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Abstract: In this work, we propose a Bayesian online reconstruction algorithm for sparse signals
based on Compressed Sensing and inspired by L1-regularization schemes. A previous work has
introduced a mean-field approximation for the Bayesian online algorithm and has shown that it
is possible to saturate the offline performance in the presence of Gaussian measurement noise
when the signal generating distribution is known. Here, we build on these results and show that
reconstruction is possible even if prior knowledge about the generation of the signal is limited,
by introduction of a Laplace prior and of an extra Kullback–Leibler divergence minimization step for
hyper-parameter learning.
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1. Introduction

It has become commonplace to talk about the recent “information explosion” or “data deluge”.
These expressions refer to a much faster growth in data production compared to all available data
storage and to the even more evident divergence between the volume of data produced and the
general data processing capacity. This state of things begs for more efficient ways of storing and
analyzing data. Natural and man-made signals tend to be compressible, which means their innate
redundancies allow them to be expressed as a small number of combinations of its components—they
are sparse in some basis. In the last few decades a lot of effort has been directed to the development
of compression techniques that allow the sampled data to be rewritten to a reduced number of bits.
However, these techniques mean superfluous costs on the gathering and processing of the data.
When talking about medical imaging that includes radiation, unnecessary data gathering almost
certainly signifies collateral and unwanted health effects in the long run for the patients.

Compressed sensing (CS) is a framework for signal processing that presents itself as a successful
resource that has produced many techniques for efficient information extraction [1]. CS utilizes
the fact that real-world signals can typically be represented by a small combination of elemental
components [2,3] to eliminate the data redundancy directly in its acquisition (in contrast with what
occurs in a digital camera, for example, that captures millions of point measurements each time a
picture is taken only to discard a large portion of this data immediately after its acquisition through
a image compression algorithm). In a standard scenario, CS utilizes the sparsity property to enable
the recovery of various signals from much fewer samples of linear measurements than required by
the Nyquist–Shannon theorem [4,5]. The Nyquist rate [6,7] is a concept present in virtually all signal
acquisition protocols used in consumer electronics and medical imaging devices, among others [2].
Unfortunately, it implies the necessity of a high sampling frequency, which means an especially
high demand if we consider the now pervasive high definition registers. Between 2004 and
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2006, Candès, Tao and Donoho [4,8,9] showed that sparse signals could be exactly reconstructed
with below-the-Nyquist-rate sampling. Moreover (and perhaps what made it so intriguing),
the reconstruction could be done in non-adaptive fashion through L1-minimization. These seminal
works gave rise to CS [5]. It should be noted that “sampling” here has a twist, though, in CS, a sample
of the signal is obtained by calculating its inner product against different test functions. All in all,
the popularity of CS in the last few years made it pervasive through various disciplines, from Computer
Science to Statistical Physics.

In this work, we consider the scenario of a signal generated by an unknown distribution and its
recovery by means of a Bayesian online CS scheme. There is a vast literature on Bayesian schemes for
CS (e.g., [10–12]) and their reconstruction have been thoroughly examined, not least by the Statistical
Physics community [13–15]. Online reconstruction schemes can be invaluable in situations where
real-time inference is needed (e.g., magnetic resonance imaging), when the data set is too large to
be entirely stored on a hard disk (e.g., modern simulation science) or in the presence of time-variant
signals (e.g., data streaming). Algorithms for Bayesian online learning are well-known in the neural
networks community [16–18] and, in many fields of engineering such as optimal control theory,
where they are known as Kalman filters [19–21]. In addition, an interesting compromise between
online and offline learning is the so-called mini-batch learning [22], which has recently also found
its way to the CS scenario [23]. In direct connection with this letter, previous work [24] has already
established the possibility of online CS reconstruction, but it suffered from an important limitation,
namely the necessity of an exact knowledge about the generating distribution of the signal.

This paper is organized as follows: in Section 2, the basic CS problem is defined, together with
two reconstruction methods—the L1-minimization problem called LASSO (Least Absolute Shrinkage
and Selection Operator) and the Bayesian scheme. Section 3 introduces the Bayesian online CS
framework as presented in [24]. In Section 4, the main contribution of this work, an extension for the
online framework in which imperfect knowledge about the signal generating distribution is allowed,
is described. Section 5 presents the main results and Section 6 summarizes and discusses the main
findings of this work.

2. Problem Setup

Let x0 = (x0
i ) ∈ RN be a real N-dimensional signal where each component is generated by a

sparsity-inducing distribution φ(x) = (1− ρ)δ(x) + ρg(x). It is assumed that 0 < ρ < 1 and that
g(x) does not have a finite mass at the origin. Sequential linear projections of the signal with known
independent random measurement vectors Aµ = (Aµ

i ) ∈ RN , with Aµ
i ∼ N (0, N−1) are obtained

at instants µ = 1, 2, . . . . Let these random projections uµ ≡ Aµ · x0 pass through a (possibly noisy)
channel before their result becomes available—this way, the value of each measurement, yµ, will be
distributed according to P(yµ|uµ) (Figure 1).

x A

u y
P(y|u)

Figure 1. Schematic representation of the measurement process in Compressed Sensing. The sparse
signal is projected onto a (known) random measurement vector A. The result u = A · x goes through a
channel giving rise to the value y ∼ P(y|u).
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A common goal in Compressed Sensing is to accurately recover the signal x0 based on the
knowledge of Dt = {(A1, y1), (A2, y2), . . . , (At, yt)} and of the functional form of the channel
P(y|A · x). Since the beginnings of CS, the staple technique in the field [5] has been the LASSO,
an optimization problem with an L1-regularization term [25],

x̂t = arg min
x
‖y− Ax‖2

2 + λ‖x‖1, (1)

where y = (yµ)t
µ=1, A is a matrix with all vectors Aµ as rows and the Lp-norms are defined as ‖z‖p =

(∑i |zi|p)1/p. The seminal works [4,8,9] were pivotal in proving that perfect signal reconstruction
in absence of noise is possible by means of (1) even in subsampling scenarios (i.e., for ρ < α < 1,
with α ≡ t/N) . The Statistical Physics community is no stranger for these results, with typical
behaviour analysis for large systems, where N → ∞ [26,27] being accepted as guarantees for the
validity of the method.

More recently, Bayesian techniques for signal reconstruction have also been proposed (e.g., [10,28]).
They consist in estimating x0 from the posterior distribution

P(x|Dt) =
P(Dt|x)∏N

i=1 φ(xi)∫
dx′ P(Dt|x′)∏N

i=1 φ(x′i)
. (2)

It has been shown [11] that the Bayesian reconstruction typically performs better than the
L1-minimization scheme for fewer measurements. In fact, the minimum mean squared error (mmse)
estimator x̂(Dt) =

∫
dx xP(x|Dt) is guaranteed [14] to minimize the mean square error mse defined

for any possible estimate x as:
mse ≡ N−1

〈
‖x− x0‖2

〉
Dt ,x0

. (3)

3. Bayesian Online Compressed Sensing

In this work, reconstruction of the signal is done in an online manner. That is, measurements are
used one at a time and discarded thereafter (in opposition to the offline/batch scenarios presented
above where the whole dataset Dt is available during the entire reconstruction). In addition, we would
like to achieve this objective with limited knowledge about the generating distribution φ(x).

Bayes’ Theorem (2) can be easily transformed into an online update recursion [16]. Since all
measurements are independent by design, the likelihood can be factored as

P(Dt|x) =
t

∏
µ=1

P(yµ|Aµ · x) = P(yt|At · x)
t−1

∏
µ=1

P(yµ|Aµ · x). (4)

This way, the posterior distribution P(x|Dt) for the signal x after t measurements can be written

P(x|Dt) ∝ P(yt|At · x)P(x|Dt−1). (5)

In general, distribution P(x|Dt) can be complicated, so the calculation of x̂(Dt) is potentially
difficult. Consider for now the Compressed Sensing scenario where the prior distribution is exactly
the same as the known signal generating distribution φ(x). The δ(x) factor here adds a singularity
to the prior φ(x), so that the posterior should not approximate a Gaussian distribution even for
t→ ∞, which was a crucial hypothesis in previous works [16] and would greatly simplify asymptotic
calculations. In absence of such a simplification, a previous work [24] introduced the following
mean-field approximation:

P̃(x|Dt) '
N

∏
i=1

(
e−at

i x2
i /2+ht

i xi φ(xi)

Z(at
i , ht

i)

)
(6)
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for the posterior distribution P(x|Dt) in Label (5) as a device to facilitate marginal computations and
(as a consequence) their expected values. In this expression, {(at

i , ht
i)} is a set of natural parameters and

Z(at
i , ht

i) =
∫

dxie−at
i x2

i /2+ht
i xi φ(xi) (7)

is the normalization of the marginal distribution P̃i(xi|Dt) =
∫

dx\i P̃(x|Dt), where dx\i denotes
integration over all {xj}j 6=i. So as not to introduce any biases, we define h0

i = a0
i = 0, ∀i, which results

in P̃i(xi|D0 ≡ ∅) = ∏N
i=1 φ(xi). The mmse estimate of the signal and its variance can then be readily

calculated from the approximate posterior as

mt
i = (∂/∂ht

i) ln Z(at
i , ht

i), (8)

vt
i = (∂2/(∂ht

i)
2) ln Z(at

i , ht
i), (9)

respectively. Equations (5) and (6) correspond to a sequence of update and projection steps—the
update step adds new information obtained with the most recent measurement t, but transforms the
posterior into a possibly intractable distribution; the projection step then returns this distribution to
an easier exponential representation with independent components (Figure 2). The full scheme can
be summarized as 2N update rules for the parameters {(at

i , ht
i)} [24]. Defining ∆t ≡ ∑N

i=1 At
i m

t−1
i and

χt ≡ ∑N
i=1(At

i)
2vt−1

i , these rules are

at+1
i = at

i − (At+1
i )2 ∂2

(∂∆t+1)2 ln Ωt(∆t+1), (10)

ht+1
i = ht

i + At+1
i

∂

∂∆t+1 ln Ωt(∆t+1)−mt
i(At+1

i )2 ∂2

(∂∆t+1)2 ln Ωt(∆t+1), (11)

where Ωt(∆t+1) =
∫
DzP(yt+1|∆t+1 +

√
χt+1 z) and Dz = (dz/

√
2π) exp(−z2/2) is the standard

Gaussian measure. It has been shown [24] that this online algorithm has an asymptotic error
decay comparable to the offline reconstruction scheme when additive measurement noise is present.
In the noiseless scenario, the offline Bayesian algorithm achieves zero error for finite t, while the online
version decays exponentially.

P̃(x|Dt+1)

P(yt+1|ut+1)P̃(x|Dt)

Figure 2. Update and projection steps.

4. Mismatched Priors and L1-Minimization Based Reconstruction

A limitation of the framework introduced above is the simple fact that, in a real-world scenario,
one does not know the exact parameters of the generating distribution, and possibly not even some of
its major characteristics except for the fact that the generated signals are somewhat sparse. Using this
algorithm as a canvas, we propose a strategy based on a Bayesian formulation of the L1-regularized
problem, relying on the use of the sparsity-inducing Laplace prior
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φλ(x) = (2/λ) exp(−λ|x|) (12)

and a learning scheme for λ concurrent with the measurements. The use of Laplace-like priors is not
new in the literature [29–31], but, to the best of our knowledge, this has not been introduced as part of
an online algorithm yet.

We observe that the L1-estimator (1) can also be written in a Bayesian manner as x̂t =∫
dx x limβ→∞ PL1(x|Dt; β, λ), where

PL1(x|Dt; β, λ) = Z−1
β,λ exp

[
−β

(
1

2σ2
n

t

∑
µ=1

(yµ − Aµ · x)2 + λ‖x‖1

)]
, (13)

with Zβ,λ a normalization factor dependent on β and λ. This formulation suggests the replacement of
the generating distribution φ(x) in Label (6) for φλ(x), effectively altering the projection step of the
Bayesian online algorithm to the similar expression

P̃λ(x|Dt) '
N

∏
i=1

(
e−at

i x2
i /2+ht

i xi−λ|xi |

Z(at
i , ht

i ; λ)

)
, (14)

where Z(a, h; λ) :=
∫

dx exp
(
−ax2/2 + hx− λ|x|

)
. The first and second moments of this alternate

approximate distribution are, respectively,

mt
i = (∂/∂ht

i) ln Z(at
i , ht

i ; λ), (15)

vt
i = (∂2/(∂ht

i)
2) ln Z(at

i , ht
i ; λ), (16)

paralleling Equations (8) and (9). Note that the natural parameters update Equations (10) and (11)
remain unchanged, since they are independent of our choice of prior, be it φ(x), φλ(x), or any other.

A common practical issue when making use of the L1-regularization scheme (1) is that the
best value of the shrinkage parameter λ is data-dependent and not always clear. Nevertheless, its
value is highly influential on the reconstructed model—there is a direct relation between λ and the
number of non-zero coefficients in the estimate, which is reflected on the prediction accuracy of
the model [32]. Therefore, since it is crucial to estimate accurate values of the shrinkage parameter,
usual strategies in offline scenarios include calculation of its best value through cross-validation
procedures [25] or straight calculation of an ideal number of non-zero covariates by adding one at a
time in a recursive manner [32]. Unfortunately, these strategies are of little use in our present setting,
where each measurement has to be used only once in an online manner.

Given any two distributions q(x) and r(x), the Kullback–Leibler divergence [33], DKL(q||r) =∫
dx q(x) ln[q(x)/r(x)] is a common measure for their dissimilarity. Also called relative entropy, it has

the interesting property that DKL(q||r) ≥ 0 always and it is zero if and only if q = r. Now, whenever
distribution r(x) is of the exponential family, i.e., f (x) ∝ ∑k ξksk(x), minimization of DKL(q||r) with
respect to ξk is equivalent to matching the moments

∫
dx q(x)sk(x) and

∫
dx r(x)sk(x). In particular,

for the exact posterior P as defined in the left-hand side of Label (2), minimization of DKL(P||P̃λ) with
respect to λ after measurement t, i.e., finding λt such that

λt = arg min
λ

DKL(P||P̃λ) (17)

is the same as solving the implicit equation

〈|x|〉P = 〈|x|〉P̃λ
(18)
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for λ. Here, 〈|x|〉P is the best possible estimate for the true sparsity of the original signal,
Q0 ≡

∫
dx |x|φ(x). Our proposal is that λt is, at any instant t, an optimal estimate for the shrinkage

parameter. Moreover, it is not static. With the natural parameters {(at
i , ht

i)} evolving, λt must change
as well to maintain 〈|x|〉P̃λ

' Q0.
Alas, the left-hand side of expression (18) is unknown. To overcome this difficulty, we make

the approximation 〈|x|〉P ' |mt|. An argument can be made in its defense: as more and more
measurements are acquired and the approximate posterior distribution (14) concentrates around the
true values, two limits are obtained: (a) 〈|x|〉P̃λ

−−→
t→∞

〈|x|〉P and (b) 〈|x|〉P̃λ
−−→
t→∞

|〈x〉P̃λ
|. The first

limit has been proved in the large signal size limit N → ∞ in [24] for an exact prior; here, we assume
its validity also in the present scenario. As for the second limit, Minkowski inequality guarantees
that 〈|x|〉P̃λ

≤ |mt|; with the collapse of the distribution P̃i(xi) around the true value x0
i at t → ∞,

no probability mass crosses the xi = 0 axis, so that the equality limit is met. Therefore, these results
mean a good estimate for the solution of (18) is given by λ̂t that solves

〈|x|〉P̃λ
' |mt| (19)

for λ, where the right-hand side can be directly calculated from P̃λt−1(x|Dt). This implicit expression
corresponds to an extra step in the online algorithm for the recovery of the signal, which is shown in
full below (Algorithm 1).

Algorithm 1 Online L1-based signal recovery for CS.

1: Initialize Pλ(x) . a0
i , h0

i = 0 (∀i); λ0 = λ

2: while t < tmax do
3: Obtain new measurement yt ∼ P(yt|At · x0)
4: Update {(at

i , ht
i)} . Equations (10) and (11)

5: Find λ̂t . Equation (19)
6: Update λt = (1− γ)λt−1 + γλ̂t
7: Estimate signal means mt

i and variances vt
i . Equations (15) and (16)

8: end while
9: return mt

5. Results and Discussion

We tested the algorithm on sparse signals generated by two different distributions of the
form φ(x) = ∏N

i=1 φ(xi), with φ(xi) = (1 − ρ)δ(xi) + ρg(xi). The δ(x) factor induces sparsity
by making every component equal to zero with probability 1 − ρ. The non-sparse components
could either come from a Gaussian distribution g(x) = (1/

√
2π) exp(−x2/2) or from a binary

distribution g(x) = (δ(x + 1) + δ(x − 1))/2. To better evaluate the accuracy losses incurred due
to approximation (19), we also tested the algorithm for the ideal situation where Q0 is known.
To guarantee practical usefulness, all results correspond to the standard CS scenario yµ = uµ + ξµ

with Gaussian noise ξµ ∼ N (0, σ2
n), i.e., P(y|u) = (1/

√
2πσ2

n) exp[−(y − u)2/2σ2
n ]. Its noiseless

counterpart can be obtained by taking the limit σ2
n → 0, which leads to P(y|u) = δ(y− u). Figure 3

shows the average mean squared error normalized by ‖x0‖2
2 resulting of simulations of the L1-based

online CS algorithm with λ learning. Simulations for finite signal length size N showed decreasing
error for increasing N—in order to correct for finite size effects, the curves in Figure 3 were obtained by
extrapolating the results for finite N = 200, 500, 1000 and 2000 to N → ∞ by means of a quadratic fit.
As expected, approximation (19) induces a significant accuracy loss, but, for α ≥ 1, the reconstruction
error decays approximately exponentially, proving the usefulness of the reconstruction scheme.
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Figure 3. L1-based reconstruction for CS with ρ = 0.1 for signals generated by φ(x) = ∏N
i=1[(1−

ρ)δ(xi) + ρg(xi)]. (a) and (b): g(x) = (1/
√

2π) exp(−x2/2); (c) and (d): g(x) = (δ(x + 1) + δ(x −
1))/2. The top row consists of the noiseless standard CS scenario; the bottom row corresponds to the
noisy scenario with σ2

n = 10−4. In all figures, dashed lines were obtained with known Q0 and full lines
with Q0 estimated through (19). In (a), the average error of 100 simulations each of N = 250, 500, 1000
and 2000 for chosen values of α are shown as crosses (unknown Q0) and triangles (known Q0). The error
decreases with increasing N. All lines in all pictures then correspond to the extrapolation of these finite
N values to N → ∞ by means of a quadratic fit. All pictures: γ = 10−3.

In all the examples shown, the solution to Equation (19) was obtained by numerically searching
the value λ̂t which best approximates both sides, i.e., by finding λ̂t = arg minλ[〈|x|〉P̃λ

− |mt|]2.
The empirical results prove what could have been a reasonable assumption: Figure 4 shows that in the
early stages when only a few measurements have been obtained, even for an exact prior, |mt| is not an
excellent approximation of 〈|x|〉P. It also shows that the approximation gets progressively better with
more measurements. For this reason, we found that the use of a small damping factor γ in the update
of λ provides faster and more accurate learning.

Finding an optimal value for the sparsity-inducing parameter λ is not trivial. Ideally, one desires
to find λ such that the P̃λ(x) would represent the actual sparsity of the original signal 〈|x0

i |〉. The limit
λ → ∞ is undesirable, since the soft constraints in P̃λ(x) due to the finite value of the natural
parameters {(at

i , ht
i)} would not be enough to prevent the prior distribution to completely dominate

the entire approximate posterior, leading all signal estimates to zero. At the same time, consider as a
representative example the update Equations (10) and (11) for the noisy standard CS scenario, which
can explicitly written as at+1

i = at
i + (At+1

i )2/(σ2
n + χt+1) and ht+1

i = ht
i + At+1

i (yt+1 − ∆t+1)/(σ2
n +

χt+1) + mi(At+1
i )2/(σ2

n + χt+1). Taking the average of daµ
i = aµ

i − aµ−1
i and dhµ

i = hµ
i − hµ−1

i over the
measurement vectors Aµ results in{

〈daµ
i 〉Aµ ' N−1/(σ2

n + χµ),

〈dhµ
i 〉Aµ ' N−1mi/(σ2

n + χµ),
(20)

which means that all the natural parameters at
i = ∑t

µ=1 daµ
i typically grow with more and more

measurements. Similarly, whenever x0
i is different from zero, any parameters ht

i = ∑t
µ=1 dhµ

i exhibit a
growth in absolute value lead by the mi factor. For any fixed λ, these considerations mean that the
regularizing effect of the prior φλ(x) in Label (14) would vanish asymptotically in what would be a
typical case of a prior being dominated by the likelihood. It is noteworthy that the introduction of a
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step for the minimization of the KL-divergence in the Bayesian online algorithm results in estimates λ̂t

that typically increase with α as well, in a scale similar to the other natural parameters (Figure 5).

Figure 4. Difference between 〈|x|〉P̃ (from Label (6), where the exact prior is considered) and the true
signal sparsity 〈|x0

i |〉|. The full line corresponds to the average of 100 simulations of the noisy standard
CS scenario with N = 1000, ρ = 0.2, σ2

n = 10−4 and g(x) = (1/
√

2π) exp(−x2/2). The dashed line
is the true sparsity of the original signal Q0 =

∫
dx0 |x0|φ(x0). Inset: Mean variance. Notice that the

absolute value approximation gets progressively better with growing α. Indeed, its accuracy matches
the diminishing of the posterior distribution’s variance.

Figure 5. An example of the online CS algorithm where λ has been adjusted after all measurements
so that the inferred signal sparsity was equal to the known value Q0. Note that λt, just like the
natural parameters {(at

i , ht
i )}, typically grows exponentially. Here, N = 1000, ρ = 0.1, σ2

n = 0 and
g(x) = (1/

√
2π) exp(−x2/2).

6. Conclusions

In this paper, we proposed an online algorithm for Compressed Sensing. Based on an earlier
version that expected exact knowledge of the signal generating distribution [24], the present adaptation
made use of a double-exponential prior (12) to get rid of this limitation. In order to keep the signal
sparsity always in focus during the signal reconstruction, we introduced in this work an extra step
where an optimal value for the sparsity-inducing parameter λ can be estimated as a function of
{(at

i , ht
i)} (i.e., a function of the data Dt). This was achieved through minimization of the KL-divergence
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between P̃λ(x) and the (unavailable) full posterior distribution (2), which is approximated by the
signal estimate at the previous step.

It is clear that the method is strongly dependent on the validity of the mean-field approximation (6)
for the posterior to obtain good reconstruction accuracy. This approximation was introduced in order
to simplify the calculations of the moments and to reduce the number of parameters, which should
be updated at every step (and, as a consequence, to reduce computational effort and memory
requirements). Nevertheless, it is not essential and can be easily replaced by a full Gaussian distribution
if needed. In all examples shown here, which made use of signals with fully independent components,
the algorithm was shown to give accurate predictions for different signal generating distributions,
with and without the presence of additive measurement noise.
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