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Abstract: We find that the standard relative entropy and the Umegaki entropy are designed for the
purpose of inferentially updating probabilities and density matrices, respectively. From the same set
of inferentially guided design criteria, both of the previously stated entropies are derived in parallel.
This formulates a quantum maximum entropy method for the purpose of inferring density matrices
in the absence of complete information.

Keywords: probability theory; entropy; quantum relative entropy; quantum information; quantum
mechanics; inference

1. Introduction

We design an inferential updating procedure for probability distributions and density matrices
such that inductive inferences may be made. The inferential updating tools found in this derivation take
the form of the standard and quantum relative entropy functionals, and thus we find the functionals
are designed for the purpose of updating probability distributions and density matrices, respectively.
Previously formulated design derivations which found the entropy to be a tool for inference originally
required five design criteria (DC) [1–3], this was reduced to four in [4–6], and then down to three in [7].
We reduced the number of required DC down to two while also providing the first design derivation of
the quantum relative entropy—using the same design criteria and inferential principles in both instances.

The designed quantum relative entropy takes the form of Umegaki’s quantum relative entropy,
and thus it has the “proper asymptotic form of the relative entropy in quantum (mechanics)” [8–10].
Recently, Wilming, etc. [11] gave an axiomatic characterization of the quantum relative entropy that
“uniquely determines the quantum relative entropy”. Our derivation differs from their’s, again in
that we design the quantum relative entropy for a purpose, but also that our DCs are imposed on
what turns out to be the functional derivative of the quantum relative entropy rather than on the
quantum relative entropy itself. The use of a quantum entropy for the purpose of inference has a large
history: Jaynes [12,13] invented the notion of the quantum maximum entropy method [14], while it
was perpetuated by [15–22] and many others. However, we find the quantum relative entropy to be the
suitable entropy for updating density matrices, rather than the von Neuman entropy [23], as is suggested
in [24]. I believe the present article provides the desired motivation for why the appropriate quantum
relative entropy for updating density matrices, from prior to posterior, should be logarithmic in form
while also providing a solution for updating non-uniform prior density matrices [24]. The relevant
results of these papers may be found using the quantum relative entropy with suitably chosen prior
density matrices.

It should be noted that because the relative entropies were reached by design, they may be
interpreted as such, “the relative entropies are tools for updating”, which means we no longer need to
attach an interpretation ex post facto—as a measure of disorder or amount of missing information. In this
sense, the relative entropies were built for the purpose of saturating their own interpretation [4,7], and,
therefore, the quantum relative entropy is the tool designed for updating density matrices.
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This article takes an inferential approach to probabilities and density matrices that is expected
to be notionally consistent with the Bayesian derivations of Quantum Mechanics, such as Entropic
Dynamics [7,25–27], as well as Bayesian interpretations of Quantum Mechanics, such as QBism [28].
The quantum maximum entropy method is, however, expected to be useful independent of one’s
interpretation of Quantum Mechanics because the entropy is designed at the level of density matrices
rather than being formulated from arguments about the “inner workings” of Quantum Mechanics.
This inferential approach is, at the very least, verbally convenient so we will continue writing in
this language.

A few applications of the quantum maximum entropy method are given in an another article [29].
By maximizing the quantum relative entropy with respect to a “data constraint” and the appropriate
prior density matrix, the Quantum Bayes Rule [30–34] (a positive-operator valued measure (POVM)
measurement and collapse) is derived. The quantum maximum entropy method can reproduce the
density matrices in [35,36] that are cited as “Quantum Bayes Rules”, but the required constraints
are difficult to motivate; however, it is expected that the results of this paper may be useful for
further understanding Machine Learning techniques that involve the quantum relative entropy [37].
The Quantum Bayes Rule derivation in [29] is analogous to the standard Bayes Rule derivation from
the relative entropy given in [38], as was suggested to be possible in [24]. This article provides the
foundation for [29], and thus, the quantum maximum entropy method unifies a few topics in Quantum
Information and Quantum Measurement through entropic inference.

As is described in this article and in [29], the quantum maximum entropy method is able to
provide solutions even if the constraints and prior density matrix in question do not all mutually
commute. This might be useful for subjects as far reaching as [39], which seeks to use Quantum Theory
as a basis for building models for cognition. The immediate correspondence is that the quantum
maximum entropy method might provide a solution toward addressing the empirical evidence for
noncommutative cognition, which is how one’s cognition changes when addressing questions in
permuted order [39]. A simpler model for noncommutative cognition may also be possible by applying
sequential updates via the standard maximum entropy method with their order permuted. Sequential
updating does not, in general, give the same resultant probability distribution when the updating order
is permuted—this is argued to be a feature of the standard maximum entropy method [40]. Similarly,
sequential updating in the quantum maximum entropy method also has this feature, but it should be
noted that the noncommutativity of sequential updating is different in principle than simultaneously
updating with respect to expectation values of noncommuting operators.

The remainder of the paper is organized as follows: first, we will discuss some universally
applicable principles of inference and motivate the design of an entropy function able to rank
probability distributions. This entropy function will be designed such that it is consistent with
inference by applying a few reasonable design criteria, which are guided by the aforementioned
principles of inference. Using the same principles of inference and design criteria, we find the form
of the quantum relative entropy suitable for inference. The solution to an example of updating 2 × 2
prior density matrices with respect to expectation values over spin matrices that do not commute
with the prior via the quantum maximum entropy method is given in the Appendix B. We end with
concluding remarks (I thank the reviewers for providing several useful references in this section).

2. The Design of Entropic Inference

Inference is the appropriate updating of probability distributions when new information is
received. Bayes rule and Jeffrey’s rule are both equipped to handle information in the form of data;
however, the updating of a probability distribution due to the knowledge of an expectation value was
realized by Jaynes [12–14] through the method of maximum entropy. The two methods for inference
were thought to be devoid of one another until the work of [38,40], which showed Bayes Rule and
Jeffrey’s Rule to be consistent with the method of maximum entropy when the expectation values were
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in the form of data [38,40]. In the spirit of the derivation we will carry on as if the maximum entropy
method were not known and show how it may be derived as an application of inference.

Given a probability distribution ϕ(x) over a general set of propositions x ∈ X, it is self evident
that if new information is learned, we are entitled to assign a new probability distribution ρ(x) that
somehow reflects this new information while also respecting our prior probability distribution ϕ(x).
The main question we must address is: “Given some information, to what posterior probability
distribution ρ(x) should we update our prior probability distribution ϕ(x)?”, that is,

ϕ(x) ∗−→ ρ(x)?

This specifies the problem of inductive inference. Since “information” has many colloquial,
yet potentially conflicting, definitions, we remove potential confusion by defining information
operationally (∗) as the rationale that causes a probability distribution to change (inspired by and
adapted from [7]). Directly from [7]:

Our goal is to design a method that allows a systematic search for the preferred posterior
distribution. The central idea, first proposed in [4], is disarmingly simple: to select the
posterior, first rank all candidate distributions in increasing order of preference and then pick
the distribution that ranks the highest. Irrespective of what it is that makes one distribution
preferable over another (we will get to that soon enough), it is clear that any ranking
according to preference must be transitive: if distribution ρ1 is preferred over distribution
ρ2, and ρ2 is preferred over ρ3, then ρ1 is preferred over ρ3. Such transitive rankings are
implemented by assigning to each ρ(x) a real number S[ρ], which is called the entropy of ρ,
in such a way that if ρ1 is preferred over ρ2, then S[ρ1] > S[ρ2]. The selected distribution
(one or possibly many, for there may be several equally preferred distributions) is that
which maximizes the entropy functional.

Because we wish to update from prior distributions ϕ to posterior distributions ρ by ranking,
the entropy functional S[ρ, ϕ] is a real function of both ϕ and ρ. In the absence of new information,
there is no available rationale to prefer any ρ to the original ϕ, and thereby the relative entropy should
be designed such that the selected posterior is equal to the prior ϕ (in the absence of new information).
The prior information encoded in ϕ(x) is valuable and we should not change it unless we are informed
otherwise. Due to our definition of information, and our desire for objectivity, we state the predominate
guiding principle for inductive inference:

The Principle of Minimal Updating (PMU):
A probability distribution should only be updated to the extent required by the new information.

This simple statement provides the foundation for inference [7]. If the updating of probability
distributions is to be done objectively, then possibilities should not be needlessly ruled out or
suppressed. Being informationally stingy, that we should only update probability distributions
when the information requires it, pushes inductive inference toward objectivity. Thus, using the PMU
helps formulate a pragmatic (and objective) procedure for making inferences using (informationally)
subjective probability distributions [41].

This method of inference is only as universal and general as its ability to apply equally well to
any specific inference problem. The notion of “specificity” is the notion of statistical independence;
a special case is only special in that it is separable from other special cases. The notion that systems
may be “sufficiently independent” plays a central and deep-seated role in science and the idea that
some things can be neglected and that not everything matters, is implemented by imposing criteria
that tells us how to handle independent systems [7]. Ironically, the universally shared property by all
specific inference problems is their ability to be independent of one another—they share independence.
Thus, a universal inference scheme based on the PMU permits:
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Properties of Independence (PI):
Subdomain Independence: When information is received about one set of propositions, it should
not affect or change the state of knowledge (probability distribution) of the other propositions
(else information was also received about them too);

And,

Subsystem Independence: When two systems are a priori believed to be independent and we only
receive information about one, then the state of knowledge of the other system remains unchanged.

The PIs are special cases of the PMU that ultimately take the form of design criteria in this design
derivation. The process of constraining the form of S[ρ, ϕ] by imposing design criteria may be viewed
as the process of eliminative induction, and after sufficient constraining, a single form for the entropy
remains. Thus, the justification behind the surviving entropy is not that it leads to demonstrably correct
inferences, but, rather, that all other candidate entropies demonstrably fail to perform as desired [7].
Rather than the design criteria instructing one how to update, they instruct in what instances one should
not update. That is, rather than justifying one way to skin a cat over another, we tell you when not to
skin it, which is operationally unique—namely you don’t do it—luckily enough for the cat.

The Design Criteria and the Standard Relative Entropy

The following design criteria (DC), guided by the PMU, are imposed and formulate the standard
relative entropy as a tool for inference. The form of this presentation is inspired by [7].

DC1: Subdomain Independence

We keep DC1 from [7] and review it below. DC1 imposes the first instance of when one should
not update—the Subdomain PI. Suppose the information to be processed does not refer to a particular
subdomain D of the space X of xs. In the absence of new information about D, the PMU insists we do
not change our minds about probabilities that are conditional on D. Thus, we design the inference
method so that ϕ(x|D), the prior probability of x conditional on x ∈ D, is not updated and therefore
the selected conditional posterior is

P(x|D) = ϕ(x|D). (1)

(The notation will be as follows: we denote priors by ϕ, candidate posteriors by lower case ρ, and the
selected posterior by upper case P.) We emphasize the point is not that we make the unwarranted
assumption that keeping ϕ(x|D) unchanged is guaranteed to lead to correct inferences. It need not;
induction is risky. The point is, rather, that, in the absence of any evidence to the contrary, there is no
reason to change our minds and the prior information takes priority.

DC1 Implementation

Consider the set of microstates xi ∈ X belonging to either of two non-overlapping domains D or
its compliment D′, such that X = D ∪D′ and ∅ = D ∩D′. For convenience, let ρ(xi) = ρi. Consider
the following constraints:

ρ(D) = ∑
i∈D

ρi and ρ(D′) = ∑
i∈D′

ρi, (2)

such that ρ(D) + ρ(D′) = 1, and the following “local” expectation value constraints over D and D′,

〈A〉 = ∑
i∈D

ρi Ai and 〈A′〉 = ∑
i∈D′

ρi A′i, (3)

where A = A(x) is a scalar function of x and Ai ≡ A(xi). As we are searching for the candidate
distribution which maximizes S while obeying (2) and (3), we maximize the entropy S ≡ S[ρ, ϕ] with
respect to these expectation value constraints using the Lagrange multiplier method,
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0 = δ
(

S− λ[ρ(D)− ∑
i∈D

ρi]− µ[〈A〉 − ∑
i∈D

ρi Ai]

−λ′[ρ(D′)− ∑
i∈D′

ρi]− µ′[〈A′〉 − ∑
i∈D′

ρi Ai]
)

,

and, thus, the entropy is maximized when the following differential relationships hold:

δS
δρi

= λ + µAi ∀ i ∈ D, (4)

δS
δρi

= λ′ + µ′A′i ∀ i ∈ D′. (5)

Equations (2)–(5), are n + 4 equations we must solve to find the four Lagrange multipliers {λ, λ′, µ, µ′}
and the n probability values {ρi} associated to the n microstates {xi}. If the subdomain constraint
DC1 is imposed in the most restrictive case, then it will hold in general. The most restrictive case
requires splitting X into a set of {Di} domains such that each Di singularly includes one microstate xi.
This gives,

δS
δρi

= λi + µi Ai in each Di. (6)

Because the entropy S = S[ρ1, ρ2, ...; ϕ1, ϕ2, ...] is a functional over the probability of each microstate’s
posterior and prior distribution, its variational derivative is also a function of said probabilities
in general,

δS
δρi
≡ φi(ρ1, ρ2, ...; ϕ1, ϕ2, ...) = λi + µi Ai for each (i,Di). (7)

DC1 is imposed by constraining the form of φi(ρ1, ρ2, ...; ϕ1, ϕ2, ...) = φi(ρi; ϕ1, ϕ2, ...) to ensure that
changes in Ai → Ai + δAi have no influence over the value of ρj in domain Dj, through φi, for i 6= j.
If there is no new information about propositions in Dj, its distribution should remain equal to ϕj
by the PMU. We further restrict φi such that an arbitrary variation of ϕj → ϕj + δϕj (a change in the
prior state of knowledge of the microstate j) has no effect on ρi for i 6= j and therefore DC1 imposes
φi = φi(ρi, ϕi), as is guided by the PMU. At this point, it is easy to generalize the analysis to continuous
microstates such that the indices become continuous i → x, sums become integrals, and discrete
probabilities become probability densities ρi → ρ(x).

Remark

We are designing the entropy for the purpose of ranking posterior probability distributions (for the
purpose of inference); however, the highest ranked distribution is found by setting the variational
derivative of S[ρ, ϕ] equal to the variations of the expectation value constraints by the Lagrange
multiplier method,

δS
δρ(x)

= λ + ∑
i

µi Ai(x). (8)

Therefore, the real quantity of interest is δS
δρ(x) rather than the specific form of S[ρ, ϕ]. All forms of S[ρ, ϕ]

that give the correct form of δS
δρ(x) are equally valid for the purpose of inference. Thus, every design

criteria may be made on the variational derivative of the entropy rather than the entropy itself,
which we do. When maximizing the entropy, for convenience, we will let,

δS
δρ(x)

≡ φx(ρ(x), ϕ(x)), (9)
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and further use the shorthand φx(ρ, ϕ) ≡ φx(ρ(x), ϕ(x)), in all cases.

DC1’: In the absence of new information, our new state of knowledge ρ(x) is equal to the old state of
knowledge ϕ(x).

This is a special case of DC1, and is implemented differently than in [7]. The PMU is in principle
a statement about informational honestly—that is, one should not “jump to conclusions” in light
of new information and in the absence of new information, one should not change their state of
knowledge. If no new information is given, the prior probability distribution ϕ(x) does not change,
that is, the posterior probability distribution ρ(x) = ϕ(x) is equal to the prior probability. If we
maximizing the entropy without applying constraints,

δS
δρ(x)

= 0, (10)

then DC1’ imposes the following condition:

δS
δρ(x)

= φx(ρ, ϕ) = φx(ϕ, ϕ) = 0, (11)

for all x in this case. This special case of the DC1 and the PMU turns out to be incredibly constraining
as we will see over the course of DC2.

Comment

If the variable x is continuous, DC1 requires that when information refers to points infinitely close
but just outside the domain D, that it will have no influence on probabilities conditional on D [7].
This may seem surprising as it may lead to updated probability distributions that are discontinuous.
Is this a problem? No.

In certain situations (e.g., physics) we might have explicit reasons to believe that conditions of
continuity or differentiability should be imposed and this information might be given to us in a variety
of ways. The crucial point, however—and this is a point that we keep and will keep reiterating—is
that unless such information is explicitly given, we should not assume it. If the new information leads
to discontinuities, so be it.

DC2: Subsystem Independence

DC2 imposes the second instance of when one should not update—the Subsystem PI.
We emphasize that DC2 is not a consistency requirement. The argument we deploy is not that both
the prior and the new information tells us the systems are independent, in which case consistency
requires that it should not matter whether the systems are treated jointly or separately. Rather, DC2
refers to a situation where the new information does not say whether the systems are independent
or not, but information is given about each subsystem. The updating is being designed so that the
independence reflected in the prior is maintained in the posterior by default via the PMU and the
second clause of the PIs [7].

The point is not that when we have no evidence for correlations we draw the firm conclusion that
the systems must necessarily be independent. They could indeed have turned out to be correlated and
then our inferences would be wrong. Again, induction involves risk. The point is rather that if the
joint prior reflects independence and the new evidence is silent on the matter of correlations, then the
prior independence takes precedence. As before, in this case subdomain independence, the probability
distribution should not be updated unless the information requires it [7].

DC2 Implementation

Consider a composite system, x = (x1, x2) ∈ X = X1 ×X2. Assume that all prior evidence led
us to believe the subsystems are independent. This belief is reflected in the prior distribution: if the
individual system priors are ϕ1(x1) and ϕ2(x2), then the prior for the whole system is their product
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ϕ1(x1)ϕ2(x2). Further suppose that new information is acquired such that ϕ1(x1) would by itself be
updated to P1(x1) and that ϕ2(x2) would be itself be updated to P2(x2). By design, the implementation
of DC2 constrains the entropy functional such that, in this case, the joint product prior ϕ1(x1)ϕ2(x2)

updates to the selected product posterior P1(x1)P2(x2) [7].
The argument below is considerably simplified if we expand the space of probabilities to include

distributions that are not necessarily normalized. This does not represent any limitation because a
normalization constraint may always be applied. We consider a few special cases below:

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be P1(x1) while we receive no information at all about system 2. We treat
the two systems jointly. Maximize the joint entropy S[ρ(x1, x2), ϕ(x1)ϕ(x2)] subject to the following
constraints on the ρ(x1, x2) : ∫

dx2 ρ(x1, x2) = P1(x1) . (12)

Notice that the probability of each x1 ∈ X1 within ρ(x1, x2) is being constrained to P1(x1) in the
marginal. We therefore need a one Lagrange multiplier λ1(x1) for each x1 ∈ X1 to tie each value of∫

dx2 ρ(x1, x2) to P1(x1). Maximizing the entropy with respect to this constraint is,

δ

[
S−

∫
dx1λ1(x1)

(∫
dx2 ρ(x1, x2)− P1(x1)

)]
= 0 , (13)

which requires that
λ1(x1) = φx1x2 (ρ(x1, x2), ϕ1(x1)ϕ2(x2)) , (14)

for arbitrary variations of ρ(x1, x2). By design, DC2 is implemented by requiring ϕ1 ϕ2 → P1 ϕ2 in this
case, therefore,

λ1(x1) = φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) . (15)

This equation must hold for all choices of x2 and all choices of the prior ϕ2(x2) as λ1(x1) is independent
of x2. Suppose we had chosen a different prior ϕ′2(x2) = ϕ2(x2) + δϕ2(x2) that disagrees with ϕ2(x2).
For all x2 and δϕ2(x2), the multiplier λ1(x1) remains unchanged as it constrains the independent
ρ(x1)→ P1(x1). This means that any dependence that the right-hand side might potentially have had
on x2 and on the prior ϕ2(x2) must cancel out. This means that

φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) = fx1(P1(x1), ϕ1(x1)). (16)

Since ϕ2 is arbitrary in f , suppose further that we choose a constant prior set equal to one,
ϕ2(x2) = 1, therefore

fx1(P1(x1), ϕ1(x1)) = φx1x2 (P1(x1) ∗ 1, ϕ1(x1) ∗ 1) = φx1 (P1(x1), ϕ1(x1)) (17)

in general. This gives
λ1(x1) = φx1 (P1(x1), ϕ1(x1)) . (18)

The left-hand side does not depend on x2, and therefore neither does the right-hand side. An argument
exchanging systems 1 and 2 gives a similar result.

Case 1—Conclusion: When the system 2 is not updated the dependence on ϕ2 and x2 drops out,

φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) = φx1 (P1(x1), ϕ1(x1)) , (19)

and vice-versa when system 1 is not updated,

φx1x2 (ϕ1(x1)P2(x2), ϕ1(x1)ϕ2(x2)) = φx2 (P2(x2), ϕ2(x2)) . (20)
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As we seek the general functional form of φx1x2 , and because the x2 dependence drops out of (19)
and the x1 dependence drops out of (20) for arbitrary ϕ1, ϕ2 and ϕ12 = ϕ1 ϕ2, the explicit coordinate
dependence in φ consequently drops out of both such that,

φx1x2 → φ, (21)

as φ = φ(ρ(x), ϕ(x)) must only depend on coordinates through the probability distributions
themselves. (As a double check, explicit coordinate dependence was included in the following
computations but inevitably dropped out due to the form the functional equations and DC1’. By the
argument above, and for simplicity, we drop the explicit coordinate dependence in φ here.)

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be P1(x1) and P2(x2), respectively. Maximize the joint entropy
S[ρ(x1, x2), ϕ(x1)ϕ(x2)] subject to the following constraints on the ρ(x1, x2) ,∫

dx2 ρ(x1, x2) = P1(x1) and
∫

dx1 ρ(x1, x2) = P2(x2) . (22)

Again, this is one constraint for each value of x1 and one constraint for each value of x2, which,
therefore, require the separate multipliers µ1(x1) and µ2(x2). Maximizing S with respect to these
constraints is then,

0 = δ

[
S−

∫
dx1µ1(x1)

(∫
dx2 ρ(x1, x2)− P1(x1)

)
−
∫

dx2µ2(x2)

(∫
dx1 ρ(x1, x2)− P2(x2)

)]
, (23)

leading to

µ1(x1) + µ2(x2) = φ (ρ(x1, x2), ϕ1(x1)ϕ2(x2)) . (24)

The updating is being designed so that ϕ1 ϕ2 → P1P2, as the independent subsystems are being updated
based on expectation values which are silent about correlations. DC2 thus imposes,

µ1(x1) + µ2(x2) = φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2)) . (25)

Write (25) as,
µ1(x1) = φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2))− µ2(x2). (26)

The left-hand side is independent of x2 so we can perform a trick similar to that we used before.
Suppose we had chosen a different constraint P′2(x2) that differs from P2(x2) and a new prior ϕ′2(x2)

that differs from ϕ2(x2) except at the value x̄2. At the value x̄2,the multiplier µ1(x1) remains unchanged
for all P′2(x2), ϕ′2(x2), and thus x2. This means that any dependence that the right-hand side might
potentially have had on x2 and on the choice of P2(x2), ϕ′2(x2) must cancel out, leaving µ1(x1)

unchanged. That is, the Lagrange multiplier µ(x2) “pushes out” these dependences such that

φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2))− µ2(x2) = g(P1(x1), ϕ1(x1)). (27)

Because g(P1(x1), ϕ1(x1)) is independent of arbitrary variations of P2(x2) and ϕ2(x2) on the left hand
side (LHS) above—it is satisfied equally well for all choices. The form of g = φ(P1(x1), q1(x1))

is apparent if P2(x2) = ϕ2(x2) = 1 as µ2(x2) = 0 similar to Case 1 as well as DC1’. Therefore,
the Lagrange multiplier is

µ1(x1) = φ (P1(x1), ϕ1(x1)) . (28)
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A similar analysis carried out for µ2(x2) leads to

µ2(x2) = φ (P2(x2), ϕ2(x2)) . (29)

Case 2—Conclusion: Substituting back into (25) gives us a functional equation for φ ,

φ (P1P2, ϕ1 ϕ2) = φ (P1, ϕ1) + φ (P2, ϕ2) . (30)

The general solution for this functional equation is derived in the Appendix A.3, and is

φ(ρ, ϕ) = a1 ln(ρ(x)) + a2 ln(ϕ(x)), (31)

where a1, a2 are constants. The constants are fixed by using DC1’. Letting ρ1(x1) = ϕ1(x1) = ϕ1 gives
φ(ϕ, ϕ) = 0 by DC1’, and, therefore,

φ(ϕ, ϕ) = (a1 + a2) ln(ϕ) = 0, (32)

so we are forced to conclude a1 = −a2 for arbitrary ϕ. Letting a1 ≡ A = −|A| such that we are really
maximizing the entropy (although this is purely aesthetic) gives the general form of φ to be

φ(ρ, ϕ) = −|A| ln
( ρ(x)

ϕ(x)

)
. (33)

As long as A 6= 0, the value of A is arbitrary as it always can be absorbed into the Lagrange multipliers.
The general form of the entropy designed for the purpose of inference of ρ is found by integrating φ,
and, therefore,

S(ρ(x), ϕ(x)) = −|A|
∫

dx (ρ(x) ln
( ρ(x)

ϕ(x)

)
− ρ(x)) + C[ϕ]. (34)

The constant in ρ, C[ϕ], will always drop out when varying ρ. The apparent extra term (|A|
∫

ρ(x)dx)
from integration cannot be dropped while simultaneously satisfying DC1’, which requires ρ(x) = ϕ(x)
in the absence of constraints or when there is no change to one’s information. In previous versions
where the integration term (|A|

∫
ρ(x)dx) is dropped, one obtains solutions like ρ(x) = e−1 ϕ(x)

(independent of whether ϕ(x) was previously normalized or not) in the absence of new information.
Obviously, this factor can be taken care of by normalization, and, in this way, both forms of the
entropy are equally valid; however, this form of the entropy better adheres to the PMU through DC1’.
Given that we may regularly impose normalization, we may drop the extra

∫
ρ(x)dx term and C[ϕ].

For convenience then, (34) becomes

S(ρ(x), ϕ(x))→ S∗(ρ(x), ϕ(x)) = −|A|
∫

dx ρ(x) ln
( ρ(x)

ϕ(x)

)
, (35)

which is a special case when the normalization constraint is being applied. Given normalization is
applied, the same selected posterior ρ(x) maximizes both S(ρ(x), ϕ(x)) and S∗(ρ(x), ϕ(x)), and the
star notation may be dropped.

Remarks

It can be seen that the relative entropy is invariant under coordinate transformations. This implies
that a system of coordinates carry no information and it is the “character” of the probability
distributions that are being ranked against one another rather than the specific set of propositions or
microstates they describe.
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The general solution to the maximum entropy procedure with respect to N linear constraints in ρ,
〈Ai(x)〉, and normalization gives a canonical-like selected posterior probability distribution,

ρ(x) = ϕ(x) exp
(

∑
i

αi Ai(x)
)

. (36)

The positive constant |A|may always be absorbed into the Lagrange multipliers so we may let it equal
unity without loss of generality. DC1’ is fully realized when we maximize with respect to a constraint
on ρ(x) that is already held by ϕ(x), such as 〈x2〉 =

∫
x2ρ(x) dx, which happens to have the same

value as 〈x2〉ϕ =
∫

x2 ϕ(x) dx, then its Lagrange multiplier is forcibly zero α1 = 0 (as can be seen in
(36) using (34)), in agreement with Jaynes. This gives the expected result ρ(x) = ϕ(x) as there is no
new information. Our design has arrived at a refined maximum entropy method [12] as a universal
probability updating procedure [38].

3. The Design of the Quantum Relative Entropy

In the last section, we assumed that the universe of discourse (the set of relevant propositions
or microstates) X = A×B × ... was known. In quantum physics, things are a bit more ambiguous
because many probability distributions, or many experiments, can be associated with a given density
matrix. In this sense, it is helpful to think of density matrices as “placeholders” for probability
distributions rather than a probability distributions themselves. As any probability distribution from a
given density matrix, ρ(·) = Tr(|·〉〈·|ρ̂), may be ranked using the standard relative entropy, it is unclear
why we would chose one universe of discourse over another. In lieu of this, such that one universe of
discourse is not given preferential treatment, we consider ranking entire density matrices against one
another. Probability distributions of interest may be found from the selected posterior density matrix.
This moves our universe of discourse from sets of propositions X → H to Hilbert space(s).

When the objects of study are quantum systems, we desire an objective procedure to update from
a prior density matrix ϕ̂ to a posterior density matrix ρ̂. We will apply the same intuition for ranking
probability distributions (Section 2) and implement the PMU, PI, and design criteria to the ranking
of density matrices. We therefore find the quantum relative entropy S(ρ̂, ϕ̂) to be designed for the
purpose of inferentially updating density matrices.

3.1. Designing the Quantum Relative Entropy

In this section, we design the quantum relative entropy using the same inferentially guided design
criteria as were used in the standard relative entropy.

DC1: Subdomain Independence

The goal is to design a function S(ρ̂, ϕ̂) that is able to rank density matrices. This insists that
S(ρ̂, ϕ̂) be a real scalar valued function of the posterior ρ̂, and prior ϕ̂ density matrices, which we will
call the quantum relative entropy or simply the entropy. An arbitrary variation of the entropy with
respect to ρ̂ is,

δ S(ρ̂, ϕ̂) = ∑
ij

δS(ρ̂, ϕ̂)

δρij
δρij = ∑

ij

( δS(ρ̂, ϕ̂)

δρ̂

)
ij

δ(ρ̂)ij = ∑
ij

( δS(ρ̂, ϕ̂)

δρ̂T

)
ji

δ(ρ̂)ij = Tr
( δS(ρ̂, ϕ̂)

δρ̂T δρ̂
)

, (37)

where Tr(...) is the trace. We wish to maximize this entropy with respect to expectation value
constraints, such as 〈A〉 = Tr(Âρ̂) on ρ̂. Using the Lagrange multiplier method to maximize the
entropy with respect to 〈A〉 and normalization, and setting the variation equal to zero,

δ
(

S(ρ̂, ϕ̂)− λ[Tr(ρ̂)− 1]− α[Tr(Âρ̂)− 〈A〉]
)
= 0, (38)
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where λ and α are the Lagrange multipliers for the respective constraints. Because S(ρ̂, ϕ̂) is a real
number, we inevitably require δS to be real, but without imposing this directly, we find that requiring
δS to be real requires ρ̂, Â to be Hermitian. At this point, it is simpler to allow for arbitrary variations
of ρ̂ such that,

Tr
(( δS(ρ̂, ϕ̂)

δρ̂T − λ1̂− αÂ
)

δρ̂
)
= 0. (39)

For these arbitrary variations, the variational derivative of S must satisfy,

δS(ρ̂, ϕ̂)

δρ̂T = λ1̂ + αÂ (40)

at the maximum. As in the remark earlier, all forms of S that give the correct form of δS(ρ̂,ϕ̂)
δρ̂T under

variation are equally valid for the purpose of inference. For notational convenience, we let

δS(ρ̂, ϕ̂)

δρ̂T ≡ φ(ρ̂, ϕ̂), (41)

which is a matrix valued function of the posterior and prior density matrices. The form of φ(ρ̂, ϕ̂) is
already “local” in ρ̂ (the variational derivative is with respect to the whole density matrix), so we don’t
need to constrain it further as we did in the original DC1.

DC1’: In the absence of new information, the new state ρ̂ is equal to the old state ϕ̂

Applied to the ranking of density matrices, in the absence of new information, the density matrix
ϕ̂ should not change, that is, the posterior density matrix ρ̂ = ϕ̂ is equal to the prior density matrix.
Maximizing the entropy without applying any constraints gives,

δS(ρ̂, ϕ̂)

δρ̂T = 0̂, (42)

and, therefore, DC1’ imposes the following condition in this case:

δS(ρ̂, ϕ̂)

δρ̂T = φ(ρ̂, ϕ̂) = φ(ϕ̂, ϕ̂) = 0̂. (43)

As in the original DC1’, if ϕ̂ is known to obey some expectation value 〈Â〉, and then if one goes
out of their way to constrain ρ̂ to that expectation value and nothing else, it follows from the PMU that
ρ̂ = ϕ̂, as no information has been gained. This is not imposed directly but can be verified later.

DC2: Subsystem Independence

The discussion of DC2 is the same as the standard relative entropy DC2—it is not a consistency
requirement, and the updating is designed so that the independence reflected in the prior is maintained
in the posterior by default via the PMU when the information provided is silent about correlations.

DC2 Implementation

Consider a composite system living in the Hilbert space H = H1 ⊗H2. Assume that all prior
evidence led us to believe the systems were independent. This is reflected in the prior density matrix:
if the individual system priors are ϕ̂1 and ϕ̂2, then the joint prior for the whole system is ϕ̂1 ⊗ ϕ̂2.
Further suppose that new information is acquired such that ϕ̂1 would itself be updated to ρ̂1 and that
ϕ̂2 would be itself be updated to ρ̂2. By design, the implementation of DC2 constrains the entropy
functional such that in this case, the joint product prior density matrix ϕ̂1 ⊗ ϕ̂2 updates to the product
posterior ρ̂1 ⊗ ρ̂2 so that inferences about one do not affect inferences about the other.
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The argument below is considerably simplified if we expand the space of density matrices to
include density matrices that are not necessarily normalized. This does not represent any limitation
because normalization can always be easily achieved as one additional constraint. We consider a few
special cases below:

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be ρ̂1 while we receive no information about system 2 at all. We treat the
two systems jointly. Maximize the joint entropy S[ρ̂12, ϕ̂1 ⊗ ϕ̂2], subject to the following constraints on
the ρ̂12 ,

Tr2(ρ̂12) = ρ̂1. (44)

Notice all of the N2 elements in H1 of ρ̂12 are being constrained. We therefore need a Lagrange
multiplier which spansH1 and therefore it is a square matrix λ̂1. This is readily seen by observing the
component form expressions of the Lagrange multipliers (λ̂1)ij = λij. Maximizing the entropy with
respect to thisH2 independent constraint is

0 = δ
(

S−∑
ij

λij

(
Tr2(ρ̂1,2)− ρ̂1

)
ij

)
, (45)

but reexpressing this with its transpose (λ̂1)ij = (λ̂T
1 )ji, gives

0 = δ
(

S− Tr1(λ̂1[Tr2(ρ̂1,2)− ρ̂1])
)

, (46)

where we have relabeled λ̂T
1 → λ̂1, for convenience, as the name of the Lagrange multipliers are

arbitrary. For arbitrary variations of ρ̂12, we therefore have

λ̂1 ⊗ 1̂2 = φ (ρ̂12, ϕ̂1 ⊗ ϕ̂2) . (47)

DC2 is implemented by requiring ϕ̂1 ⊗ ϕ̂2 → ρ̂1 ⊗ ϕ̂2, such that the function φ is designed to reflect
subsystem independence in this case; therefore, we have

λ̂1 ⊗ 1̂2 = φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) . (48)

Had we chosen a different prior ϕ̂′2 = ϕ̂2 + δϕ̂2, for all δϕ̂2 the LHS λ̂1 ⊗ 1̂2 remains unchanged given
that φ is independent of scalar functions (I would like to thank M. Krumm for pointing this out.) of ϕ̂2,
as those could be lumped into λ̂1 while keeping ρ̂1 fixed. The potential dependence on scalar functions
of ϕ̂2 can be removed by imposing DC2 in a subsystem independent situation where ρ̂′1 in φ need not
be fixed under variations of ϕ̂2. The resulting equation in such a situation, for instance maximizing the
entropy of an independent joint prior with respect to Tr(Â1 ⊗ 1̂2 · ρ̂12) = 〈A〉, facilitated by a scalar
Lagrange multiplier λ, and after imposing DC2,

λÂ1 ⊗ 1̂2 = φ
(
ρ̂′1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2

)
. (49)

For subsystem independence to be imposed here, ρ̂′1 must be independent of variations in ϕ̂2, and,
therefore, in a general subsystem independent case, φ is independent of scalar functions of ϕ̂2.
This means that any dependence that the right-hand side of (48) might potentially have had on
ϕ̂2 must drop out, meaning,

φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) = f (ρ̂1, ϕ̂1)⊗ 1̂2. (50)

Since ϕ̂2 is arbitrary, suppose further that we choose a unit prior, ϕ̂2 = 1̂2 , and note that ρ̂1 ⊗ 1̂2 and
ϕ̂1 ⊗ 1̂2 are block diagonal inH2. Because the LHS is block diagonal inH2,

f (ρ̂1, ϕ̂1)⊗ 1̂2 = φ
(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
. (51)
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The RHS is block diagonal in H2 and, because the function φ is understood to be a power series
expansion in its arguments,

f (ρ̂1, ϕ̂1)⊗ 1̂2 = φ
(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
= φ (ρ̂1, ϕ̂1)⊗ 1̂2. (52)

This gives
λ̂1 ⊗ 1̂2 = φ (ρ̂1, ϕ̂1)⊗ 1̂2, (53)

and, therefore, the 1̂2 factors out and λ̂1 = φ (ρ̂1, ϕ̂1). A similar argument exchanging systems 1 and 2
shows λ̂2 = φ (ρ̂2, ϕ̂2).

Case 1—Conclusion: The analysis leads us to conclude that when the system 2 is not updated,
the dependence on ϕ̂2 drops out,

φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) = φ (ρ̂1, ϕ̂1)⊗ 1̂2, (54)

and, similarly,
φ (ϕ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = 1̂1 ⊗ φ (ρ̂2, ϕ̂2) . (55)

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be ρ̂1 and ρ̂2, respectively. Maximize the joint entropy,
S[ρ̂12, ϕ̂1 ⊗ ϕ̂2], subject to the following constraints on the ρ̂12 ,

Tr2(ρ̂12) = ρ̂1 and Tr1(ρ̂12) = ρ̂2, (56)

where Tri(...) is the partial trace function, which a trace over the vectors in over
Hi. Here, each expectation value constrains the entire space Hi, where ρ̂i lives. The Lagrange

multipliers must span their respective spaces, so we implement the constraint with the Lagrange
multiplier operator µ̂i, then,

0 = δ
(

S− Tr1(µ̂1[Tr2(ρ̂12)− ρ̂1])− Tr2(µ̂2[Tr1(ρ̂12)− ρ̂2])
)

. (57)

For arbitrary variations of ρ̂12, we have

µ̂1 ⊗ 1̂2 + 1̂1 ⊗ µ̂2 = φ (ρ̂12, ϕ̂1 ⊗ ϕ̂2) . (58)

By design, DC2 is implemented by requiring ϕ̂1 ⊗ ϕ̂2 → ρ̂1 ⊗ ρ̂2 in this case; therefore, we have

µ̂1 ⊗ 1̂2 + 1̂1 ⊗ µ̂2 = φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) . (59)

Write (59) as
µ̂1 ⊗ 1̂2 = φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2)− 1̂1 ⊗ µ̂2 . (60)

The LHS is independent of changes that might occur inH2 on the RHS of (60). This means that any
variation of ρ̂2 and ϕ̂2 must be “pushed out” by µ̂2—it removes the dependence of ρ̂2 and ϕ̂2 in φ.
Any dependence that the RHS might potentially have had on ρ̂2, ϕ̂2 must cancel out in a general
subsystem independent case, leaving µ̂1 unchanged. Consequently,

φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2)− 1̂1 ⊗ µ̂2 = g(ρ̂1, ϕ̂1)⊗ 1̂2. (61)
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Because g(ρ̂1, ϕ̂1) is independent of arbitrary variations of ρ̂2 and ϕ̂2 on the LHS above—it is satisfied
equally well for all choices. The form of g(ρ̂1, ϕ̂1) reduces to the form of f (ρ̂1, ϕ̂1) from Case 1 when
ρ̂2 = ϕ̂2 = 1̂2 and, similarly, DC1’ gives µ̂2 = 0. Therefore, the Lagrange multiplier is

µ̂1 ⊗ 1̂2 = φ(ρ̂1, ϕ̂1)⊗ 1̂2. (62)

A similar analysis is carried out for µ̂2 leading to

1̂1 ⊗ µ̂2 = 1̂1 ⊗ φ(ρ̂2, ϕ̂2). (63)

Case 2—Conclusion: Substituting back into (59) gives us a functional equation for φ ,

φ(ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = φ(ρ̂1, ϕ̂1)⊗ 1̂2 + 1̂1 ⊗ φ(ρ̂2, ϕ̂2), (64)

which is

φ(ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = φ(ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2) + φ(1̂1 ⊗ ρ̂2, 1̂1 ⊗ ϕ̂2). (65)

The general solution to this matrix valued functional equation is derived in Appendix A.5 and is

φ(ρ̂, ϕ̂) =
∼
A ln(ρ̂)+

∼
B ln(ϕ̂), (66)

where tilde
∼
A is a “super-operator” having constant coefficients and twice the number of indicies as ρ̂

and ϕ̂ as discussed in the Appendix (i.e.,
( ∼

A ln(ρ̂)
)

ij
= ∑k` Aijk`(log(ρ̂))k` and similarly for

∼
B ln(ϕ̂)).

DC1’ imposes

φ(ϕ̂, ϕ̂) =
∼
A ln(ϕ̂)+

∼
B ln(ϕ̂) = 0̂, (67)

which is satisfied in general when
∼
A= −

∼
B , and, now,

φ(ρ̂, ϕ̂) =
∼
A
(

ln(ρ̂)− ln(ϕ̂)
)

. (68)

We may fix the constant
∼
A by substituting our solution into the RHS of Equation (64), which is equal

to the RHS of Equation (65),( ∼
A1

(
ln(ρ̂1)− ln(ϕ̂1)

))
⊗ 1̂2 + 1̂1 ⊗

( ∼
A2

(
ln(ρ̂2)− ln(ϕ̂2)

))

=
∼
A12

(
ln(ρ̂1 ⊗ 1̂2)− ln(ϕ̂1 ⊗ 1̂2)

)
+
∼
A12

(
ln(1̂1 ⊗ ρ̂2)− ln(1̂1 ⊗ ϕ̂2)

)
, (69)

where
∼
A12 acts on the joint space of 1 and 2 and

∼
A1,

∼
A2 acts on single subspaces 1 or 2, respectively.

Using the well known log tensor product identity in this case (The proof is demonstrated by taking the
log of ρ̂1⊗ 1̂2 ≡ exp(ρ̂′1)⊗ 1̂2 = exp(ρ̂′1⊗ 1̂2) and substituting ρ̂′1 = log(ρ̂1).), ln(ρ̂1⊗ 1̂2) = ln(ρ̂1)⊗ 1̂2,
the RHS of Equation (69) becomes

=
∼
A12

(
ln(ρ̂1)⊗ 1̂2 − ln(ϕ̂1)⊗ 1̂2

)
+
∼
A12

(
1̂1 ⊗ ln(ρ̂2)− 1̂1 ⊗ ln(ϕ̂2)

)
. (70)

Note that arbitrarily letting ρ̂2 = ϕ̂2 gives( ∼
A1

(
ln(ρ̂1)− ln(ϕ̂1)

))
⊗ 1̂2 =

∼
A12

(
ln(ρ̂1)⊗ 1̂2 − ln(ϕ̂1)⊗ 1̂2

)
, (71)
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or arbitrarily letting ρ̂1 = ϕ̂1 gives

1̂1 ⊗
( ∼

A2

(
ln(ρ̂2)− ln(ϕ̂2)

))
=
∼
A12

(
1̂1 ⊗ ln(ρ̂2)− 1̂1 ⊗ ln(ϕ̂2)

)
. (72)

As
∼
A12,

∼
A1, and

∼
A2 are constant tensors, inspecting the above equalities determines the form of

the tensor to be
∼
A =A

∼
1 where A is a scalar constant and

∼
1 is the super-operator identity over the

appropriate (joint) Hilbert space.
Because our goal is to maximize the entropy function, we let the arbitrary constant A = −|A| and

distribute
∼
1 identically, which gives the final functional form,

φ(ρ̂, ϕ̂) = −|A|
(

ln(ρ̂)− ln(ϕ̂)
)

. (73)

“Integrating” φ gives a general form for the quantum relative entropy,

S(ρ̂, ϕ̂) = −|A|Tr(ρ̂ log ρ̂− ρ̂ log ϕ̂− ρ̂) + C[ϕ̂] = −|A|SU(ρ̂, ϕ̂) + |A|Tr(ρ̂) + C[ϕ̂], (74)

where SU(ρ̂, ϕ̂) is Umegaki’s form of the relative entropy [42–44], the extra |A|Tr(ρ̂) from integration
is an artifact present for the preservation of DC1’, and C[ϕ̂] is a constant in the sense that it drops out
under arbitrary variations of ρ̂. This entropy leads to the same inferences as Umegaki’s form of the
entropy with an added bonus that ρ̂ = ϕ̂ in the absence of constraints or changes in information—rather
than ρ̂ = e−1 ϕ̂, which would be given by maximizing Umegaki’s form of the entropy. In this sense,
the extra |A|Tr(ρ̂) only improves the inference process as it more readily adheres to the PMU though
DC1’; however, now, because SU ≥ 0, we have S(ρ̂, ϕ̂) ≤ Tr(ρ̂) + C[ϕ̂], which provides little nuisance.
In the spirit of this derivation, we will keep the Tr(ρ̂) term there, but, for all practical purposes of
inference, as long as there is a normalization constraint, it plays no role, and we find (letting |A| = 1
and C[ϕ̂] = 0),

S(ρ̂, ϕ̂)→ S∗(ρ̂, ϕ̂) = −SU(ρ̂, ϕ̂) = −Tr(ρ̂ log ρ̂− ρ̂ log ϕ̂), (75)

Umegaki’s form of the relative entropy. S∗(ρ̂, ϕ̂) is an equally valid entropy because, given normalization
is applied, the same selected posterior ρ̂ maximizes both S(ρ̂, ϕ̂) and S∗(ρ̂, ϕ̂).

3.2. Remarks

Due to the universality and the equal application of the PMU by using the same design criteria
for both the standard and quantum case, the quantum relative entropy reduces to the standard relative
entropy when [ρ̂, ϕ̂] = 0 or when the experiment being preformed ρ̂→ ρ(a) = Tr(ρ̂|a〉〈a|) is known.
The quantum relative entropy we derive has the correct asymptotic form of the standard relative
entropy in the sense of [8–10]. Further connections will be illustrated in a follow up article that is
concerned with direct applications of the quantum relative entropy. Because two entropies are derived
in parallel, we expect the well-known inferential results and consequences of the relative entropy to
have a quantum relative entropy representation.

Maximizing the quantum relative entropy with respect to some constraints 〈Âi〉, where {Âi} are
a set of arbitrary Hermitian operators, and normalization 〈1̂〉 = 1, gives the following general solution
for the posterior density matrix:

ρ̂ = exp
(

α01̂ + ∑
i

αi Âi + ln(ϕ̂)
)
=

1
Z

exp
(

∑
i

αi Âi + ln(ϕ̂)
)
≡ 1

Z
exp

(
Ĉ
)

, (76)

where αi are the Lagrange multipliers of the respective constraints and normalization may be factored
out of the exponential in general because the identity commutes universally. If ϕ̂ ∝ 1̂, it is well
known that the analysis arrives at the same expression for ρ̂ after normalization, as it would if the
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von Neumann entropy were used, and thus one can find expressions for thermalized quantum states
ρ̂ = 1

Z e−βĤ . The remaining problem is to solve for the N Lagrange multipliers using their N associated
expectation value constraints. In principle, their solution is found by computing Z and using standard
methods from Statistical Mechanics,

〈Âi〉 = −
∂

∂αi
ln(Z), (77)

and inverting to find αi = αi(〈Âi〉), which has a unique solution due to the joint concavity (convexity
depending on the sign convention) of the quantum relative entropy [8,9] when the constraints are
linear in ρ̂. The simple proof that (77) is monotonic in α, and therefore invertible, is that its derivative
∂

∂α 〈Âi〉 = 〈Â2
i 〉 − 〈Âi〉2 ≥ 0. Between the Zassenhaus formula [45]

et(Â+B̂) = etÂetB̂e−
t2
2 [Â,B̂]e

t3
6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]])..., (78)

and Horn’s inequality [46–48], the solutions to (77) lack a certain calculational elegance because it is
difficult to express the eigenvalues of Ĉ = log(ϕ̂) + ∑ αi Âi (in the exponential) in simple terms of the
eigenvalues of the Âi’s and ϕ̂, in general, when the matrices do not commute. The solution requires
solving the eigenvalue problem for Ĉ, such the the exponential of Ĉ may be taken and evaluated in
terms of the eigenvalues of the αi Âis and the prior density matrix ϕ̂. A pedagogical exercise is starting
with a prior that is a mixture of spin-z up and down ϕ̂ = a|+〉〈+|+ b|−〉〈−| (a, b 6= 0), maximizing
the quantum relative entropy with respect to an expectation of a general Hermitian operator with
which the prior density matrix does not commute. This example for spin is given in the Appendix B.

4. Conclusions

This approach emphasizes the notion that entropy is a tool for performing inference and
downplays counter-notional issues that arise if one interprets entropy as a measure of disorder,
a measure of distinguishability, or an amount of missing information [7]. Because the same design
criteria, guided by the PMU, are applied equally well to the design of a relative and quantum relative
entropy, we find that both the relative and quantum relative entropy are designed for the purpose of
inference. Because the quantum relative entropy is the functional that fits the requirements of a tool
designed for the inference of density matrices, we now know what it is and how to use it—formulating
an inferential quantum maximum entropy method. This article provides the foundation for [29], which,
in particular, derives the Quantum Bayes Rule and collapse as special cases of the quantum maximum
entropy method, as was craved in [24], analogous to [38,40]’s treatment for deriving Bayes Rule using
the standard maximum entropy method. The quantum maximum entropy method thereby unifies
a few topics in Quantum Information and Quantum Measurement through entropic inference.
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Appendix A

The Appendix loosely follows the relevant sections in [49], and then uses the methods reviewed to
solve the relevant functional equations for φ. The last section is an example of the quantum maximum
entropy method applied to a mixed spin state.
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Appendix A.1. Simple Functional Equations

From [49] pages 31–44.

Theorem A1. If Cauchy’s functional equation

f (x + y) = f (x) + f (y) (A1)

is satisfied for all real x, y, and if the function f (x) is (a) continuous at a point, (b) nonegative for small positive
x’s, or (c) bounded in an interval, then,

f (x) = cx (A2)

is the solution to (A1) for all real x. If (A1) is assumed only over all positive x, y, then under the same
conditions, (A2) holds for all positive x.

Proof. The most natural assumption for our purposes is that f (x) is continuous at a point (which later
extends to continuity all points as given by Darboux [50]). Cauchy solved the functional equation by
induction. In particular, Equation (A1) implies,

f (∑
i

xi) = ∑
i

f (xi), (A3)

and if we let each xi = x as a special case to determine f , we find

f (nx) = n f (x). (A4)

We may let nx = mt such that

f (x) = f (
m
n

t) =
m
n

f (t). (A5)

Letting limt→1 f (t) = f (1) = c gives

f (
m
n
) =

m
n

f (1) =
m
n

c, (A6)

and, because for t = 1, x = m
n above, we have

f (x) = cx, (A7)

which is the general solution of the linear functional equation. In principle, c can be complex.
The importance of Cauchy’s solution is that it can be used to give general solutions to the following
Cauchy equations:

f (x + y) = f (x) f (y), (A8)

f (xy) = f (x) + f (y), (A9)

f (xy) = f (x) f (y), (A10)

by preforming consistent substitution until they are the same form as (A1), as given by Cauchy. We will
briefly discuss the first two.

Theorem A2. The general solution of f (x + y) = f (x) f (y) is f (x) = ecx for all real or for all positive x, y
that are continuous at one point and, in addition to the exponential solution, the solution f (0) = 1 and f (x) = 0
for (x > 0) are in these classes of functions.
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The first functional f (x + y) = f (x) f (y) is solved by first noting that it is strictly positive for real x, y,
f (x), which can be shown by considering x = y,

f (2x) = f (x)2 > 0. (A11)

If there exists f (x0) = 0, then it follows that f (x) = f ((x− x0) + x0) = 0, a trivial solution, hence the reason
why the possibility of being equal to zero is excluded above. Given f (x) is nowhere zero, we are justified in
taking the natural logarithm ln(x), due to its positivity f (x) > 0. This gives,

ln( f (x + y)) = ln( f (x)) + ln( f (y)), (A12)

and letting g(x) = ln( f (x)) gives,

g(x + y) = g(x) + g(y), (A13)

which is Cauchy’s linear equation, and thus has the solution g(x) = cx. Because g(x) = ln( f (x)), one finds in
general that f (x) = ecx.

Theorem A3. If the functional equation f (xy) = f (x) + f (y) is valid for all positive x, y then its general
solution is f (x) = c ln(x) given it is continuous at a point. If x = 0 (or y = 0) are valid, then the general
solution is f (x) = 0. If all real x, y are valid except 0, then the general solution is f (x) = c ln(|x|).

In particular, we are interested in the functional equation f (xy) = f (x) + f (y) when x, y are positive.
In this case, we can again follow Cauchy and substitute x = eu and y = ev to get,

f (euev) = f (eu) + f (ev), (A14)

and letting g(u) = f (eu) gives g(u + v) = g(u) + g(v). Again, the solution is g(u) = cu and, therefore,
the general solution is f (x) = c ln(x) when we substitute for u. If x could equal 0, then f (0) = f (x) + f (0),
which has the trivial solution f (x) = 0. The general solution for x 6= 0, y 6= 0 and x, y positive is therefore
f (x) = c ln(x).

Appendix A.2. Functional Equations with Multiple Arguments

From [49] pages 213–217. Consider the functional equation,

F(x1 + y1, x2 + y2, ..., xn + yn) = F(x1, x2, ..., xn) + F(y1, y2, ..., yn), (A15)

which is a generalization of Cauchy’s linear functional Equation (A1) to several arguments.
Letting x2 = x3 = ... = xn = y2 = y3 = ... = yn = 0 gives

F(x1 + y1, 0, ..., 0) = F(x1, 0, ..., 0) + F(y1, 0, ..., 0), (A16)

which is the Cauchy linear functional equation having solution F(x1, 0, ..., 0) = c1x1, where F(x1, 0, ..., 0)
is assumed to be continuous or at least measurable majorant. Similarly,

F(0, ..., 0, xk, 0, ..., 0) = ckxk, (A17)

and if you consider

F(x1 + 0, 0 + y2, 0, ..., 0) = F(x1, 0, ..., 0) + F(0, y2, 0, ..., 0) = c1x1 + c2y2, (A18)

and, as y2 is arbitrary, we could have let y2 = x2 such that in general

F(x1, x2, ..., xn) = ∑ cixi, (A19)
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formulating the general solution.

Appendix A.3. Relative Entropy

We are interested in the following functional equation:

φ(ρ1ρ2, ϕ1 ϕ2) = φ(ρ1, ϕ1) + φ(ρ2, ϕ2). (A20)

This is an equation of the form,

F(x1y1, x2y2) = F(x1, x2) + F(y1, y2), (A21)

where x1 = ρ(x1), y1 = ρ(x2), x2 = ϕ(x1), and y2 = ϕ(x2). First, assume all q and p are greater than
zero. Then, substitute: xi = ex′i and yi = ey′i and let F′(x′1, x′2) = F(ex′1 , ex′2) and so on such that

F′(x′1 + y′1, x′2 + y′2) = F′(x′1, x′2) + F′(y′1, y′2), (A22)

which is of the form of (A15). The general solution for F is therefore

F′(x′1 + y′1, x′2 + y′2) = a1(x′1 + y′1) + a2(x′2 + y′2) = a1 ln(x1y1) + a2 ln(x2y2) = F(x1y1, x2y2), (A23)

which means the general solution for φ is

φ(ρ1, ϕ1) = a1 ln(ρ(x1)) + a2 ln(ϕ(x1)). (A24)

In such a case, when ϕ(x0) = 0 for some value x0 ∈ X , we may let ϕ(x0) = ε, where ε is as close to
zero as we could possibly want—the trivial general solution φ = 0 is saturated by the special case
when ρ = ϕ from DC1’. Here, we return to the text.

Appendix A.4. Matrix Functional Equations

(This derivation is implied in [49] pages 347–349). First, consider a Cauchy matrix functional equation,

f (X̂ + Ŷ) = f (X̂) + f (Ŷ), (A25)

where X̂ and Ŷ are n× n square matrices. Rewriting the matrix functional equation in terms of its
components gives

fij(x11 + y11, x12 + y12, ..., xnn + ynn) = fij(x11, x12, ..., xnn) + fij(y11, y12, ..., ynn) (A26)

and is now in the form of (A15), and, therefore, the solution is

fij(x11, x12, ..., xnn) =
n

∑
`,k=0

cij`kx`k (A27)

for i, j = 1, ..., n. We find it convenient to introduce super indices, A = (i, j) and B = (`, k) such that
the component equation becomes

fA = ∑
B

cABxB, (A28)

and resembles the solution for the linear transformation of a vector from [49]. In general, we will be
discussing matrices X̂ = X̂1 ⊗ X̂2 ⊗ ...⊗ X̂N which stem from tensor products of density matrices.
In this situation, X̂ can be thought of as 2N index tensor or a z× z matrix where z = ∏N

i ni is the
product of the ranks of the matrices in the tensor product or even as a vector of length z2. In such
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a case, we may abuse the super index notation where A and B lump together the appropriate number
of indices such that (A28) is the form of the solution for the components in general. The matrix form of
the general solution is

f (X̂) = C̃X̂, (A29)

where C̃ is a constant super-operator having components cAB.

Appendix A.5. Quantum Relative Entropy

The functional equation of interest is

φ
(

ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2

)
= φ

(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
+ φ

(
1̂1 ⊗ ρ̂2, 1̂1 ⊗ ϕ̂2

)
. (A30)

These density matrices are Hermitian, positive semi-definite, have positive eigenvalues, and are not
equal to 0̂. Because every invertible matrix can be expressed as the exponential of some other matrix,
we can substitute ρ̂1 = eρ̂′1 , and so on for all four density matrices giving,

φ
(

eρ̂′1 ⊗ eρ̂′2 , eϕ̂′1 ⊗ eϕ̂′2
)
= φ

(
eρ̂′1 ⊗ 1̂2, eϕ̂′1 ⊗ 1̂2

)
+ φ

(
1̂1 ⊗ eρ̂′2 , 1̂1 ⊗ eϕ̂′2

)
. (A31)

Now, we use the following identities for Hermitian matrices:

eρ̂′1 ⊗ eρ̂′2 = eρ̂′1⊗1̂2+1̂1⊗ρ̂′2 (A32)

and

eρ̂′1 ⊗ 1̂2 = eρ̂′1⊗1̂2 , (A33)

to recast the functional equation as,

φ
(

eρ̂′1⊗1̂2+1̂1⊗ρ̂′2 , eϕ̂′1⊗1̂2+1̂1⊗ϕ̂′2
)
= φ

(
eρ̂′1⊗1̂2 , eϕ̂′1⊗1̂2

)
+ φ

(
e1̂1⊗ρ̂′2 , e1̂1⊗ϕ̂′2

)
. (A34)

Letting G(ρ̂′1 ⊗ 1̂2, ϕ̂′1 ⊗ 1̂2) = φ
(

eρ̂′1⊗1̂2 , eϕ̂′1⊗1̂2
)

, and the like, gives

G(ρ̂′1 ⊗ 1̂2 + 1̂1 ⊗ ρ̂′2, ϕ̂′1 ⊗ 1̂2 + 1̂1 ⊗ ϕ̂′2) = G(ρ̂′1 ⊗ 1̂2, ϕ̂′1 ⊗ 1̂2) + G(1̂1 ⊗ ρ̂′2, 1̂1 ⊗ ϕ̂′2). (A35)

This functional equation is of the form

G(X̂′1 + Ŷ′1, X̂′2 + Ŷ′2) = G(X̂′1, X̂′2) + G(Ŷ′1, Ŷ′2), (A36)

which has the general solution

G(X̂′, Ŷ′) =
∼
A X̂′ + B̃Ŷ′, (A37)

analogous to (A19), and finally, in general,

φ(ρ̂, ϕ̂) =
∼
A ln(ρ̂) + B̃ ln(ϕ̂), (A38)

where
∼
A,
∼
B are super-operators having constant coefficients. Here, we return to the text.
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Appendix B. Spin Example

Consider an arbitrarily mixed prior (in the spin-z basis for convenience) with a, b 6= 0,

ϕ̂ = a|+〉〈+|+ b|−〉〈−| (A39)

and a general Hermitian matrix in the spin-1/2 Hilbert space,

cµσ̂µ = c11̂ + cxσ̂x + cyσ̂x + czσ̂z (A40)

= (c1 + cz)|+〉〈+|+ (cx − icy)|+〉〈−|+ (cx + icy)|−〉〈+|+ (c1 − cz)|−〉〈−|, (A41)

having a known expectation value,

Tr(ρ̂cµσ̂µ) = c. (A42)

Maximizing the entropy with respect to this general expectation value and normalization is:

0 =
(

δS− λ[Tr(ρ̂)− 1]− α(Tr(ρ̂cµσ̂µ)− c)
)

, (A43)

which after varying gives the solution,

ρ̂ =
1
Z

exp(αcµσ̂µ + log(ϕ̂)). (A44)

Letting

Ĉ = αcµσ̂µ + log(ϕ̂) (A45)

gives

ρ̂ =
1
Z

eĈ = UeU−1ĈUU−1 =
1
Z

Ueλ̂U−1

=
eλ+

Z
U|λ+〉〈λ+|U−1 +

eλ−

Z
U|λ−〉〈λ−|U−1, (A46)

where λ̂ is the diagonalized matrix of Ĉ having real eigenvalues. They are

λ± = λ± δλ, (A47)

due to the quadratic formula, where explicitly:

λ = αc1 +
1
2

log(ab), (A48)

and

δλ =
1
2

√(
2αcz + log(

a
b
)
)2

+ 4α2(c2
x + c2

y). (A49)

Because λ± and a, b, c1, cx, cy, cz are real, δλ is real and ≥ 0. The normalization constraint specifies the
Lagrange multiplier Z,

1 = Tr(ρ̂) =
eλ+ + eλ−

Z
, (A50)
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so Z = eλ+ + eλ− = 2eλ cosh(δλ). The expectation value constraint specifies the Lagrange multiplier α,

c = Tr(ρ̂cµσµ) =
∂

∂α
log(Z) = c1 + tanh(δλ)

∂

∂α
δλ, (A51)

which becomes

c = c1 +
tanh(δλ)

2δλ

(
2α(c2

x + c2
y + c2

z) + cz log(
a
b
)
)

,

or

c = c1 + tanh
(1

2

√(
2αcz + log(

a
b
)
)2

+ 4α2(c2
x + c2

y)
) 2α(c2

x + c2
y + c2

z) + cz log( a
b )√(

2αcz + log( a
b )
)2

+ 4α2(c2
x + c2

y)

. (A52)

This equation is monotonic in α and therefore it is uniquely specified by the value of c. Ultimately, this is
a consequence from the concavity of the entropy. The specific proof of (A52)’s monotonicity is below:

Proof. For ρ̂ to be Hermitian, Ĉ is Hermitian and δλ = 1
2

√
f (α) is real—furthermore, because δλ

is real f (α) ≥ 0 and thus δλ ≥ 0. Because f (α) is quadratic in α and positive, it may be written in
vertex form,

f (α) = a(α− h)2 + k, (A53)

where a > 0, k ≥ 0, and (h, k) are the (x, y) coordinates of the minimum of f (α). Notice that the form
of (A52) is

F(α) =
tanh( 1

2

√
f (α))√

f (α)
× ∂ f (α)

∂α
. (A54)

Making the change of variables α′ = α− h centers the function such that f (α′) = f (−α′) is symmetric
about α′ = 0. We can then write

F(α′) =
tanh( 1

2

√
f (α′))√

f (α′)
× 2aα′, (A55)

where the derivative has been computed. Because f (α′) is a positive, symmetric, and monotonically

increasing on the (symmetric) half-plane (for α′ greater than or less that zero), S(α′) ≡ tanh( 1
2

√
f (α′))√

f (α′)
is

also positive and symmetric, but it is unclear whether S(α) is strictly monotonic in the half-plane or
not. We may restate

F(α′) = S(α′)× 2aα′. (A56)

We are now in a convenient position to preform the derivate test for monotonic functions:

∂

∂α′
F(α′) = 2aS(α′) + 2aα′

∂

∂α′
S(α′)

= 2aS(α′)
(

1− aα′2

aα′2 + k

)
+ a

aα′2

aα′2 + k

(
1− tanh2(

1
2

√
aα′2 + k)

)

≥ 2aS(α′)
(

1− a(α′)2

aα′2 + k

)
≥ 0

(A57)
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because a, k, S(α′), and therefore aα′2

aα′2+k are all > 0. The function of interest F(α′) is therefore monotonic
for all α′, and therefore it is monotonic for all α, completing the proof that there exists a unique real
Lagrange multiplier α in (A52).

Although (A52) is monotonic in α, it is seemingly a transcendental equation. This can be solved
graphically for the given values c, c1, cx, cy, cz, i.e., given the Hermitian matrix and its expectation value
are specified. Equation (A52) and the eigenvalues take a simpler form when a = b = 1

2 because, in this
instance, ϕ̂ ∝ 1̂ and commutes universally so it may be factored out of the exponential in (A44).
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