variation of the classification error in terms of a free parameter γ, whose variation produces a
modification of the data dispersion and, consequently, of the classifier performance. In particular
we have showed as, in the most of cases, the QNMC exhibits a significant decreasing of the
classification error (and of the other statistical coefficients) with respect to the NMC and, for some
cases, the non-invariance under rescaling can provide a positive incidence in the classification process.

Let us remark that, even if there is not an absolute superiority of QNMC with respect to the NMC,
the proposed technique leads to relevant improvements in terms of pattern classification when we
deal with an a priori knowledge of the data distribution.

In light of such considerations, further developments of the present work will involve the study
of: (i) the optimal encoding (mapping patterns to quantum states) which ensures a better classification
accuracy (at least for a finite set of data); (ii) a general method to find the suitable rescaling parameter
range we can apply to a given dataset for further optimizing the classification process; and (iii) the
data distribution for which our quantum classifier outperforms the NMC. Further, as discussed in
Section 4, in some situations the standard NMC is not very useful as a classification model, especially
when the dataset distribution is quite complex to deal with. In pattern recognition, in order to address
such problems, other kinds of classification techniques are used instead of the NMC, for instance the
well known Linear Discriminant Analysis (LDA) or Quadratic Discriminant Analysis (QDA) classifiers,
where different distances between patterns are considered, taking the data distribution into account
more precisely [24]. To this end, an interesting development of the present work could regard the
comparison between the LDA or QDA models and the QNMC based on the computation of more
suitable and convenient distances between density patterns [35].

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/12/659/s1.

Conflicts of Interest: The author declares no conflict of interest.
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