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Abstract: The chaos-based optimization algorithm (COA) is a method to optimize possibly nonlinear
complex functions of several variables by chaos search. The main innovation behind the chaos-based
optimization algorithm is to generate chaotic trajectories by means of nonlinear, discrete-time
dynamical systems to explore the search space while looking for the global minimum of a complex
criterion function. The aim of the present research is to investigate the numerical properties of the
COA, both on complex optimization test-functions from the literature and on a real-world problem,
to contribute to the understanding of its global-search features. In addition, the present research
suggests a refinement of the original COA algorithm to improve its optimization performances.
In particular, the real-world optimization problem tackled within the paper is the estimation of six
electro-mechanical parameters of a model of a direct-current (DC) electrical motor. A large number of
test results prove that the algorithm achieves an excellent numerical precision at a little expense in the
computational complexity, which appears as extremely limited, compared to the complexity of other
benchmark optimization algorithms, namely, the genetic algorithm and the simulated annealing algorithm.

Keywords: chaotic systems; non-smooth optimization; global optimization; DC electrical motor modeling

1. Introduction

A chaotic systems is a complex system that shows sensitivity to initial conditions, such as
an economy, a stock market, the earth’s weather system, the behavior of water boiling on a stove,
migratory patterns of birds, the spread of vegetation across a continent, an astronomical or a social
system. In such systems, any uncertainty—no matter how small—in the beginning will produce rapidly
escalating errors in the prediction of the system’s future behavior. To make an accurate prediction of
the long-term behavior of such systems, the initial conditions must be known in their entirety and to
an infinite level of accuracy. Even very simple or small systems can exhibit very complex behaviors.
Typical features of chaotic systems include [1]:

• Nonlinearity: A linear system cannot be chaotic; therefore, only nonlinear systems may evolve in
time forming chaotic trajectories.

• Determinism: A chaotic system is deterministic, as it does not include any random or stochastic
element. Given an initial state for the system, it evolves according to deterministic rules. Chaos
theory is the study of nonlinear dynamics, in which seemingly random events are actually
predictable from deterministic equations.

• Sensitivity to initial conditions: Small changes in the initial state of a chaotic system may lead to
radically different trajectories (this is commonly referred to as the ”butterfly effect”).

• Irregularity: Hidden order including a large or infinite number of unstable periodic trajectories
forms the infrastructure of irregular chaotic systems. Chaos refers to an apparent lack of order in a
system that nevertheless obeys particular laws or rules.
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• Long-term unpredictability: Long-term prediction of a trajectory of a chaotic system is extremely
hard due to its sensitivity to initial conditions, which can be known only up to a finite degree
of precision.

Historically, the study of chaos started in mathematics and physics and expanded into engineering,
as well as into information and social sciences. Information entropy is tightly related to chaoticity in
real-world discrete-time sequences, as underlined, for example, in Hagmair et al. [2]. There exist
different kinds of potential commercial and industrial applications of chaotic systems, which,
for simplicity, are classified into stabilization, synthesis, and analysis [3]. A typical application of
chaotic systems is found in the secure transmission of information, where a meaningful message is
superimposed to a chaotic signal that makes it non-understandable to someone who neither knows
the system that produces the chaotic trajectory nor its initial state. To decode the received signal, it is
necessary to synchronize the chaotic oscillators at the transmitter and at the receiver [4].

In the present research study, chaotic systems are applied to constrained global optimization of
possibly non-smooth, nonlinear complex functions of several variables. Although non-conventional
optimization techniques based on stochastic methods have a long hystory (see, for example, [5]),
optimization techniques based on chaos theory have been less investigated.

The present study took its moves from the seminal contribution [6] that proposed how to optimize
complex functions by chaos search. The main idea behind the resulting chaos-based optimization algorithm
(COA) [6] is to generate chaotic trajectories by means of nonlinear dynamical systems to explore the
search space while looking for the global minimum of a complex criterion function. The main reasons
to choose a chaotic search over a deterministic search may be summarized as follows:

• The criterion function to optimize may be non-smooth and non-differentiable, hence, standard
search methods such as gradient steepest descent may not be applied in its optimization.

• A chaotic system may produces complex, non-repeating trajectories that hardly visit the same state
more than once, hence a chaos-based search algorithm is able to visit the whole space efficiently
while looking for the optimal configuration.

• A multivariate criterion function may include a large number of variables to optimize
simultaneously, therefore, a simple mechanism to generate multivariate candidate solutions
over a high-dimensional search space makes the search algorithm fast and easy to implement.

Despite its success in the optimization of complex functions, to the best of our knowledge,
the potentiality of the chaos-based optimization algorithm has only been marginally investigated in
the literature [7,8]. The aim of the present research study is to investigate the numerical properties of
the COA, both on complex optimization test-functions from the literature and on a real-world problem,
in order to contribute to the understanding of its global-search features. Through a large number of
tests and numerical evaluations, it was found that the algorithm may be further fine-tuned in order to
improve its numerical precision at a little expense in computational complexity, which is nevertheless
extremely limited, compared to the complexity of other optimization algorithms, namely, the genetic
algorithm and the simulated annealing algorithm.

The present paper is organized as follows. Section 2 summarizes the chaos-based optimization
algorithm and tests a number of possible chaotic maps over a large number of test functions drawn
from the specialized literature. Section 2 also suggests a fine-tuning of the original COA algorithm
and compares the modified algorithm with the genetic algorithm and the simulated-annealing based
optimization algorithm. Section 3 illustrates the performances of the refined COA algorithm in the
modeling of a direct-current electrical motor. Section 4 concludes the paper.

2. The Chaos-Based Optimization Algorithm and Its Fine-Tuning

Traditional algorithms are unable to solve some optimization problems since these algorithms can
get trapped into local minima or need too much search time. The properties of chaotic systems allow
the development of an efficient chaos-based optimization algorithm. Unlike traditional stochastic
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optimization algorithms that escape from local minima by accepting some sub-optimal solutions
according to a certain probability, the COA’s search takes advantage of chaotic motions’ regularity.
A chaotic movement can go through every state in a definite area thanks to its own regularity and
every state is obtained only once.

This Section illustrates the chaos-based optimization algorithm in Section 2.1 and describes in
Section 2.2 several chaotic maps, which are indispensable for the development and the implementation
of the COA; it also shows in Section 2.3 the performances of the COA in the optimization of a large
set of benchmark functions. The results obtained from the large set of test experiments suggest a
refinement of the original chaos-based optimization method, which is explained and numerically
tested in Section 2.4. Section 2.5 presents a comparison between the refined COA and both the genetic
optimization algorithm and the simulated-annealing-based optimization algorithm.

2.1. The Chaos-Based Optimization Algorithm

If a given optimization problem is described by a criterion f : Rn → R and the constraints that
it is subjected to prescribe its variables xi to belong to specified intervals, the optimization problem
can be described as min f (xi), i = 1, ..., n, subjected to ai ≤ xi ≤ bi, with ai, bi ∈ R. In the COA,
thanks to the carrier wave method, the optimization variables follow the trajectories of specific chaotic
functions whose ergodic areas are sized according to the constraints of the problem. The COA is outlined
as follows:

1. Generate n chaotic variables xi,k from the same nonlinear chaotic oscillator, where the index i
denotes the variable’s index and k denotes a discrete-time index. There will be n initial states xi,0
that are chosen very close one to another (for instance 0.1, 0.1001, 0.1002). These initial states,
because of chaotic systems properties, will give rise to completely different trajectories.

2. Launch the first carrier wave: This method allows us to obtain the optimization variables with
the amplification of the ergodic areas of the n chaotic variables by the equation x′i,k = ci + di xi,k,
where ci and di denote amplification constants. Perform the rough search: Let x̄′i = xi,0, calculate
the value of the objective function f at the initial state and save its value f̄ = f (xi,0). Then start to
iterate over the time k: Increase the time-index (iteration counter) k, generate a new attempted
solution x′i,k, calculate the value of the objective function f = f (x′i,k) and evaluate the solution:
If f ≤ f̄ then set f̄ = f and x̄′i = x′i,k. Continue with the iteration until f̄ does not improve in
K1 search steps, where the integer constant K1 determines the complexity of the search method.
The first carrier wave will produce a rough solution (x̄′1, x̄′2, . . . , x̄′n).

3. Launch the second carrier wave: The second carrier wave explores the search space in a narrower
interval around the rough solution, in fact, the trajectories of the optimization variables are
generated according to the rule x′′i,k = x̄′i + ei + fi xi,k, where the xi,k denote again the states of
n discrete-time chaotic systems, while ei and fi are the new amplification constants to perform
the search within small ergodic areas around x̄′i . Perform the fine search: Start to iterate over the
time k: Increase the time-index k, generate a new attempted solution x′′i,k, calculate the value of
the objective function f = f (x′′i,k) and evaluate the solution: If f ≤ f̄ then set f̄ = f and x̄′′i = x′′i,k.
Continue with the iteration until f̄ does not improve in K2 search iterations.

4. The process ends and the values of parameters (x̄′′1 , x̄′′2 , . . . , x̄′′n), together with the criterion value
f̄ , will be the best approximation of the global solution of the given optimization problem as
found by the chaos-based optimization algorithm.

2.2. Chaotic Maps

To generate the carrier waves, the COA makes use of a chaotic map that controls the features of the
chaotic system used to generate the variables that are essential for the optimization.

There are some known universal properties of the chaotic maps, for instance:

• They may present different kinds of attractors: An attractor is a set of numerical values towards which
a dynamical system evolves after a sufficiently long time. A set of numerical values can be defined
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as an attractor if the trajectories that are related to them stay close to each other even if they are
slightly perturbed.

• They may present different values of the Lyapunov coefficient: This coefficient measures how much
the system’s orbits are dependent from the initial state. Specifically, the Lyapunov coefficient
measures the average parting speed of two orbits that are initially close and then drift apart.

Four chaotic maps have been surveyed. The characteristics that are more interesting for the
optimization problem are the state’s trajectory variation (assuming that the initial states xi,0 are very close
to each other) and the ergodic area of each chaotic system, which is measured by pooling numerically
the distribution of its states.

• Logistic map. The “logistic map” is a second order polynomial function, described by:

xk+1 = rxk(1− xk), k = 0, 1, 2, 3, . . . , (1)

where r is the control parameter. It is supposed that 0 ≤ x0 ≤ 1 and that 0 ≤ r ≤ 4.
The Equation (1) represents a discrete-time, deterministic dynamical system without any stochastic
interference. The long-term behavior of said system cannot be predicted because it changes
completely as the control parameter r varies. In particular, when r = 4, the system becomes
chaotic. As we can see in Figure 1, from k > 10, two waves originating from very close initial
states start to behave in a different way and the system’s initial information is completely lost.
It may be observed that the values generated by the logistic map are condensed around its ergodic
area’s bounds, which are 0 and 1.
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Figure 1. Logistic map. Left-hand panel: Comparison between system’s output with two different
initial conditions. (The wave with initial value x0 = 0.1 is represented by the red line and the other
with initial value x0 = 0.1001 by the blue line.) Right-hand panel: Occurrence histogram of the values
of the states of the dynamical system (1).

• Quadratic map. The “quadratic map” arose as the real-valued version of the Mandelbrot set complex
map and is described by:

xk+1 = x2
k − c, k = 0, 1, 2, 3, . . . , (2)

where the constant c is the control parameter. For c = −2, the system acquires interesting
complicated dynamics. The ergodic area is included between −2 and 2, as may be readily
observed in Figure 2.
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Figure 2. Quadratic map. Left-hand panel: Comparison between system’s output with two different,
albeit very close, initial conditions. Right-hand panel: Occurrence histogram of the values of the
states of the dynamical system (2).

• Tent map. The “tent map” is defined by the following dynamical system:

xk+1 =

{
µxk if xk <

1
2 ,

µ(1− xk) if xk ≥ 1
2 ,

(3)

where µ is the control parameter and k = 0, 1, 2, 3, . . .. For µ ≥ 1.5, the waves start to show
bifurcations. The value that has been used in the tests is µ = 1.9999. Unlike the two previous
maps, the tent map has an uniform distribution in its ergodic area [0, 1], as it may be readily
appreciated in Figure 3.
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Figure 3. Tent map. Left-hand panel: Comparison between system’s output with two different,
although very close, initial conditions. Right-hand panel: Occurrence histogram of the values of the
states of the dynamical system (3).

• Sine map. The “sine map” gives rise to the following discrete-time dynamical system:

xk+1 = λ sin(πxk), k = 0, 1, 2, 3, . . . , (4)

where λ denotes the control parameter. This map generates a unique bifurcations diagram,
symmetrical under both plane’s axis λ, x. The value that has been used in the tests is λ = 1.
Figure 4 shows the behavior of the sine map and that its ergodic area is again [0, 1].
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Figure 4. Sine map. Left-hand panel: Comparison between system’s output with two different initial
conditions, very close to one another. Right-hand panel: Occurrence histogram of the values of the
states of the dynamical system (4).

2.3. Optimization of Test Functions

Seven benchmark functions have been taken into consideration to test and to further develop
the COA. These functions are usually used in the literature [9] because they show a wide
spectrum of characteristics, namely, they give rise to continuous/discontinuous, convex/nonconvex,
unimodal/multimodal, quadratic/nonquadratic optimization problems.

• F1: Generalized Rosenbrock function. This function of n variables is defined as

f1(x) =
n−1

∑
i=1

(
100(x2

i − xi+1)
2 + (1− xi)

2
)

. (5)

It was proposed by Rosenbrock in 1960 and is commonly used to test optimization algorithms
since, for n = 2, the search for the minimum is problematic in its parabolic area x2 = x2

1;
furthermore, it becomes multimodal for n > 3. The constraints and the global minimum of the
generalized Rosenbrock function are recalled in the Table 1 and its graphical rendering is given in
the Figure 5.

Table 1. Constraints and global minimum of the generalized Rosenbrock function (benchmark
function “F1”) for the case of n = 2 independent variables.

Constraints Global Minimum

−2 ≤ xi ≤ 2 f ?1 = 0; x?i = 1

−2 −1 0 1 2−2

0

2
0

2,000

x1

x2

f1(x1, x2)

Figure 5. Rendering of the generalized Rosenbrock function (benchmark function “F1”) for the case of
n = 2 independent variables.
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• F2: Parabolic function. This function is defined as

f2(x) =
n

∑
i=1

x2
i . (6)

It was introduced to test optimization by genetic adaptive systems. The global minimum is
not difficult to find because it is the only minimum of the function, but it can provide some
information about the precision of the algorithm. The constraints that this optimization problem
is subjected to are −5.12 ≤ xi ≤ 5.12.

• F3: Goldstein–Price function. This function is defined as

f3(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))×
((30 + (2x1 − 3x2)

2)(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)). (7)

The Goldstein–Price Function only has two variables but it exhibits several local minima.
The constraints and the global minimum of this function within the considered domain are
recalled in the Table 2, while its graphical rendering is given in the Figure 6.

Table 2. Constraints and global minimum of the Goldstein–Price function (benchmark function “F3”).

Constraints Global Minimum

−2 ≤ xi ≤ 2 f ?3 = −1.0156× 105; x?1 = −1.7693, x?2 = −2

−4 −2 0 2 4 −5

0

5
0

2

4

·108

x1

x2

f3(x1, x2)

Figure 6. Rendering of the Goldstein–Price function (benchmark function “F3”).

• F4: Schaffer function. This function is defined as

f4(x) = 0.5−

 sin2
√

x2
1 + x2

2 − 0.5[
1 + 0.001(x2

1 + x2
2)
]2
 . (8)

The Schaffer function (number 4) is quite interesting because its global minimum is not unique,
but it is given by all the points situated on a circumference with a well-defined radius r∗.
The constraints and the global minimum (in terms of radius) of this function are recalled in
the Table 3 and its graphical rendering is given in the Figure 7.
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Table 3. Constraints and global minimum of the Schaffer function (benchmark function “F4”).

Constraints Global Minimum

−4 ≤ xi ≤ 4 f ?4 = 0.0025; r∗ = 1.5692

−4 −2 0 2 4 −4
−2

0
2

4
0

0.5

1

x1

x2

f4(x1, x2)

Figure 7. Rendering of the Schaffer function (benchmark function “F4”).

• F5: Step function. This function is defined as

f5(x) =
n

∑
i=1
bxic, (9)

where the symbol b·c denotes rounding down to the nearest integer. This function tests an
optimization algorithm’s ability to overcome discontinuities. The constraints and the global
minimum of this function are recalled in Table 4 and its graphical rendering is given in Figure 8.
Since there is not any unique global minimum, an optimization algorithm is supposed to stop
when xi ≤ −5.

Table 4. Constraints and global minimum of the “step” function (benchmark function “F5”) for the
case of n = 2 independent variables.

Constraints Global Minimum

−5.1 ≤ xi ≤ 5.1 f ?5 = −12; x?i ≤ −5

−4 −2 0 2 4 −5

0

5−10

0

10

x1

x2

f5(x1, x2)

Figure 8. Rendering of the “step” function (benchmark function “F5”) for the case of n = 2 independent variables.
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• F6: Normalized Schwefel function. This function is defined as

f6(x) = − 1
n

n

∑
i=1

xi sin
(√
|xi|
)

. (10)

The Schwefel Function has its global minimum far away from the best local minimum: For this
reason, optimization algorithms could converge on a wrong direction. The constraints and the
global minimum of this function are recalled in the Table 5 and its graphical rendering is given
in Figure 9.

Table 5. Constraints and global minimum of the Schwefel function (benchmark function “F6”) for the
case of n = 2 independent variables.

Constraints Global Minimum

−512 ≤ xi ≤ 512 f ?6 = −418.982887; x?i = 420.968746

−400 −200 0 200 400 −500

0

500
−400

−200

0

200

400

x1

x2

f6(x1, x2)

Figure 9. Rendering of the Schwefel function (benchmark function “F6”) for the case of n = 2
independent variables.

• F7: Rastring function. This function of n independent variables is defined as

f7(x) = 10n +
n

∑
i=1

(
x2

i − 10 cos(2πxi)
)

. (11)

The Rastring function is an example of a nonlinear, multimodal function. Its optimization is
considered as a complicated problem because of its extended search space and its several local
minima. The constraints and the global minimum of this function are recalled in Table 6 and its
graphical rendering is given in the Figure 10.

Table 6. Constraints and global minimum of the Rastring function (benchmark function “F7”) for the
case of n = 2 independent variables.

Constraints Global Minimum

−5 ≤ xi ≤ 5 f ?7 = 0; x?i = 0
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−4 −2 0 2 4 −5

0

5

50

x1

x2

f7(x1, x2)

Figure 10. Rendering of the Rastring function (benchmark function “F7”) for the case of n = 2
independent variables.

The COA algorithm has been tested over the above seven benchmark functions, initially with
only the first carrier wave and subsequently with the full algorithm. All the recalled four types of
chaotic maps have been used to generate the optimization variables trajectories. The parameters of the
algorithm are recalled below for the convenience of the reader:

• K1: Stop criterion for the “rough search”.
• K2: Stop criterion for the “fine search”.
• ci, di: Amplifiers for the first carrier wave.
• ei, fi: Amplifiers for the second carrier wave.

We recall that the amplifiers ci, di are constants that allow the chaotic maps’ ergodic areas to adapt
to the specific search intervals (constraints) of the test function s. In the following tables, the figure Total
Loops stands for the number of iterations taken to run and Error is the percentage distance (compared
to the search interval) from the coordinates of the global minimum. The rough search has been run
several times for all the functions and for all the chaotic maps with K1 = 100, 200, 400, 600, 800, 1000.
Only the results that correspond to an error under 10% and a limited number of Total Loops have
been reported.

Table 7 illustrates the results obtained by applying a rough search to the benchmark functions F1
and F2 with n = 2 variables.

Table 7. Results of the application of a rough search (only first carrier wave) on the benchmark functions
F1 and F2.

F1 F2

Map K1 Total Loops Error Map K1 Total Loops Error

Logistic 400 553 7.90% Logistic 100 100 2.00%
Quadratic 1000 3210 3.50% Quadratic 100 100 2.00%

Sine 100 108 9.80% Sine 100 100 2.00%
Tent 100 108 8.00% Tent 100 100 2.00%

Only the quadratic map achieves a reasonable value but with too many iterations. With regard to
the function F2, the algorithm, during the first 100 loops, could not find any better results than the
initial states (that have been set at x1,0 = 0.1 and x2,0 = 0.1001).

Table 8 illustrates the results obtained by applying a rough search to the benchmark functions F3
and F4 with n = 2 variables. F3 function’s error is overall low, the logistic map is the one that exhibits
better results. The optimization of the F4 function could be resolved by an infinite number of points
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that belongs to the circumference of radius r∗ = 1.5692. Even in this case, the quadratic map needs the
highest number of iterations.

Table 8. Results of the application of a rough search (only first carrier wave) on the benchmark functions
F3 and F4.

F3 F4

Map K1 Total Loops Error Map K1 Total Loops Error

Logistic 100 133 1.75% Logistic 100 100 0.00%
Quadratic 600 1431 0.20 % Quadratic 100 3526 0.00 %

Sine 400 632 1.60% Sine 800 141 0.00%
Tent 400 826 1.80% Tent 100 114 0.00%

The algorithm could easily overcome the discontinuity of the F5 function and it could find
immediately values lower than −5, therefore it is not necessary to show the relative table.

Table 9 illustrates the results obtained by applying a rough search to the benchmark functions
F6 and F7 with n = 2 variables. The results about the optimization of the functions F6 and F7 do
not provide any further information about the algorithm’s behavior but they confirm its excellent
optimization ability.

Table 9. Results of the application of a rough search (only first carrier wave) on the benchmark functions
F6 and F7.

F6 F7

Map K1 Total Loops Error Map K1 Total Loops Error

Logistic 600 1010 1.26% Logistic 100 100 2.00%
Quadratic 100 177 2.60 % Quadratic 400 588 9.90 %

Sine 600 1067 2.00% Sine 100 100 2.00%
Tent 800 1516 4.00% Tent 100 116 1.80%

In summary, the logistic map is the chaotic map that allows the first carrier wave to obtain better
outcomes, namely, lower number of Total Loops, stop criterion to about 200 iterations and a final value
close to any global minimum (in the worst case, with an Error of 8%). Moreover, the tent map provide
good results. The quadratic map proves to be the worst in almost all tests (the cause may be its ergodic
area included between −2 and 2). As it can be seen, the rough search does not need a high value of
K1; in fact, since the initial search area is rather wide, increasing the number of Total Loops does not
always imply a proportional Error’s reduction.

It is now worth recalling that the amplifiers ei, fi of the second carrier wave are the algorithm’s
most important parameters because they influence substantially its precision. These parameters are
problem-dependent: specific constants were used, that could modify the ergodic area of the chaotic
waves. In some cases, this area was changed to be 3% of the total search area, in others it was change
to 2% or 8%. Thanks to its good performance during the “rough search”, the logistic map was used to
guide the second carrier wave. The amplifiers were calculated in the following way:

ei = −ε|αi|, fi = 2ε|βi − αi|, (12)

where αi and βi are, respectively, the lower bound and the upper bound of the constraints that were
associated to the variable xi, ε is the area’s shrinkage percentage (for example, 2% or 3% or 8%).

Several tests were effected by changing at every test the stopping parameter K2. The obtained
results are displayed in Table 10. In the table, x̄1 and x̄2 denote the values found by the COA, whereas
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P is a precision index that shows the ratio between the errors’ average on the individual variables and
a normalization constant proportional to the width of the search area, namely:

P =
∑n

i=1 |x̄i − x∗i |
∑n

i=1 |βi − αi|
. (13)

In all experiments, n = 2 variables were chosen.

Table 10. Results of the application of a fine search (both first and second carrier waves) on the
benchmark functions F1–F7.

Benchmark Coordinates of K2 Total Loops x̄1 x̄2 PFunctions Global Minimum

F1 x?i = 1 200 1032 1.0268 1.0534 1.0547× 10−2

2000 4500 0.9996 0.9976 3.7846× 10−4

F2 x?i = 0 1000 1568 −0.0010 −0.0094 5.4751× 10−4

2000 7806 0.0006 0.0002 3.2104× 10−5

F3 x?1 = −1.7693 100 1228 −1.7707 −1.9999 1.2678× 10−4

x?2 = −2.0000 20,000 60,013 −1.7963 −2.0000 1.8475× 10−24

F4 r∗ = 1.5692 200 538 0.7312 1.3886 1.6854× 10−27

F5 x?i ≤ −5 100 137 −5.0356 −5.0939 -

F6 x?i = 420.9687 100 1239 421.1416 420.9193 1.1557× 10−4

15,000 34,855 420.9656 420.9927 1.3554× 10−5

F7 x?i = 0 500 1068 −0.0010 −0.0094 5.9844× 10−4

2100 7606 −0.0005 0.0001 3.2575× 10−5

The results pertaining to some selected values of the parameters K2 are included in the table
to point out the precision that can be obtained with either a low or a high number of iterations.
The substantial Error of the “rough search” affects the performance of the “fine search” applied to
the F1 function, which is the most troublesome for both stopping criteria. Therefore, it is important
to use, for the purpose of optimization, a limited neighborhood for the second search. The values of
the performance index P lay between 10−5 and 10−4 in most cases, which proves the quality of the
chaos-based optimization algorithm. It can be seen that almost for all functions, excluding F4 and F5,
the values x̄1 and x̄2 are close to the coordinates of the global minimum but only after a relatively large
number of iterations.

2.4. Fine-Tuning of the COA Method (R-COA)

Specific problems that have dozens of variables in their objective functions or dynamic systems that
need the resolution of differential equations could see their computing time exponentially increased by
an high number of iterations. In the present research, to avoid the need for a large number of iterations,
it has been proposed the introduction of a third carrier wave, which corresponds to an additional search
stage, hereafter denoted as refined search. The whole refined chaos-based optimization algorithm
(R-COA) may be outlined as follows:

1. Generation of chaotic variables.
2. Launch the first carrier wave and perform the rough search (identical to that of the COA).
3. Launch the second carrier wave and perform the fine search (identical to that of the COA).
4. Launch the third carrier wave: It is described by the equation x′′′i,k = x̄′′i + gi + hi xi,k, where x̄′′i is

the current best solution as found by the second carrier wave, gi and hi are new amplification
constants that allow the search in small ergodic areas around x̄′′i , and xi,k is a new chaotic wave.
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Perform the refined search: Start to iterate over the time k, increase the time-index (iteration counter)
k, generate a new attempted solution x′′′i,k, calculate the value of the objective function f = f (x′′′i,k)

and evaluate the solution: If f ≤ f̄ , then set f̄ = f and x̄′′′i = x′′′i,k. Continue with the iteration
until f̄ does not improve in K3 search loops.

5. The process ends and the parameter values (x̄′′′1 , x̄′′′2 , . . . , x̄′′′n ) together with the criterion value f̄
will be the best global solution to the optimization problem, as found by the refined COA.

For the new analysis of the test functions, a lower value of the constant K2 was used. In addition,
different K3 values were tried. The amplifiers gi, hi are defined as:

gi = −δ|αi|, hi = 2δ|βi − αi|, (14)

where δ represents the shrinkage percentage of analyzed area (2.5%, 1.5% or 0.5%).
The obtained results are displayed in Table 11. In the table, x̄1 and x̄2 again denot the values found

by the R-COA, whereas P is the precision index defined before. Comparing the results displayed in
Table 11 with the results displayed in Table 10, it can be noticed that the COA endowed with a third
carrier wave always achieves a better (or comparable) precision, albeit with a lower number of Total Loops,
than its original version. The values x̄i found by the algorithm, excluded the ones pertaining to the F6
function (since it has a wide search interval), displays an error in the fourth or fifth decimal digit.

Table 11. Results of the application of a refined search (first, second and third carrier waves) on the
benchmark functions F1–F3, F6, F7 (Since the functions F4 and F5 did not need a better optimization,
they were not tested with the new algorithm).

Benchmark Coordinates of K3 Total Loops x̄1 x̄2 PFunctions Global Minimum

F1 x?i = 1 1000 2812 0.9999 1.0008 1.0657× 10−4

F2 x?i = 0 300 851 0.0000 0.0001 5.7872× 10−7

F3 x?1 = −1.7693 800 2705 −1.7691 −1.9999 1.3514× 10−5
x?2 = −2.0000

F6 x?i = 420.9687 600 1884 420.9641 420.9719 3.2198× 10−6

F7 x?i = 0 100 438 0.0002 0.0005 5.7785× 10−5

Table 12 displays the values f̄ of the test function achieved by the refined COA: The differences
between the value found by the optimization algorithm and the actual minimum are around 10−4

and 10−5.

Table 12. Values of the test functions resulting from the application of a refined search (first, second
and third carrier waves) on the benchmark functions F1–F3, F6, F7. (The functions F4 and F5 were
not tested).

Test Functions Global Minimum f̄

F1 0 8.9131× 10−5

F2 0 1.0032× 10−6

F3 −1.0156× 105 −1.0154× 105

F6 −418.9828 −418.9829
F7 0 5.2471× 10−5

2.5. Comparison with the Genetic and the Simulated-Annealing Algorithms

The performances of the chaos-based optimization algorithm R-COA have been compared with
those exhibited by Genetic Algorithm and Simulated Annealing algorithm.
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Genetic algorithms (GAs) are computer programs that mimic the processes of biological evolution
in order to solve problems and to model evolutionary systems (see, e.g., [10,11], for an overview).
The continuing performance improvements of computational systems has made them attractive for
some types of optimization. In particular, genetic algorithms work well on mixed continuous/discrete
combinatorial problems. GAs are less susceptible to getting stuck at local optima than gradient search
methods, although they tend to be computationally expensive. To run a genetic algorithm, one must
represent a solution to a given problem as a genome (or chromosome) and the quality of an individual
in relation to a given optimization problem is measured by a fitness function. The genetic algorithm
then creates a population of solutions and applies genetic operators such as mutation and crossover
to evolve the solutions in order to find the best ones. Although it is not guaranteed that a GA will
find a global optimal solution, in general, a GA is able to find good solutions within an acceptable
time span. Genetic algorithms present several parameters to set and operators to tune in order to
optimize their optimization performances. In the present research, the GA solver of MATLAB’s Global
Optimization Toolbox (version 2015a) was utilized maintaining without changes its already optimized
options. See, e.g., [12], for a recent application to system identification and [13] for an application to
magnetic resonance image segmentation.

Simulated annealing (SA) is a method for finding a good (albeit not necessarily optimal) solution
to an optimization problem [14]. Simulated annealing’s strength is that it avoids getting caught at local
optima, namely, at solutions that are better than any others nearby, and yet are not the global optima.
In fact, generally speaking, an optimization algorithm searches for the best solution by generating
a random initial solution and “exploring” the area nearby: If a neighboring solution is better than
the current one, then it moves to it, otherwise the algorithm stays put. This basic mechanism can
lead to situations where it gets stuck at a sub-optimal place. Simulated annealing injects some sort of
randomness into the basic mechanism to escape local optima early in the process without getting off
when an optimal solution is nearby. The simulated annealing algorithm used in the experiments is the
one implemented within MATLAB (version 2015a). See, e.g., [15] for an application to indoor wireless
local area network (WLAN) localization.

These algorithms were run 10 times on independent trials. Table 13 shows the results obtained by
comparing the R-COA algorithm and the simulated annealing algorithm, while Table 14 shows the
results obtained by comparing the COA algorithm and the genetic algorithm. In particular, for the
SA and the GA, the tables show the average values 〈xi〉 over the independent trials and the standard
deviation of the found global minimum’s coordinates, the average number of iterations required to
converge and the number of times that the SA or the GA algorithm achieved convergence.

When tested over the functions F1–F5, the SA always converges towards the global minimum and
obtains the exact solution for the benchmark functions F2, F3 and F5 (as it can be seen from the values
of the standard deviation). For the functions F1, F4 and F7, the SA is less accurate than the R-COA,
moreover, the average number of iterations for five functions out of seven is higher than the number of
total loops required by the R-COA. The search for the test function F6 did not converge (the algorithm
probably was trapped in a local minima due to the large search’s area).

GA’s results are worse compared with those of SA, even if, generally, the number of iterations
is lower. The GA algorithm, not only does not always converge when tested with the benchmark
functions F6 and F7, but for seven times out of ten, with F3, it achieves values that lay far apart from
the global minimum. GA and R-COA exhibit the same accuracy for the problem F4. The number of
Total Loops is higher than the average number of iterations only in two cases.

In conclusion, the chaos optimization algorithm exhibits two important properties that distinguish
it from the optimization algorithms commonly invoked in the scientific literature:

• Convergence: The chaos-based optimization algorithm always converges towards the global
minimum since: (a) it does not use variables related to probability; and (b) it is able to examine the
whole search area, thanks to its mapping action;
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• Low computation time: Since it does not utilize gradient’s calculation to evaluate the tendency of
the objective function, it exhibits a computational complexity equal to Θ(n) (the notation Θ( f (n))
(commonly referred to as “big-Theta of f (n)”) is used to define the computational complexity of a
problem: It expresses how fast an algorithm temporal cost increases as a function of The problem
size n).

Table 13. Results of a comparison between the refined COA and the SA (Simulated Annealing
Algorithm) on the benchmark functions F1–F7.

Function
Refined COA Simulated Annealing

Estimates Total Loops Average Estimates Standard Deviation Average Iterations Convergence

F1
x̄1 = 0.9999

2812
〈x1〉 = 1.0329 0.1038

1407 10
x̄2 = 1.0008 〈x2〉 = 1.0771 0.2240

F2
x̄1 = 0.0000

851
〈x1〉 = 0.0000 0.0000

1011 10
x̄2 = 0.0001 〈x2〉 = 0.0000 0.0000

F3
x̄1 = −1.7961

2705
〈x1〉 = −1.7693 0.0000

1011 10
x̄2 = −1.9999 〈x2〉 = −2.0000 0.0000

F4 r̄ = 1.5692 538 〈r〉 = 1.5688 0.0010 1639 10

F5 x̄i ≤ −5 137 〈xi〉 ≤ −5 0.0000 1011 10

F6
x̄1 = 420.9641

1884
〈x1〉 = 109.1471 218.5777

2437 0
x̄2 = 420.9719 〈x2〉 = 7.9124 189.6553

F7
x̄1 = 0.0002

438
〈x1〉 = −0.0963 0.3159

2167 8
x̄2 = 0.0005 〈x2〉 = 0.0979 0.3152

Table 14. Results of a comparison between the refined COA and the GA (Genetic Algorithm) on the
benchmark functions F1–F7.

Function
Refined COA Genetic Algorithm

Estimates Total Loops Average Estimates Standard Deviation Average Iterations Convergence

F1
x̄1 = 0.9999

2812
〈x1〉 = 0.8822 0.0974

1392 10
x̄2 = 1.0008 〈x2〉 = 0.7867 0.1745

F2
x̄1 = 0.0000

851
〈x1〉 = 0.0000 0.0000

1011 10
x̄2 = 0.0001 〈x2〉 = 0.0000 0.0000

F3
x̄1 = −1.7961

2705
〈x1〉 = 0.6067 1.2464

1186 3
x̄2 = −1.9999 〈x2〉 = −0.4933 0.7942

F4 r̄ = 1.5692 538 〈r〉 = 1.5692 0.0000 1040 10

F5 x̄∗i ≤ −5 137 〈xi〉 ≤ −5 0.0000 1010 10

F6
x̄1 = 420.9641

1884
〈x1〉 = 204.4482 123.3547

1324 0
x̄2 = 420.9719 〈x2〉 = 150.4521 126.5412

F7
x̄1 = 0.0002

438
〈x1〉 = −0.0995 0.3146

1040 8
x̄2 = 0.0005 〈x2〉 = 0.1990 0.4195

2.6. Generic Refined Chaos-Based Optimization Algorithm

The chaos-based algorithm, similar to other optimization algorithms, has parameters (ergodic
areas’ amplifiers and stopping criteria) that must be adapted according to the faced problem. It was
possible to model these parameters in order to create a generic algorithm, thanks to the large amount of
data that were collected during the above tests.

The Euclidean distance between the minimum approximately found at the end of the rough
search and the actual global minimum could be considered as a circle’s radius. This radius represents
the sub-area where the second carrier wave will perform a second search. The same measure can be
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used for the fine search and the third carrier wave. Some general values were found while comparing
all the sub-areas (regarded as a percentage of the total search area) and their relative stopping criteria.
These values allow solving a generic optimization problem, even if it will perform less efficiently than
a R-COA tailored to a specific problem.

The suggested amplifiers for the second carrier wave are:

ei = −

√
0.025d2

i
π

, fi = 2|ei|, (15)

and the suggested amplifiers for the third carrier wave are:

gi = −

√
0.00015d2

i
π

, hi = 2|gi|, (16)

where the di’s are the amplifiers for the first carrier wave. The stopping criteria are:

K1 = 400, K2 = 500. (17)

Table 15 shows the outcomes of the optimization performed by the generic R-COA versus the
results obtained with a specific R-COA. The global minimum’s coordinates are, in general, less accurate
compared with those of specific R-COA (except for the first function). Moreover, the number of Total
Loops is higher. However, since the error stays confined to the third or fourth decimal digit, the results
can be considered acceptable.

Table 15. Results of a comparison between the specific refined COA and the generic refined COA on the
benchmark functions F1–F7.

Functions
Specific Refined COA Generic Refined COA

Estimates Total Loops Estimates Total Loops

F1
x̄1 = 0.9999

2812
x̄1 = 1.0014

2055
x̄2 = 1.0008 x̄2 = 1.0026

F2
x̄1 = 0.0000

851
x̄1 = −0.0001

2055
x̄2 = 0.0001 x̄2 = 0.0009

F3
x̄1 = −1.7961

2705
x̄1 = −1.7695

5283
x̄2 = −1.9999 x̄2 = −1.9998

F4 r̄ = 1.5692 538 r̄ = 1.5694 2055

F6
x̄1 = 420.9641

1884
x̄1 = 421.0366

3662
x̄2 = 420.9719 x̄2 = 420.8288

F7
x̄1 = 0.0002

438
x̄1 = 0.0001

2105
x̄2 = 0.0005 x̄2 = 0.0009
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3. Application to the Modeling of a Direct-Current Electrical Motor

The refined chaos-based optimization algorithm was applied to a real-world physical problem,
namely, the estimation of the electro-mechanical parameters of a model of a direct-current (DC)
electrical motor.

Direct-current motors found wide applications in industrial systems because they are easy to
control and to model. For analytic control system design and optimization, a precise model of a DC
motor may be desirable, since the specifications provided by the motor manufacturer may not be
considered adequate, especially for cheaper DC motors which tend to exhibit relatively large tolerances
in their electrical and mechanical parameters [16].

The present section recalls the fundamental equations describing the electro-mechanical dynamics
of a direct-current electrical motor in Section 3.1. Section 3.2 casts the identification of the parameters
of a DC motor model as an optimization problem. Section 3.3 describes and comments the results
about the motor’s parameters identification when the motor is driven by a step signal.

3.1. Direct-Current Electrical Motors

Figure 11 shows an electro-mechanical model of a DC electrical motor. It is assumed that the
stator has only a pair of polar expansions, characterized by an inductance Le associated to its relative
winding and by a resistance Re associated to conductor’s leakage. The analytic equation that describes
the stator-equivalent electrical circuit is:

ve(t) = Le
die(t)

dt
+ Re ie(t), (18)

where ie denotes the stator current intensity. Likewise, it is assumed that the rotor has only a pair of
polar expansions, characterized by an inductance La and by a resistance Ra. Furthermore, the model
takes into account the electromotive force’s effect, e, that correspond to an induced voltage proportional
to the rotation speed. The following equation describes the rotor’s electrical circuit:

va(t) = La
dia(t)

dt
+ Ra ia(t) + e(t), (19)

where ia denotes the rotor current intensity. According to the physical properties of the motor, while
the motor rotates with angular velocity ωm, a proportional electromotive force is generated in the
armature circuit, whose intensity is given by

e(t) = K ωm(t), (20)

where K is a proportionality constant whose value depends on the physical design of the DC motor.

−
+va(t)

Raia(t) La

−
+e(t)

ωm(t)

ωm(t)
J
Bmωm(t) TL

Electrical subsystem Mechanical subsystem

Figure 11. An electro-mechanical model of the direct-current electrical motor (we assumed no angular
speed change after gear).
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Whenever an electrical current of intensity ia flows through the rotor winding, magnetic
attraction/repulsion forces appear between the stator’s and rotor’s windings, which cause the motor
shaft to rotate. The magnetic field inside the motor transfers a mechanical torque to the drive shaft.
If we denote the rotor inertia by J, the viscous friction constant by Bm and the torque load applied to
the drive shaft by TL (that is supposed to be constant), the equation relating the torque Tm available at
the drive shaft may be written as

Tm(t) = J
dωm(t)

dt
+ Bm ωm(t) + TL. (21)

3.2. Formulation of the Motor’s Parameters Identification as an Optimization Problem

To estimate, through an optimization algorithm, the values of the parameters of the above model
of a DC motor, it is necessary to know its output values corresponding to a given input drive signal [17].
A DC motor was simulated by a Simulink model, assuming constant stator voltage, controlled by the
armature voltage. Figure 12 shows the Simulink model block-diagram.

Figure 12. A Simulink model of an electrical direct-current motor with constant stator voltage.

The armature voltage va is the only reference signal, whereas the constant load torque TL is
regarded as a system disturbance. In the Simulink model, they are multiplied by Vr and Tr, respectively,
to amplify their values. In the two sections of the diagram that represent the electrical dynamics and
the mechanical dynamics, there is an integrator block with initial conditions ia0 and ωm0. The outputs
of the model are the armature current ia and the angular speed ωm of the drive shaft.

The state-space representation of the model is
d ia(t)

d t
=

va(t)− Ra ia(t)− K ωm(t)
La

,

d ωm(t)
d t

=
Tm(t)− Bm wm(t)− TL

J
.

(22)

The initial value of the armature current and of the angular speed of the drive shaft are
ia0 = 22.8284 A and ωm0 = 122.3259 rad/s.

A step input response was analyzed and its corresponding outputs are shown in Figure 13.
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Figure 13. Example of output values of the model of a direct-current electrical motor driven by a
step input voltage. Left-hand panel: Armature current ia versus time. Right-hand panel: Drive shaft
angular velocity ωm versus time.

To estimate the best values of the electro-mechanical parameters of a DC motor model, the problem
is formulated in terms of model performance, to be optimized by means of the R-COA.

In [18], two performance criteria were tested, namely, a quadratic criterion and an absolute criterion.
A comparison reported in the paper [18] reveals that the results obtained though the optimization
of the quadratic criterion appear as better than those obtained by means of the absolute criterion.
However, in the study [19], it was observed how these criteria perform nearly the same. In the present
research, the following absolute criterion was selected as objective function:

C =
D

∑
j=1

(ka|ia,j − ias,j|+ kb|ωm,j −ωms,j|), (23)

where ia,j and ωm,j represent the values of the variables computed by means of the Simulink model,
upon time discretization, while ias,j and ωms,j denote the values of the variables obtained by the
optimization algorithm, upon time discretization, at discrete-time step j = 1, 2, . . . , D. The constants
ka > 0 and kb > 0 are weights, which attribute a different importance to the error in the estimate of
the armature current and to the error in the estimate of the drive shaft angular speed, that will be
discussed later.

Table 16 shows the actual values of the electro-mechanical parameters of the considered DC motor.

Table 16. Application to DC motor model parameters estimation: Actual values of motor’s physical
electro-mechanical parameters.

Parameter Parameter Symbol Parameter Value

Armature Resistance Ra 0.6 Ω

Armature Inductance La 0.03 H

Viscous Friction Bm 0.1 N·m·s/rad

Rotor Inertia J 0.6 kg·m2/rad

Torque Coefficient K 1.85 V·s/rad

Torque Load TL 15 N·m

When launching the R-COA, it is necessary to take into account that each parameter is constrained
to lie in a given interval, summarized in Table 17. Therefore, the R-COA must adapt the ergodic areas
of six chaotic waves to these constraints.
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Table 17. Application to DC motor model parameters estimation: Search range for each parameter
based on physical constrains.

Parameter Parameter Symbol Parameter Search Range

Armature Resistance Ra 0.1–0.8 (Ω)

Armature Inductance La 0.01–0.05 (H)

Viscous Friction Bm 0.05–0.5 (N·m·s/rad)

Rotor Inertia J 0.1–0.8 (kg·m2/rad)

Torque Coefficient K 1–2 (V·s/rad)

Torque Load TL 10–20 (N·m)

3.3. Results for an Electrical Motor Driven by a Step Armature Voltage

In the first set of experiments, a reference step signal of 240 V of amplitude was applied as
armature voltage. In this test condition, the velocity of the drive shaft ωm rises until it reaches the
steady-state value of 124.9103 rad/s, while the armature current intensity decreases until it stabilizes
at a value of 14.8600 A. The transient lasts approximately 0.5 second.

3.3.1. Separated Electrical and Mechanical Model Parameters Estimation

As a first test, only the electrical dynamics of the DC motor was considered as unknown, whereas
the mechanical parameters were considered as exactly known. Namely, the armature resistance Ra

and armature inductance La were taken as the only parameters to optimize for. In this test, the exact
values of the torque load TL and of the torque coefficient K were made use of. In Table 18, the Error
represents the difference between the value of the physical characteristic found by the algorithm and
the value of the actual one, whereas the Total Error is the value of the objective function C in (23).

Table 18. Motor driven by a step armature voltage: Test on estimating the electrical model parameters only.

Carrier Wave Total Loops Ra Error La Error Total Error

First 202 0.6156 0.0156 0.0320 0.0020 1.1003

Second 953 0.6003 0.0003 0.0301 0.0001 0.0601

As a second test, only the mechanical dynamics of the DC motor was considered as unknown,
whereas the electrical parameters were considered as exactly known. Namely, in the second case,
the optimization variables are the viscous friction Bm and the rotor inertia J. In this test, the exact
values of the torque load TL and of the torque coefficient K were again made use of. In Table 19,
the Error represents the difference between the value of the physical characteristic found by the algorithm
and the value of the actual one, whereas the Total Error is the value of the objective function C in (23).

Table 19. Motor driven by a step armature voltage: Test on estimating the mechanical model
parameters only.

Carrier Wave Total Loops Bm Error J Error Total Error

First 272 0.0991 0.0009 0.6085 0.0085 1.0095

Second 432 0.0991 0.0009 0.6008 0.0008 0.0704

As can be readily seen in the above tables, the COA can obtain values that are very close to the
actual ones, even without a refined search. The number of iterations needed to achieve such results
appears as low.
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3.3.2. Joint Electrical and Mechanical Model Parameters Estimation and Weights Analysis

In the definition of the absolute criterion C (23), the weights ka and kb are assigned to the armature
current mismatch and to the drive shaft velocity mismatch, respectively. In the third test, different
values for such weights were considered in order to achieve a joint electrical and mechanical model
parameters estimation. In this test, the torque load TL was assumed equal to zero.

In Table 20, the parameters’ values are shown as obtained with both a low and an high number
of iterations. In the latter case, it was evaluated the way that the quality of results improves while
increasing the computation time. In the first two cases, even if slightly different results were obtained
with few loops (521), it can be seen that both runs converge to the same values by increasing the
iterations number. In the third case, the estimations are worse compared to the first two. Therefore,
the values ka = 1 and kb = 1 will be used for the subsequent tests.

Table 20. Motor driven by a step armature voltage: Weights analysis for the joint electrical and
mechanical model parameters estimation.

Total Loops Ra La Bm J K Total Error

Actual Value 0.6 0.03 0.1 0.6 1.85

ka = 1, kb = 1
521 0.5904 0.0295 0.0982 0.6388 1.8516 9.9568

5229 0.5942 0.0312 0.1001 0.6503 1.8505 7.3798

ka = 1, kb = 0.5
521 0.6029 0.0295 0.1005 0.6521 1.8504 7.9601

5229 0.5942 0.0312 0.1001 0.6503 1.8505 7.3798

ka = 1, kb = 2
582 0.5904 0.0295 0.0982 0.6399 1.8516 12.6972

7143 0.5926 0.0321 0.1001 0.6503 1.8505 8.9209

As a side note, one might consider that the weights ka and kb may be regarded as constants
that represent the measurements’ quality. For instance, if it is known in advance that the samples of
the drive shaft’s velocity are affected by a measurement error, the Total Error could be reduced by
modifying the constant kb. That is to say, if it is known that a sensor is not particularly sophisticated or
accurate, the weight related to the corresponding physical quantity could be adjusted. As a numerical
example, Table 21 shows results obtained by adding a Gaussian noise drawn from a normal distribution
to the drive shaft velocity and by adjusting the coefficient kb. The Total Error obtained by setting kb = 1
increases drastically due to the noises added to measurements. By decreasing the weight kb by 70%
(namely, to kb = 0.3), the Total Error is reduced.

Table 21. Motor driven by a step armature voltage: Joint electrical and mechanical model parameters
estimation in the presence of a disturbance on the drive shaft velocity measurements.

Total Loops Ra La Bm J K Total Error

Actual value 0.6 0.03 0.1 0.6 1.85

kb = 1 411 0.8000 0.0344 0.0703 0.2424 1.8328 139.2181

kb = 0.5 411 0.8000 0.0344 0.0703 0.2424 1.8328 139.2181

kb = 0.3 846 0.7993 0.0357 0.0888 0.5366 1.8010 114.2229

3.3.3. Full DC Motor Modeling

After the preliminary tests on modeling separated electrical/mechanical dynamics and after the
evaluation of the criterion’s weights, the R-COA was used to obtain a solution to the full DC motor
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model’s parameter estimation. Several ergodic areas amplifiers were tested. Table 22 illustrates the
best solutions found with a low and an high number of iterations.

Table 22. Motor driven by a step armature voltage: Full motor modeling results.

Loops Ra La Bm J K TL Error Parameter Error

Actual value 0.6 0.03 0.1 0.6 1.85 15

First carrier 1608 0.7693 0.0235 0.2053 0.7687 1.8285 13.5296 28.9436 5.1975

Second carrier 1766 0.6346 0.0339 0.0954 0.5253 1.8432 15.9757 18.0243 1.6334

Third carrier
1928 0.5594 0.0280 0.1004 0.5705 1.8551 15.5225 4.7574 0.9623

4624 0.6274 0.3370 0.0992 0.5645 1.8465 15.6379 4.3600 1.0743

In the table, Total Error is defined as the sum of the differences between samples from the actual
motors outputs and the outputs corresponding to the inferred parameters values. The Parameters Error
is a performance index that allows one to evaluate the quality of the found parameters values and is
defined as a weighted sum, namely

Param. Error = |Ra − Ras|+ |Bm − Bms|+ 10|J − Js|+ 100|La − Las|+ 1
10 |TL − TLs|. (24)

Note that the weights of each term in the above sum were adjusted to balance the different
values-ranges of the parameters.

The R-COA always converges towards the correct set of parameters, and the results are satisfactory.
Comparing the obtained values of Total Error to the Parameters Error, two observations arise:

• These errors do not decrease proportionally: From the second and third carrier waves,
the Parameters Error drops by 62.3% and by 26.4%, while the Total Error drops by 31.4% and
by 58.9%.

• An improvement in the matching of the model responses to the actual responses does not always
imply an improvement towards the correct parameters values. This may be due to the fact that
there exists an infinite number of combinations of the parameters that correspond to the same
model. In fact, from the state-space representation (22), it can be noticed that the model depends
on a ratio between variables, namely, La divides the electrical parameters while J divides the
mechanical parameters: For this reason, infinite potential combinations are possible.

In Figure 14, a comparison between the response of the motor model, in terms of the armature
current and of the velocity of the drive shaft, is shown. It is readily observed how the the steady-state
responses, also reported in Table 23 for the convenience of the reader, look identical. The small
differences of the two motors’ transient compose the Total Error.

Table 23. Motor driven by a step armature voltage: Actual steady-state values versus predicted values.

Armature Current Drive Shaft Velocity

ia 148,600 ωm 1,249,102

ias 148,379 ωms 1,249,340
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Figure 14. Motor driven by a step armature voltage: Comparison of the output curves. Blue-solid line:
Actual motor response. Red-crosshatched line: Inferred motor model response.

3.3.4. Expansion of the Search Areas

To challenge the R-COA by increasing the problem’s difficulty, additional tests were conducted
on expanded search areas of the electric motor’s physical characteristics compared to the ranges
indicated in Table 17. Namely, in order to test the behavior of the R-COA when the search areas
are badly estimated, the actual ranges were doubled and quadrupled, making them as indicated in
Table 24. The R-COA always converges in spite of the enlarged search areas. The refined chaos-based
optimization algorithm could find solutions that lay slightly apart from the actual ones and yet that
minimize the absolute criterion. Table 25 presents the results of parameter estimation obtained after
doubling the search areas, while Table 26 presents the results of parameter estimation obtained after
quadrupling the search areas. Both Total and Parameters Error raise in the first and second carrier
waves, while they decrease in the third one. If the number of iterations is quadrupled, the curves of
the motor’s response get close to one another although the parameters’ precision does not improve.
It can be observed that, even if the search areas increase, the number of iterations remains almost the
same. In this case, the performance degrades, especially in the identification of the armature resistance
Ra, with a minimum error of 0.0762 on the actual value, and in the identification of the load torque TL.
The Total Error is 6.7405, while in the previous tests did not exceed 5.

Table 24. Motor driven by a step armature voltage: Ranges for the parameters search areas doubled
and quadrupled with respect to the values indicated in Table 17.

Constrains Expansion Ra La Bm J K TL

Doubling 0.1–1.5 0.01–0.09 0.05–0.95 0.1–1.5 1–3 10–20

Quadrupling 0.1–2.9 0.01–0.17 0.05–1.85 0.1–2.9 1–5 10–50

Table 25. Motor driven by a step armature voltage: Results of parameters estimation by R-COA on
doubled search areas.

Total Loops Ra La Bm J K TL Total Error Parameter Error

Actual value 0.6 0.03 0.1 0.6 1.85 15

First carrier 271 0.7077 0.0291 0.2256 0.3888 1.9174 11.6350 337.2882 10.7149

Second carrier 429 0.6041 0.0335 0.1051 0.6420 1.8668 15.9271 104.4469 4.9715

Third carrier
1531 0.5830 0.0306 0.1008 0.6645 1.8553 15.0930 12.6643 0.8976

9037 0.6260 0.0297 0.0996 0.6589 1.8469 16.1967 4.7691 1.0058
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Table 26. Motor driven by a step armature voltage: Results of parameters estimation by R-COA on
quadrupled search areas.

Total
Ra La Bm J K TL

Total Parameter

Loops Error Error

Actual value 0.6 0.03 0.1 0.6 1.85 15

First carrier 123 1.3366 0.1448 0.2094 0.8115 1.8609 16.45778 375.5978 22.2117

Second carrier 233 1.0405 0.0473 0.0959 0.2330 1.7996 16.1008 72.0653 7.0065

Third carrier
1349 0.5338 0.0312 0.0998 0.6371 1.8534 16.1937 24.6221 1.2778

2582 0.7516 0.0429 0.0973 0.5987 1.8534 15.4716 6.7405 1.8114

The two panels of Figure 15 correspond to the values of the parameters reported in Tables 25
and 26: The shown results seem to suggest that the more the search areas increases, the more the
dynamics tend to differ, especially in the transient, while they always converge towards the same
steady state.
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Figure 15. Motor driven by a step armature voltage: Comparison of responses corresponding
to the values of the parameters reported in Tables 25 and 26. Blue-solid lines: Actual response.
Red-crosshatched line: Response corresponding to the values of the parameters inferred upon doubling
the search areas. Black dot-dashed lines: Response corresponding to the values of the parameters
inferred upon quadrupling the search areas.

3.4. Comparison with the Genetic Algorithm and the Simulated-Annealing Based Algorithm

As a last test, the solutions computed by means of the R-COA were compared to the solutions
found by means of a Genetic Algorithm and a Simulated Annealing algorithm. Each optimization
algorithm was run 10 times for each input type. Table 27 illustrates the average results. In particular,
the bold-faced values are the best estimations for every parameter (e.g., for the Total loops, the
parameter Ra and the parameter La). In this way, it is also clear what algorithm performs the best on a
particular parameter or figure.

The GA is always able to keep the number of total loops low, whereas the SA algorithm in a
few cases gets over 3000 iterations. On the other hand, the R-COA exhibits considerably reduced
computing time. Quantitatively, it took about 120 min to run the GA- and SA-based experiments,
while it took only 10 min to run the R-COA-based experiments (all the computer codes were written in
MATLAB and were run on a 2.40 GHz, 4 GB RAM, Intel-based PC).

Genetic algorithm and Simulated Annealing Algorithm rarely converge towards the correct
solution; in fact, R-COA’s Total Error is equal to the 5% of the other two algorithms’ error. These two
algorithms, due to the parameters’ imprecision, show a mean-square error, for every measurement,
equal to 3.7808 for the GA and equal to 4.4943 for the SA.
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Table 27. Estimation of a DC motor parameters: Comparison of the R-COA with the SA algorithm
and the GA.

Results

Algorithm R-COA GA SA

Total Loops 4624 1578 9767

Ra 0.6 0.6274 0.4048 0.3873

La 0.03 0.0337 0.0183 0.0139

Bm 0.1 0.0992 0.0511 0.0500

J 0.6 0.5645 0.5147 0.4123

K 1.85 1.8465 1.8508 1.8475

TL 15 15.6379 13.2203 14.8479

Total Error 4.3600 204.1683 242.6949

Parameter Error 1.0743 4.6403 6.1314

Figure 16 illustrates the motor responses modeled by the three optimization algorithms.
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Figure 16. Estimation of a DC motor parameters: A comparison of motor responses between
models instantiated with parameters estimated by the R-COA, GA and SA algorithm. In the two
panels, the solid (blue) lines denote the expected responses, the crosshatched (red) lines denote the
results corresponding to the R-COA-based optimization, the dashed (black) lines denote the results
pertaining to the GA-based optimization, while the dot-dashed (purple) lines correspond to the
SA-based optimization.

In general, COA and R-COA manage, on the one hand, to map the whole constrained area
(maintaining a low computational complexity thanks to algorithm design) and, on the other hand,
to explore gradually smaller sections by the chaotic wave mechanism that allow to refine the solution
without getting lost in parameter space and in local minima. This can be an intuitive explanation of
why it outperforms both GA and SA in the benchmark function analysis and in the motor modeling
problem. For these reasons, chaotic methods have successfully been exploited in other areas, such as
neural-network training, thanks to their excellent optimization abilities (see, for example, [20]).

4. Conclusions

The aim of the research endeavor summarized in the present paper was to investigate the COA,
a global optimization algorithm based on the properties of chaotic waves.

The optimization features of the COA were first tested by means of a series of numerical
experiments performed on seven benchmark functions, drawn from the scientific literature,
that afforded getting an insight into the fundamental properties of this algorithm, which is based on
the notion of two carrier waves. Such preliminary numerical tests also led to an interesting refinement
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that consisted in introducing a third carrier wave, which significantly improves the algorithm’s efficacy
as it allows refining the solution at a little expense in terms of optimization loops.

The obtained R-COA algorithm was then applied to a real-world optimization problem, namely,
a direct-current electric motor modeling. Several experiments were carried out, where the electrical
and mechanical dynamics were analyzed separately or the search areas of the carrier waves were
expanded. The same tests were performed using two different optimization algorithms: the genetic
algorithm and the simulated annealing algorithm. The comparison with GA and SA highlights COA’s
good features: convergence and low computing time.

It is important to emphasize that the effectiveness of COA and R-COA is highly related to the
choice of its more important operator, the chaotic map. Further investigations could be carried out
to find maps that would grant even better performances. Moreover, for future research, it could be
interesting to carry out a more extensive study about both evolutionary strategies to set the ergodic
areas’ amplifiers and about the extension of the modeling problem to control.
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