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Abstract: Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal
symmetry, ranging from Onsager’s results to fluctuation relations in counting statistics. In this paper,
we show that a recently discovered duality relation for fermionic systems—deriving from the
fundamental fermion-parity superselection principle of quantum many-particle systems—provides
new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge
and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject
to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of
thermoelectric response coefficients are actually dominated by the average and fluctuations of the
charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron
interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to
much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the
part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether,
our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry
restrictions on thermoelectric transport. As such, it is also expected to simplify computations and
clarify the physical understanding for more complex systems than the simplest relevant interacting
nanostructure model studied here.

Keywords: thermoelectrics; transport through quantum dots; strong Coulomb interaction; fermion
parity

1. Introduction

1.1. Motivation and General Outline

A thorough understanding of the thermoelectric operation of basic circuit elements such as
quantum dots is important for future energy- and information-technologies, see, for example,
the review articles [1,2] and references therein. Their nonlinear operation, due to large temperature
and voltage gradients, is nontrivial and has only recently received more attention [1–13], the results
indicating new possibilities for thermoelectric applications. To get a better grip on this nonequilibrium
regime, the implications of time-reversal symmetry—often exploited in thermoelectrics—have been
expressed in fluctuation-relations using the powerful tools of counting statistics [14–18]. This is helpful
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since in strongly confined devices the coupled nonlinear transport of charge and heat is particularly rich
and correspondingly difficult to compute. The reason for this is the energy-dependent transmission
caused by the system itself, having discrete quantum states and strong Coulomb interaction, rather than
by its coupling. In particular, the effect of Coulomb interaction is multifaceted, since local interactions
can both store energy and modify the transfer of energy by individual particles. For applications this
can be both damaging and helpful: interaction can limit the efficiency since it provides a way to transfer
heat without inducing a charge current, thereby leading to leakage; yet, it can also modify the effective
level structure in an advantageous way [6,19] or be used for energy harvesting in multi-terminal
devices [20–22] as shown experimentally [23–25].

One reason why the discussion of efficiencies and performance of thermoelectric devices has
been mostly confined to the linear regime of operation is the powerful Onsager reciprocity [26–28].
The latter is implied by time-reversal symmetry and it allows to make straightforward statements about
efficiencies. However, recently a new general symmetry relation has been discovered for electronic
systems [29] that is independent of time-reversal symmetry. Its formulation starts from the very general
observation that the dynamics of any system obeying linear superposition of its states is characterized
by its time-evolution modes, the right eigenvectors of the evolution generator. The amplitude of excitation
of these modes is governed by the corresponding left eigenvectors. For closed systems, these mode
and amplitude vectors of the Schrödinger dynamics ∂t|φ〉 = −iH|ψ〉 are the energy eigenkets and bras,
respectively, which are trivially related to each other by taking the Hermitian-adjoint (since H = H†).
However, for open systems no such simple general relation exists due to the more complicated nature
of nonunitary time evolution. Nevertheless, some of us have shown [29] that for any fermionic open
system in the wide-band limit, a quite general duality exists between the modes and amplitudes of the
time-evolution kernel. This holds even when the reduced density operator of the open system obeys
a kinetic equation with the time-nonlocal form ∂tρ(t) = −i[H, ρ(t)] +

∫ t
0 dt′W(t, t′)ρ(t′). Importantly,

the duality relies on a fundamental principle other than time-reversal, namely the superselection rule
based on fermion parity [30–33]. This principle is obeyed by all fermionic systems, and therefore the
duality is expected to have far-reaching physical consequences.

For thermoelectric transport, the implications of this additional general principle are to date
largely unexplored. Fully exploiting the new duality relation, the present paper revisits the
thermoelectric response of a weakly coupled, but strongly interacting single-level quantum dot
subject to both electrical and thermal biases, both in the linear and nonlinear regime. We derive
new results, significantly clarify known results, and thereby—most notably—outline a completely
new approach for the analytical computation of thermoelectrics of interacting nanoscale systems.
In References [29,34], it was already realized that the duality relation between decay modes and their
excitation amplitudes would naturally express itself in the transient charge and heat currents as the
system decays to a new stationary state after a sudden switch (quench). This paper shows that the
duality is a similarly powerful tool for the experimentally more accessible stationary thermoelectric
transport. Indeed, we demonstrate that both in the linear and nonlinear stationary regime—after some
judicious choices—an expansion in open-system evolution eigenmodes is advantageous. The compact
analytical formulas we obtain in this way offer several new interesting insights into important
measurable thermoelectric transport quantities, and provide a truly nonstandard physical view point.
Most importantly and as further outlined below, they expose the remarkable fact that a strongly
repulsive system may prominently feature behavior reminiscent of strong attractive interaction in the
thermoelectric response coefficients. (This should be clearly distinguished from the effects studied
in [35] for systems which from the start have attractive interaction.) Since this was not recognized
as such due to lack of a proper framework, our paper does not merely present trivial or subjective
rewritings, even though we re-derive and re-express some known results. Instead, our approach is
uniquely dictated by the physically-motivated evolution-mode decomposition, and the outcomes are
virtually impossible to “guess” without the systematics and new intuition provided by the duality.
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We finally note that the very general origin and formulation [29,36,37] of the duality allows
us to extend our method beyond the weakly coupled quantum dot setup treated here. As our
study illustrates, the technical simplifications can be such that one can avoid numerical calculations
altogether. We therefore expect that the ideas presented here can also simplify the analysis of more
complex systems studied most recently [11,38–40]. This includes situations with broken time-reversal
symmetry [34], non-diagonal density operators due to, e.g., noncollinear magnetic fields, and also
strongly coupled systems exhibiting time non-local effects.

The paper is structured as follows: after outlining the main ideas and results in general terms
in Section 1.2, and introducing the microscopic model and the weak-coupling master equation in
Section 2, we review the minimal details of the duality relation that we will exploit for a gated quantum
dot coupled to two electronic reservoirs. The mode-decomposition of the charge and energy current
formulas (22a) and (22b) are then analyzed in the linear and nonlinear transport regimes in Sections 3
and 4, respectively. The manuscript also contains an appendix which is substantial, not because the
new derivations are complicated, but because the steps are nonstandard and deserve to be outlined.

1.2. Overview of Main Ideas and Results

By discussing a simple, yet relevant model of a nanoscale system, this paper aims to illustrate
how the understanding of the role of Coulomb interaction in thermoelectric transport is advanced by
the fermion-parity duality. Before going into further details in Section 2.3 it is important to appreciate
three of its main ideas in general terms:

(1) The duality relation maps the eigenmodes of the system of interest to the amplitudes for a different
physical system—the dual system. We will refer to the latter as the inverted system because the
duality transformation inverts the interaction (as well as other energies), going from repulsive to
attractive and vice versa. For quantum dots, this can be easily visualized by inverting the energy
landscape in Figure 1a to that of Figure 1c, whose details will be discussed later on. This mapping
already explains the seemingly strange occurrence of features of attractive interaction in quantities
computed for repulsive systems, as first noted in [29,34]. The straightforward interpretation
of such puzzling properties is done resorting to the inverted stationary state, which allows to
understand the nontrivial dependence on the original system’s parameters from the—often
simple and well-understood [41]—physics of the attractive dual model as in Figure 1c.

(2) Another reason why the duality clarifies interaction effects is that the “essential” correlating
parts of the Coulomb interactions, say, between two orbitals i and j with occupation operators
n̂i and n̂j, respectively, is simply given by parity operators, (1 − 2n̂i)(1 − 2n̂j) = (−1)n̂i+n̂j .
In fact, correlated electron model Hamiltonians are often directly formulated in terms of the
operators on the left hand side. The duality reveals that the total parity operator always
corresponds to a special eigenmode of open fermion-system dynamics [36,37], and is hence
protected. In simple yet relevant situations, one thereby cleanly separates, throughout the entire
calculation, the contributions of the Coulomb interaction into an “essential” correlating part and
a nontrivial “average” contribution carried by a charge mode. Since Coulomb interaction is an
important source of energy dependence and energy storage in quantum dots, thermoelectrics is
thus seen to be intimately tied up with fermion parity and the corresponding duality.

(3) Finally, in the context of thermoelectricity, it is important to emphasize that the duality—in the
simple form used here—requires energy-independent coupling between system and reservoir
(wide-band limit). This does not mean that it is irrelevant to thermoelectric transport, where
properly engineered energy-dependence of the coupling can be of interest for the device operation,
see, e.g., References [20,21,23–25]. Here, the nanoscale system itself provides the strong energy
dependence required for thermoelectric effects, both through strong size-quantization and
Coulomb interaction. Models of this kind are relevant in many thermoelectric studies [38,42–45]
and the duality applies to their description, even when the energy-independent coupling is
strong and the temperature is low [29], cf. [36,37]. Also, effective energy-dependent couplings
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as realized in multi-dot systems [43,44] can be treated in terms of the duality relation presented
here. Finally, the duality considerations can be extended [46] systematically to account for the
energy-dependence of the coupling.

Figure 1. (a) Energy landscape of a single-level quantum dot with repulsive interaction U > 0
in contact with a hot and a cold electronic reservoir with an applied bias voltage; (b) Equilibrium
occupation number and parity of the single-level quantum dot as a function of the level position [taken
with respect to the right reservoir only, or equivalently obtained for the full system at equilibrium,
∆T = V = 0, as indicated by the “eq” subscript]. The occupation nz,eq shows T-broadened steps at the
two Coulomb resonances µ = ε and ε +U, respectively, and the parity pz,eq alternates correspondingly;
(c) Energy landscape of the inverted system that is dual to the system of interest in (a); (d) Equilibrium
occupation number and parity of the single-level quantum dot in its inverted stationary state. In the dual,
attractive system, the charge shows a single double-sized step at µ = ε + 1

2 U, with half the temperature
broadening T/2 where two electrons enter or leave the dot by two first-order processes sequential
in time, and the parity is essentially always even. Parameters for (b,d): U = 10T, V = ∆T = 0,
and ΓL = ΓR � T.

As a guide to the present paper, we now outline how the above general points turn up in the
specific insights of our study, most of which remain hidden when approaching the thermoelectric
problem in the standard way:

In linear response as analyzed in Section 3, we combine the duality with Onsager’s reciprocity
derived from time-reversal symmetry. The discussion of the linear response coefficients benefits from
the combined insights of both relations [47–50]. Even more so, in our particular example, we can show
how the duality enforces the Onsager relations in linear response, and restricts how these relations
break down beyond the linear regime. To achieve this, we first formulate the linear response in a way
that is compatible with the duality. Thereby, we find a simple, explicit expression for the average
energy carried by electrons, the tight-coupling part of the heat current. Remarkably, it depends on
the mean occupation of the dot in the inverted stationary state: this formula exposes the unexpectedly
sharp crossover behavior of the thermopower between well-separated resonances as a two-particle
resonance in the dual attractive model. Also, the obvious formal similarity between the linear Ohm and
Fourier laws,

I = GV, J = K∆T (1)
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gets an unexpected twist: Whereas it is well-known that the stationary-state fluctuations of the dot
occupation govern the electrical conductance G, the duality reveals that the linear Fourier heat coefficient
κ = K−ΠSG, for the heat current in the absence of a charge current, J|I=0 = κ∆T, is dominated instead
by occupation fluctuations in the inverted stationary state. As such, the ε-dependence of κ is also governed
by attraction, exhibiting the same two-particle resonance as the thermopower. (The Seebeck coefficient S
and the Peltier coefficient Π are introduced in Section 3).

The generally more complicated regime of nonlinear response can also be addressed with the
duality, as shown in Section 4. For the calculation of the nonlinear Seebeck and Fourier coefficient,
we show that an evaluation of equilibrium dot observables—both in the original and dual, inverted
system—is often sufficient to obtain the nonequilibrium heat currents. This leads to compact analytical
expressions and major simplifications in their explicit calculation, while clarifying the underlying
physical picture. For example, the nonlinear Fourier heat is essentially the difference between the
parity when the quantum dot is in equilibrium with a single lead on the left or on the right. Although it
is well-known that the Fourier heat is carried by electron-electron interaction—even for macroscopic
devices [51]—the duality pinpoints precisely which part of the interaction is crucial: it is the parity
operator that is entirely responsible for the transferred Fourier heat. Finally, the strong difference
between Peltier and Seebeck effects in the nonlinear regime, indicating the breakdown of Onsager
reciprocity, can be rationalized completely. The nonlinear Peltier coefficient can be decomposed
into an equilibrium Seebeck contribution that stems from the heat transport tightly coupled to the
charge transport and a parity-mode contribution. Both of these contributions are sensitive to the
attractive-interaction physics of the dual system.

2. Model, Master Equation, and Duality

2.1. Model, Assumptions, and Notation

We are interested in thermoelectric transport through a single-level quantum dot between two
reservoirs labeled α = L,R, as sketched in Figure 1a. Many of the following statements can, however,
be generalized in a straightforward manner to multiple reservoirs. The full Hamiltonian

Ĥtot = Ĥ + Ĥleads + Ĥtun (2)

decomposes into three parts. The dot Hamiltonian

Ĥ = ∑
σ=↑,↓

εn̂σ + Un̂↑n̂↓ (3)

describes the correlated dynamics of a single spin-degenerate level ε with Coulomb charging energy U
for doubly occupying the level. Here n̂σ = d̂†

σ d̂σ are number operators for dot electrons of spin σ =↑, ↓
with creation (annihilation) operators d̂†

σ (d̂σ). The quantum dot is coupled to noninteracting electronic
reservoirs α described by

Ĥleads = ∑
α

Ĥα = ∑
α,k,σ

εαk ĉ†
αkσ ĉαkσ, N̂α := ∑

k,σ
ĉ†

αkσ ĉαkσ (4)

with operators ĉαkσ and ĉ†
αkσ for electrons with spin σ and orbital quantum number k. The reservoir

energies εαk and tunneling amplitudes tαk in the tunnel coupling

Ĥtun = ∑
α,k,σ

tαk d̂†
σ ĉαkσ + h.c. (5)

are assumed to be spin-independent. We moreover assume that the relevant coupling strengths
Γα(E) = 2π ∑kσ δ(εαk − E)|tαk|2 determining the typical scale of the tunneling rates are energy
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independent: Γα(E) ≈ Γα. This wide-band limit assumption is crucial for the derivation of the
fermion-parity duality in the simple form given below in Equation (13), see also our earlier remarks
in Section 1.2 under point (3). Finally, the individual grand-canonical leads α are characterized by
the electrochemical potential µα, and the inverse temperature βα = 1/(kBTα) entering through the
particle/hole Fermi distribution functions f±α (x) = [e±βα(x−µα) + 1]−1. We let T = TR and µ = µR

denote the global-equilibrium values of the reservoirs and ∆T and V the applied biases through
TL = T + ∆T and µL = µ− eV.

In the next two sections, we set up the calculation of the stationary charge and heat currents, Iα and
Jα, through the quantum dot which can be written in terms of particle and energy currents, Iα

N and Iα
E:

Iα = −eIα
N and Jα = Iα

E − µα Iα
N . (6)

We will outline how to compute the currents Iα
N := − ∂

∂t 〈N̂α〉 and Iα
E := − ∂

∂t 〈Ĥα〉 cf. Equation (4) from
lead α into the dot in a way that exploits the duality. From here on, we set e = kB = h̄ = 1.

2.2. Master Equation and Non-Equilibrium Currents

Following previous work [29,34,52,53], we outline how to compute the particle and energy
currents via the reduced density operator ρ̂ of the quantum dot obtained by tracing out the reservoir
degrees of freedom. For weak coupling and high temperatures, Γα � Tα, the mixed state obeys a
Born-Markov master equation:

d
dt
|ρ) = W|ρ) . (7)

In Equation (7), operators are written as supervectors, indicated by round kets: ρ̂ = |ρ). In the
following we also need to consider the “superhermitian” conjugate of such a supervector |x) which
is conveniently written as bra (x|. This denotes a linear function acting on any |y), i.e., another
operator ŷ, as follows: (x|y) := Tr [x̂†ŷ]. In this notation, the kernel W is a superoperator whose specific
matrix elements are given in Appendix B for completeness, but which are not required in the following
cf. Equation (15). Such a matrix element ( f |W|i) physically relates to the rate for a tunnel-induced
transition, |i)→ | f ), between two of the dot states

|0) = |0〉〈0| , |1) = 1
2
[| ↑〉〈↑ |+ | ↓〉〈↓ |] , |2) = |2〉〈2|. (8)

The empty state |0〉 has energy E = 0, the mixture of the spin states | ↑〉 and | ↓〉 has energy E = ε,
and the doubly occupied state |2〉 = | ↑↓〉 has energy E = 2ε + U. Since the system is fully rotationally
invariant [54] and because we focus on the particle- and energy currents, we only need the kernel W
in a linear subspace spanned by the three trace-normalized operators given in Equation (8), see the
supplement to [29] for details. Importantly, due to the weak coupling, the kernel is the sum of kernels
Wα that would be obtained if the system was coupled only to reservoir α:

W = ∑
α

Wα . (9)

In the same approximation, the currents Iα
N and Iα

E can be expressed [34,52] in terms of the
reservoir-resolved kernel Wα, the number operator N̂ = ∑σ n̂σ, as well as the Hamiltonian Ĥ of
the dot, and the solution of Equation (7):

Iα
N = − ∂

∂t
〈N̂α〉 = (N|Wα|ρ) (10)

Iα
E = − ∂

∂t
〈Ĥα〉 = (H|Wα|ρ). (11)
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In writing the second equality in Equations (10) and (11), particle and energy conservation have been
used. The second step in the energy current (11) is only valid in the weak-coupling limit, see remarks in
References [29,52,55]. Regarding the use of the reservoir index α, we note that the particle and energy
current in reservoir α depend on the properties of all reservoirs. This is in contrast to, e.g., the kernel
Wα, whose contributions are due to a single reservoir α only. We emphasize this difference by choosing
superscripts for the former case and subscripts for the latter.

From this point onward, the standard way to obtain the currents in the stationary limit [namely,
where the left hand side of Equation (7) equals zero] seems straightforward, knowing the Fermi
Golden-Rule expressions for the rates ( f |Wα|i)/( f | f ): (i) Find the non-equilibrium state |z) by
solving the stationary limit of Equation (7), W|z) = ∑α Wα|z) = 0 (“zero mode”), and normalize it
to (1|z) = Tr [ẑ] = 1; (ii) Plug |ρ) = |z) into the currents (10) and (11). While this procedure yields
explicit expressions for the non-equilibrium currents, it often provides only limited analytical and
physical insights, in particular for thermoelectric quantities. Moreover, it unnecessarily complicates
the evaluation of bias-derivatives required for the linear-response coefficients, even when using
Beenakker’s linearization [56,57]. However, inspection of Equations (7), (10) and (11) suggests an
alternative route based on our recent results [29,34] which we outline next.

2.3. Fermion-Parity Duality and Its Use in Thermoelectrics

The calculation of the stationary state and the stationary currents

Iα
N = (N|Wα|z), Iα

E = (H|Wα|z) (12)

are expected to be drastically simplified when expressed in a basis of time-evolution modes, a standard
practice when solving linear systems of equations. Looking at Equation (12), three different eigenvector
bases suggest themselves: those of the two separate kernels Wα (α = L,R) and of the total kernel
W = WL + WR. A key technical point of the present paper is that even though the evaluation of
the currents (12) depends on the total kernel W through its zero mode |z), it often turns out that a
mode decomposition of the separate kernels Wα suffices to compute |z). This provides an important
advantage: the kernels Wα of the separate leads are by definition always equilibrium kernels. We can
thus express and understand nonequilibrium currents in terms of equilibrium quantities which have
much simpler dependencies on parameters.

There are three reasons why this decomposition is possible. First, the weak-coupling
approximation allows the decomposition given in Equation (9). Second, our study focuses in most
parts either on the linear response regime (24), or on the nonlinear regime but with a vanishing average
charge current. We will return to this point at the end of this section. The third, most crucial ingredient
is the fermion-parity duality, which strongly restricts the form of the kernels W and Wα and thereby
identifies the optimal variables in which to express the currents.

We first discuss the duality for a quantum dot coupled to only one lead α, allowing us to take
over the expression for Wα given in Reference [29] for this case. There, it was shown that there is a
duality relation between the kernel Wα and its Hermitian conjugate at inverted energies:[

Wα(Ĥ, µα)
]†

= −Γα − P̂ Wα(−Ĥ,−µα) P̂ , P̂ |•) = |(−1)N•) . (13)

Here, Wα(−Ĥ,−µα) denotes the kernel of the dual system, in which the signs of all energies in the
Hamiltonian Ĥ, as well as the electrochemical potential µα in lead α, have been inverted. This is
sketched in Figure 1a,c. The operator (−1)N̂ is the fermion parity of the dot, giving +1 for even and
−1 for an odd occupation number, and its appearance reflects the fundamental origin of the duality,
Equation (13). We refer to References [29,52] for an introduction to fermion-parity superselection, the
general duality relation and its special form used here, as given in Equation (13).

The duality relation imposes strong restrictions on the fermionic master Equation (7). In fact,
these restrictions are so strong that they completely determine the rate matrix Wα. For illustration,
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this construction is carried out explicitly in Appendix A and directly produces the three eigenvalues
−γmα of Wα and the corresponding left and right eigenvectors(m′α| respectively |mα) labeled using
m = z, c, p:

Wα = − ∑
m=c,p

γmα|mα)(m′α|, (14)

where the zero mode ẑα does not show up because γzα = 0. Alternatively, one may directly compute
these quantities by diagonalizing the matrix Wα employing the duality (13) as done in Reference [29]
and obtain:

Label Amplitude − Eigenvalue = decay rate Mode

Zero (z′α| = (1| γzα = 0 |zα)

(z) [trace] [stationary state]

Charge (cα
′| = (N|− nzα(1| γcα = Γα

2

[
f+α (ε) + f−α (ε + U)

]
|cα) =

1
2 (−1)N̂

[
|N)− niα|1)

]
(c) [∼ charge operator] [∼ charge operator]

Parity (p′α| = (ziα(−1)N| γpα = Γα |pα) = |(−1)N)

(p) [∼ inverted stationary state] [parity operator]

(15)

Inspecting this table, one explicitly sees that the mode vectors and amplitude covectors are cross-related
through the parity operator (−1)N̂ and the energy inversion (indicated by subscript “i” on ẑiα and niα)
that appear in the duality (13). The stationary state—given by the equilibrium grandcanonical ensemble
|zα) = ẑα = e−βα(Ĥ−µα N̂)/ Tr

[
e−βα(Ĥ−µα N̂)

]
(A4) in the here considered weak tunnel-coupling regime

– has the eigenvalue 0. Hence, duality relates |zα) to (p′α| with eigenvalue −γpα = −Γα, where (p′α| is
the trace with the inverted stationary state × parity. Similarly, the trace operation (z′α| is cross-related
to the parity operator |pα). Finally, since the Fermi function with respect to any chemical potential µα

obeys f+µα
(x) = f−−µα

(−x), the charge eigenvalue −γcα is self-dual and (c′α| is mapped to |cα).
The crucial point made by the table in (15) is that it reveals the natural variables in which the

currents (12) are expressed when inserting the mode expansion (14). These include the expectation
values of the charge and parity in the stationary state,

nz = (N|z) = Tr
[
N̂ẑ
]

, pz = ((−1)N|z) = Tr
[
(−1)N̂ ẑ

]
, (16)

entering through the factors (m′α|z). However, due to the factors (N|mα) and (H|mα), additional
expectation values with respect to the reservoir-α resolved equilibrium state (A4) appear:

nzα = (N|zα) , pzα = ((−1)N|zα), (17)

explicitly given as a functions of ε, U, µα, Tα in Equations (A10) and (A40), and most importantly,
expectation values

niα = (N|ziα) = nzα [ε, U, µα → −ε,−U,−µα] , piα = ((−1)N|ziα) = pzα [ε, U, µα → −ε,−U,−µα] , (18)

where ẑiα is the corresponding inverted stationary state of the dual system (A7),

ẑiα = ẑα

[
Ĥ, µα → −Ĥ,−µα

]
= e+βα(Ĥ−µα N̂)/ Tr

[
e+βα(Ĥ−µα N̂)

]
. (19)

In Figure 1b,d, we plot the averages (17) and (18) for nzα and pzα in the right lead, i.e., µα = µ

and Tα = T: They are simple, stepped functions of the physical parameters whose shapes are
straightforwardly rationalized based on the physics of a repulsive and attractive quantum dot in
equilibrium with a single lead α, respectively, as explained in the caption to Figure 1. Inverting the
interaction U—going from Equations (17) to (18)—qualitatively changes the parameter dependence of
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these quantities, as shown in the following. We point out that the standard treatment of the problem
completely overlooks that expressions (18) are part of the natural variables in which to express the
currents (12), and in which to understand the parameter dependence of the transport.

The importance of this insight has been demonstrated for the transient time-dependent response
of a quantum dot coupled to a single reservoir in [29]. The final issue that we face in extending this
to the stationary nonequilibrium thermoelectric currents (12) is that these currents depend on the
stationary state |z) of the system coupled to both leads. This state is the zero mode of the total kernel W,
for which the duality holds independently, as shown in Reference [29]:[

W(Ĥ, µL, µR)
]†

= −Γ− P̂ W(−Ĥ,−µL,−µR)P̂ , (20)

introducing the lump sum of couplings Γ = ∑α Γα.
Importantly, while Equation (20) itself follows from the lead-resolved duality (13) with

W = ∑α Wα, its implications for the eigenvectors of W = −∑m=c,p γm|m′)(m| and their eigenvalues
are nevertheless non-trivial, since WL and WR do not commute. The nonequilibrium stationary
state that we need is, in particular, not generally a sum of lead-resolved stationary states with some
lead-resolved [58] weights λα,

|z) 6= ∑
α

λα|zα). (21)

Section 3 will, however, show that such a simple decomposition does hold when taking the first
temperature-bias or voltage-bias derivative Equation (24) at equilibrium. More remarkably, as exploited
in Section 4, this decomposition continuous to hold even in the nonlinear regime Equation (51) whenever
the system is balanced to maintain zero particle current, Iα = 0 (41). Both cases thus allow us to by-pass
the computation of |z) and fully exploit the duality (13) for Wα for each lead separately in the way
outlined above. This procedure directly ties the non-equilibrium thermoelectric transport to equilibrium
physics by introducing the optimal variables (17) and (18) from the start.

2.4. Charge and Energy Currents

Combining all above outlined ideas, we insert the eigenmode decomposition
Wα = −∑m=z,c,p γmα|m′α)(mα| into the current Equations (12) and use the table in (15) to obtain the
central current formulas of the paper:

Iα
N = −γcα(c′α|z) = γcα [nzα − nz] (22a)

Iα
E =

[
ε +

U
2
(2− niα)

]
Iα
N − γpα U (ziα(−1)N|z) . (22b)

The particle current (22a) is simply the charge relaxation rate × the excess dot charge relative to its
equilibrium value with respect to lead α, where the current is measured. The energy current (22b)
shows a more interesting nonstandard decomposition: it has a tight-coupling contribution directly
proportional to the charge current, and a contribution which is independent of the charge current (22a),
and hence associated to the parity mode. The prefactor of the tight-coupling term involves the
energy scale

Eα = ε +
U
2
(2− niα) . (22c)

Remarkably, the interaction contribution to this energy is not naturally expressed in the stationary state
charge nzα, but instead in the inverted stationary charge niα with respect to lead α. As expected,
Eα is approximately ε in the vicinity of transitions between zero- and singly occupied state,
and approximately ε + U in the vicinity of transitions between singly and doubly occupied state.
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However, in the crossover regime between these two resonances it is the physics of attractive interaction
in niα that dominates its behavior, cf. Figure 1.

The overlap (ziα(−1)N|z) ≈ (ziα|z), contributing to the non-tightly coupled term of
Equation (22b), approximately equals a state overlap since the parity in the inverted stationary state is
almost always even due to the attractive interaction of the dual model, see Figure 1d. This relation
will turn out to be useful for the understanding of the characteristic features of the nonlinear Peltier
coefficient discussed in Section 4.2. For explicit numerical results and plots, it is helpful to write

(ziα(−1)N|z) = 1
4
(pz + piα) +

1
2
(nz − 1) (niα − 1) , (22d)

fully expressing it in terms of the measurable quantities introduced in Equations (16) to (18).
See, e.g., Reference [53] for the derivation of this relation, and Appendices A–C for the explicit
calculation of all appearing quantities.

The current formulas (22) are valid both in the linear and in the nonlinear response regime and
form the starting point of the remainder of the paper. The following sections discuss their implications
for the stationary thermoelectric response of the quantum dot from the new perspective offered by the
duality (13).

3. Linear Response Regime

We start with the investigation of the linear thermoelectric response of the quantum dot to voltage
and temperature gradients, |V|, |∆T| � T. In this case, we can consider the symmetrized charge
and heat currents, I = (IL − IR)/2 and J = (JL − JR)/2 which are standardly written in terms of the
Onsager matrix, (

I
J

)
≈
(

L11 L12

L21 L22

)(
V/T

∆T/T2

)
. (23)

Here, the diagonal elements L11 = TG and L22 = T2K present the electric and thermal conductances,
G = dI/dV|eq and K = dJ/d∆T|eq respectively, whereas the off-diagonal elements L12 = T2∂I/∂∆T|eq

and L21 = T∂J/∂∆T|eq characterize the thermoelectric and the electrothermal responses. Here and
below, we denote the evaluation of any quantity q in the equilibrium limit by either of the expressions
q|eq = qeq := q|V=∆T=0. The linearization of our general result (22) for the currents around equilibrium
is conveniently found from

d
dx |z)

∣∣∣
eq

= ∑
α

Γα

Γ
d

dx |zα)
∣∣∣
eq

= −∑
α

Γα

Γ

[
dÂα
dx − ( dAα

dx |zα) · 1
]
· |zα)|eq (24)

for derivatives with respect to x = µα, βα, where we have introduced the affinities Âα := βα

(
Ĥ − µαN̂

)
.

The derivation of this result in Appendix C.1 only involves the linearization around equilibrium and
nothing else, i.e., no detailed balance or other balancing relations used in previous derivations [56,57]
and their extensions [11]. Formulating the linear response on the level of the stationary state has
the crucial advantage that it can be combined with the duality. Thereby we can circumvent the
cumbersome process of taking derivatives of expectation values and subsequently simplifying them.
We instead exploit Equation (24), the mode expansion given in (15) and two simple orthogonality
relations involving the equilibrium state of the original and the inverted model,

(zi,eq(−1)N|zeq) = 0 , (zi,eq(−1)N · N|zeq) = 0 . (25)

The first is simply the orthogonality of left eigenvector (p′| and right stationary vector |z),
here applied at equilibrium, which by duality even holds beyond linear response. The second
relation follows from ẑeq = e−(Ĥ−µ)/T/ Tr[e−(Ĥ−µ)/T ] which for the inverted equilibrium state implies
ẑi,eq(Ĥ, µ) = ẑeq(−Ĥ,−µ) ∝ e(Ĥ−µ)/T ∝ (ẑeq)−1. Therefore the second relation is found from
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(zi,eq(−1)N · N|zeq) ∝ Tr[N̂(−1)N̂ ] = 0 . (26)

Using the above equations, we finally obtain the linear response coefficients of the charge and heat
currents (22) (see Appendix C for the details of this non-standard derivation),

L11 =
ΓLΓR

Γ2 γc,eq δn2
z,eq (27a)

L12 = L21 = −L11

[
(ε− µ) +

U
2
(
2− ni,eq

)]
(27b)

L22 = L11

[
(ε− µ) +

U
2
(
2− ni,eq

)]2
+

ΓLΓR

Γ2 γp,eq

(
U
2

)2
δn2

z,eq δn2
i,eq , (27c)

with equilibrium decay rates γc,eq = Γ
2 [ f+(ε) + f−(ε + U)] and γp,eq = Γ = γp. These results warrant

a detailed discussion given in the following sections. However, what is immediately clear is that even
in the linear response regime, the natural quantities in which the response coefficients are expressed
are not only the coupling asymmetry ΓLΓR/Γ2, the expected energies (ε, µ, U) and the occupation
number nz,eq and its fluctuations in the original dot model,

δn2
z,eq = 〈N̂2〉eq − 〈N̂〉2eq = (N2|zeq)− (N|zeq)

2 . (28)

In addition, the occupation number ni,eq cf. Equation (22c) and its fluctuations

δn2
i,eq =

[
〈N̂2〉zi − 〈N̂〉

2
zi

]∣∣∣
eq

= (N2|zi,eq)− (N|zi,eq)
2 = δn2

z,eq [ε, U, µ→ −ε,−U,−µ] (29)

in the equilibrium state of the dual, attractive system ẑi,eq appear as well. They enter via the overlap of
the equilibrium state and dual equilibrium state, (zi,eq|zeq) = δn2

i,eq · δn2
z,eq, as proven in Appendix C.4.

In Figure 2, we plot the ε-dependence of both fluctuations by evaluating the explicit expression of
δn2

z,eq as a function of ε, U, µ, T, stated in Equation (A41). These fluctuations show peaks at ε = µ and
ε + U = µ for the original model and at ε + U/2 = µ for the dual attractive model. Using that the
fluctuations also follow from an ε-derivative of the equilibrium occupation numbers (A42), δn2

z,eq =

−T∂nz,eq/∂ε and δn2
i,eq = T∂ni,eq/∂ε due to Equation (29), the observed resonances in δn2

z,eq and δn2
i,eq

are readily understood from nz,eq and ni,eq as shown earlier in Figure 1b,d.

Figure 2. Fluctuations of the dot occupation number in the equilibrium state of the original, repulsive
model (blue, full line) and of the inverted dual model (green, dashed line), showing features of attractive
interaction. The inset shows the section between ε− µ = −U/2 and ε− µ = 0 on a log scale to show
the different decay of the two types of fluctuations due to thermal smearing. The parameters are
U = 10T, V = ∆T = 0, and ΓL = ΓR � T.
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3.1. Electric Response

For reference, we note that the linear electric conductance

G =
L11

T
=

1
T

ΓLΓR

Γ2 γc,eq δn2
z,eq (30)

is essentially the charge-relaxation rate γc,eq × the equilibrium charge fluctuations δn2
z,eq plotted in Figure 2.

It shows the well-known Coulomb peaks [56] whenever fluctuations of the charge by one electron are
energetically allowed, see Figure 1b. Starting from the charge current formula (22a), we note that the
conductance (30) derives from the charge-mode of the evolution, as physically expected.

3.2. Thermo-Electric Response and Seebeck Thermopower

The charge mode also solely determines the response (27b) of the charge current to a small
temperature difference ∆T. To tie this to an energy scale, we consider the thermopower or Seebeck
coefficient S = − 1

T
L12
L11

corresponding to the induced thermo-voltage V|I=0 across the two leads in
the absence of a charge current, V|I=0 = S∆T (Seebeck effect). The expression Eeq := T S has the
unit of an energy, related to the voltage required to counterbalance the thermally induced charge
current [59,60]. Our linearized result (27b) gives for this energy

Eeq = T S = (ε− µ) +
U
2
[
2− ni,eq(ε− µ, U, T)

]
= Eα|eq . (31)

Before discussing this result, we immediately note that Eeq equals the tight-coupling energy (22c)
[for niα|eq = ni,eq with µα = µ, Tα = T] which by duality naturally appears in the decomposition
of the heat current (22b). As we will detail when introducing the Peltier coefficient in Section 3.3,
this fact indicates that the Onsager relation L12 = L21 is obeyed. However, since we purposely refrain
from using time-reversal symmetry, it is first of interest to see how, by using only linear response of
the state (24) and the mode-amplitude duality (15), the charge current formula (22a)—apparently of
very different form from the heat current—produces nonetheless the same energy scale. This follows
by noting that for the linear response coefficient L12, only equilibrium correlators are relevant [61],
in particular 〈ĤN̂〉eq. latter [62,63] introduces the characteristic energy Eeq: as a consequence of the
orthogonality relations (25), the only contribution to 〈ĤN̂〉eq comes from the part of the energy Ĥ that
does not couple to the parity (−1)N̂ see Appendix C.3. The additional appearing correlator 〈N̂2〉eq is
responsible for the µ-shift occurring in Eeq.

The energy (31) thus naturally appears by mode decomposition of these correlators, showing that
the duality is essential for the understanding of the thermopower. As we noted above Equation (22),
the interaction-induced part in Eeq, respectively S is governed by the behavior of the average
occupation ni,eq in the inverted stationary state. Importantly, this energy is not simply the noninteracting
part [ni,eq depends nontrivially on U, cf. Equation (A10)] or a mean-field-like energy which would
involve the average nz,eq/2 rather than (2− ni,eq)/2.

In Figure 3a, we plot the Seebeck coefficient, Equation (31), as a function of the energy level
position ε − µ. The sawtooth behavior has been known for a long time [57] and it is traditionally
understood as follows: Each linear branch of the curve is explained by considering just one of the two
Coulomb resonances and ignoring the other. For each branch, the magnitude of the voltage that can
be sustained increases linearly [64] with ε− µ. The shape of the whole curve is then understood as a
crossover from the particle-dominated transport of one resonance to the hole-dominated transport of
the next one when changing ε− µ: by a continuity argument the curve must cross zero between the
two resonances to connect the two branches. However, it remains unclear from this line of arguing
whether this is a sharp jump—as here in the linear regime—or a smooth crossover—as in the nonlinear
regime discussed later. Moreover, close inspection shows that this sharp jump has an anomalous
thermal broadening by half the temperature, T/2.
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Figure 3. (a) Linear Seebeck thermopower S, Equation (31), (solid-blue line), and 2− ni,eq (dashed-green
line) as a function of the level position of the dot ε− µ, for U = 10T. Here, ni,eq is the occupation
number of the inverted stationary state at equilibrium. In the units chosen here (e = kB = 1), the Seebeck
coefficient is dimensionless; (b) Comparison with the approximate position and height of the local
maxima of S, given by Equation (34), (left panel), and of the slopes at the particle-hole symmetry point,
given by Equation (35), (right panel). For all panels, the couplings are chosen ΓL = ΓR � T.

Both issues are readily understood from our result (31) deriving from duality: the mean energy
Eeq probed by the thermopower depends on the average charge ni,eq of the quantum dot with inverted
energies at equilibrium. As Figure 1c,d illustrate, the occupation in the inverted stationary state ni,eq

abruptly drops from 2 to 0 once ε− µ exceeds −U/2, as is well-known for impurities with attractive
Coulomb interaction [41]. The duality thus explains the unexpectedly sharp jump in the thermopower
in Figure 3. Moreover, since for U � T the occupation for the strongly attractive dual model is
well-approximated by

ni,eq ≈ 2 f−(2ε + U) = 2 f−
(

ε +
U
2

)∣∣∣∣
T→T/2

, (32)

we see that the anomalous thermal scale of half the reservoir temperature T/2 appears. This has an
intuitive interpretation in the dual model: since the attractive interaction favors a single transition
involving an electron pair, each electron feels half of the thermal noise. Note that in our calculation
for the attractive dual model, two electrons enter sequentially (in time) by two separate processes
with rates described by Fermi functions. Their net effect is that the transition becomes allowed at a
single value of ε− µ = −U/2. Moreover, the electron pairs here are not coherently transported, in other
words the rate matrix (A22) contains no nonzero rate connecting the empty and doubly occupied state.
Coherent pair tunneling appears only in processes of order Γ2. In the analysis [65] of the rates for such
effects a Bose function appears with 2ε + U in its argument, indicating coherent transport of fermion
pairs. Interestingly, we note that this rate as function of ε shows the same halving of the thermal noise
as discussed in the present paper.

Since our result (31) expresses the thermopower compactly in the natural and well-understood
variable ni,eq, we can easily find a simple yet accurate formula for the level positions at which the
thermopower achieves a local minimum (ε−) and maximum (ε+). This requires finding ε from the
extremal condition
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∂ni,eq

∂(ε/T)
=

2T
U

. (33)

The strong attractive interaction in the dual system relative to the anomalous lower temperature scale
T/2 makes Equation (32) an excellent approximation to the left hand side of Equation (33), already for
U & 5T. This gives

ε± − µ

U
≈ −1

2
∓ T/2

U
ln
(

U
T/2

)
, S(ε±) ≈ ±

[
U
2T
− 1

2

(
1 + ln

(
U

T/2

))]
. (34)

Furthermore, the sensitivity of the thermopower to a gate change in the vicinity of these extrema is
relevant for applications [66,67]. We see that in the crossover regime, the negative slope is dominated
by the interactions U & T,

dS
dε

∣∣∣∣
ε−µ=−U/2

≈ − 1
T

(
U
2T
− 1
)

, (35)

in contrast to the positive slopes 1/T of the two branches associated with isolated resonances. Figure 3b
shows that Equations (34) and (35) indeed approximate very well the features of the Seebeck coefficient
for different temperatures. Measurements of the Seebeck coefficient of a quantum dot have confirmed
this behavior, see for example References [9,68–70].

3.3. Peltier Coefficient

The Peltier coefficient Π := ∂J/∂V|eq
/

∂I/∂V|eq determines the heat current generated per
transferred particle by a small voltage bias |V| � T alone (∆T = 0). It thus also defines an energy
scale and our heat-current formula (22b) gives

Π = Eeq . (36)

This provides a physically different picture of the energy scale (22c) as compared to the thermopower:
it is the characteristic energy carried by electrons across a biased junction. This is reflected by how it is
obtained: it is the prefactor of the first, tight-coupling part in the heat current (22b) cf. Equation (31).

Of course, Onsager reciprocity dictates L12 = L21, i.e., that the values of the energy scales
obtained from the electro-thermal and thermoelectric response are the same, where L21 = T∂J/∂V|eq

and Π = −L21/L11. However, since we explicitly avoid arguing from time-reversal symmetry, it
is of interest to see how the reciprocity relation L21 = L12 emerges when only using our duality
(13). The crucial point in our approach is that the fermion-parity part of the energy current (22b),
carrying part of the interaction energy, is to linear order insensitive to the bias V for any value of the
remaining parameters:

d
dµα

(ziα(−1)N|z)
∣∣∣∣
eq

= 0 . (37)

This follows from the linear-response of the stationary state ẑ given in (24) together with the
orthogonalities (25) see Appendix C.4. The result (37) thus implies that in linear response to the
voltage bias, the heat current coefficient L21 stems from the charge mode only, see also Reference [71].
Since this is equally true for the thermopower in L12, we indeed reobtain Onsager’s reciprocity relation.
We stress in particular that the tight-coupling of the heat- and charge current is not an approximation
in our treatment, but follows from duality.

In Section 4, we will see that the parity contribution to heat current (22b) does play a role for finite
bias, pinpointing how the interesting deviations between Π and S emerge beyond linear response.
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3.4. Thermal Response and Fourier Heat Conductance

Finally, the thermal coefficient L22 = T2∂J/∂∆T|eq, given by Equation (27c), acquires contributions
from both terms in Equation (22b). This suggests that there are two types of energy fluctuations that
correspond to linear thermal transport when a thermal gradient is applied. Indeed, the fluctuation of
the grand-canonical energy Ĥ := Ĥ − µN̂ determining the equilibrium state ẑeq ∝ e−Ĥ/T decomposes
into two corresponding parts:

δĤ2
eq = 〈Ĥ2〉eq − 〈Ĥ〉2eq = (H2|zeq)−

[
(H|zeq)

]2
= E2

eqδn2
z,eq +

(
U
2

)2
δn2

i,eq δn2
z,eq, (38)

see Appendix C.4. Thus, the charge (parity) contribution to the linear heat transport coefficient L22

stated in (27c) are the charge- (parity-) related energy fluctuations× the charge (parity) rate γc,eq (γp,eq).
In thermoelectric applications, one often wants to know the heat transferred from the hot to

the cold reservoir when no electrical power is generated. This purely thermal current J|I=0 ≈ κ∆T
for a small thermal bias ∆T at zero charge current is characterized by the Fourier heat conductance,
κ = ∂J|I=0/∂∆T|eq. It is given by T2κ = L22 − L12L21/L11, for which we obtain

κ =
1

T2
ΓLΓR

Γ2 γp,eq

(
U
2

)2
δn2

z,eq δn2
i,eq (39)

using Equation (27). This coefficient stems entirely from the parity-mode contribution to the heat
current. As in the Drude theory for metals [51], the pure thermal conductance κ is due to the
electron-electron interaction in our weakly coupled [72] setup. However, we note that the interaction
also nontrivially enters into the other term of the heat current that does not contribute to κ.
The heat-current decomposition dictated beforehand by duality thus naturally pinpoints which part of
the interaction enters the purely thermal Fourier heat conductance—namely the fermion-parity part.
We again stress that both a naive perturbative decomposition of the heat current (noninteracting part +
interaction corrections) as well as a mean-field decomposition fail to achieve this.

The duality furthermore clarifies the parameter-dependence of κ. Being the product of the
charge fluctuations in the stationary and in the inverted stationary state, the Fourier coefficient might
be expected to reflect the fluctuations δn2

z,eq of the actual system, for example in its ε-dependence.
However, these fluctuations that we plotted in Figure 2 are unable to account for the single resonance
that κ shows at ε− µ = −U/2 in Figure 4. Instead, this peak entirely comes from the fluctuations
δn2

i,eq in the dual model, where due to the attractive interaction only a transition from zero and double
dot occupation occurs precisely for this level position, cf. Figure 5. Interestingly, the anomalous
thermal broadening T/2 in the attractive model [Equation (32) ff.] is crucial to make these fluctuations
dominate: it leads to a difference in the exponential thermal suppressions of the two fluctuations when
ε is varied, as shown in the inset of Figure 2. As a result, when multiplying the two curves in Figure 2,
the peak (tails) of δn2

i,eq can overcome (suppress) the tails (peaks) of δn2
z,eq and thereby determine the

shape of the result for κ in Figure 4. The very good approximation to the peak height for U � T,

κ ≈ −ΓLΓR

Γ
∂

∂x
tanh

(
1
x

)∣∣∣∣
x= 4T

U

=
ΓLΓR

Γ

 U
4T

1

cosh
(

U
4T

)
2

, (40)

will be derived later on in Equation (55), by exploiting the duality directly in the nonlinear regime and
linearizing afterwards.
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Figure 4. Linear Fourier coefficient κ, Equation (39) as a function of ε− µ. The occurrence of a single
peak in κ at ε− µ = −U/2 directly reflects the fluctuations δn2

i,eq of the inverted stationary state at the
electron-pair resonance of the attractive dual quantum dot system, see Figures 1d and 2. The smallness
of the Fourier coefficient on the scale determined by U/T and Γ stems from the product of occupation
number fluctuations δn2

i,eq δn2
z,eq. Parameters: U = 10T, ΓL = ΓR � T.

(a) (b) (c) (d) (a) (b) (c) (d)

−ε −U

−ε −U

−ε

−ε

ε +Uε +U

ε +Uε +U

εε

εε

Figure 5. Sketch of the processes leading to Fourier heat transfer in the thermally broadened region
around the particle-hole symmetry point, ε − µ = −U/2, for (a) the normal and (b) the inverted
quantum dot models. In both cases shown, the energy U flows from the hot lead to the cold one
without net charge transfer from the left to the right lead.

Thus, whereas δn2
z determines the electric dissipation of the electric conductance, the fluctuation

of the inverted dot population, δn2
i dominates the thermal dissipation described by Fourier heat. This is

the unexpected twist to the formal analogy between Ohm’s law and Fourier law that we announced
earlier in Equation (1). It appears only when one examines the origin of their coefficients, Equations (30)
and (39), taking into account the fundamental restrictions imposed by duality.

Finally, we show how the duality simplifies the Fourier heat transfer even on a pictorial level.
Figure 5a shows how this energy flow can be pictured in the original, repulsive model as a cycle of
single-electron tunneling processes, the cycle being restricted to have zero net charge current, I = 0.
Two cycles contribute to the Fourier heat, in which the energy ε (ε + U) is transferred from the cold
(hot) lead to the hot (cold) one through the lower (higher) resonance, corresponding to the addition
energy for the transition between zero and single occupation (between single and double occupation)
of the dot. In either cycle, an amount of energy U is removed from the hot reservoir and released into
the cold one. What remains unclear in this picture is how a single sharp peak at ε− µ = −U/2 with a
thermal broadening given by T/2 can emerge due to a delicate cancellation between particle and hole
processes which are all off resonant. In Figure 5b we show how (in linear response) the same energy
transfer can be understood in the inverted dual model in terms of the single resonance available in an
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attractive quantum dot which can be either empty or doubly occupied. This process clearly shuts off
for |ε + U/2− µ| � T/2, implying the fluctuations δn2

i,eq vanish and κ with it.

4. Nonlinear Regime

In the regime where either of the biases V and ∆T is large enough to invoke a nonlinear current
response, Onsager’s relations are of no help anymore. Although nonlinear fluctuation relations may
provide interesting insights [4,73], this would require additional machinery of counting statistics.
The fermion-parity duality (13), instead, can be exploited in the nonlinear regime without further
ado: it allows us to simplify the derivation and improve our understanding of the nonlinear Seebeck,
Peltier, and Fourier coefficients obtained from the full non-equilibrium currents (22). We note that since
now heat currents are not anymore conserved due to the finite Joule heating, it is only meaningful to
consider lead-resolved heat currents Jα for α = L or R.

4.1. Thermo-Electric Response and Seebeck Thermopower

We start by analyzing the nonlinear thermopower/Seebeck coefficient Snl = V|I=0/∆T.
The required thermo-voltage V|I=0 is obtained by solving I = 0 for V using the currents (6). The form
of the charge current (22a) shows that this is equivalent to maintaining equal lead-resolved and,
therefore, equilibrium occupations on the dot:

nzL = nzR . (41)

This simplification is ultimately a consequence of the fact that for the spin-degenerate quantum dot
model considered here, duality (13) dictates the charge mode to be an exact eigenmode both in and
out of equilibrium, see (15). Since we consider µR = µ to be fixed, we can readily solve the balance
Equation (41) for µL ≡ µ−V and obtain the nonlinear thermopower, using the explicit expressions for
nzL and nzR given in Equation (A10) as outlined in Appendix D. While the result could be written in
terms of Fermi functions directly, a particularly insightful form is

Snl =
1
T
(ε− µ + U)− T + ∆T

∆T
ln

1− niR +

√
(1− niR)

2 + exp
(

U·∆T
T·(T+∆T)

)
· niR(2− niR)

2− niR

 , (42)

where niR is the ε-dependent inverted stationary charge number with respect to the reference
chemical potential µ and temperature T in the right lead. The representation in terms of the dual
occupation number is motivated by its connection to the linear limit, in which ni,eq = niR governs the
interaction-related contribution to the Seebeck coefficient for a fundamental reason. This allows us,
in the following, to exploit the simple single-step behavior and anomalous thermal scale T/2 of the
dual charge (32) in order to further analyze Snl.

Let us first consider small to moderate temperature gradients 0 < ∆T . T. Plotting Snl as a
function of ε− µ in Figure 6, we see in the here studied regime U � T that the nonlinear thermopower
maintains the characteristic ε-dependent shape from the linear regime, exhibiting in particular the
qualitative signature of niR. The only important impact of the increasing thermal bias ∆T is that the
slope of Snl at ε + U/2 = µ becomes increasingly less negative, and correspondingly, local extrema
are less pronounced in Figure 6b. To analytically understand this behavior, we realize that due to
∆T . T and due to the sharp step of niR(ε) around ε− µ = −U/2, we can efficiently carry out a linear
expansion of Equation (42) in ε− µ by first expanding Snl in 1− niR around 1− niR = −1, 0, 1 for ε− µ

close to 0,−U/2,−U respectively:
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TSnl ≈



ε− µ +
U
2

[
T(T + ∆T)

U · ∆T

(
e

U·∆T
T(T+∆T) − 1

)
(2− niR)

]
≈ ε− µ , ε ≈ µ

ε− µ +
U
2

[
1 +

T(T + ∆T)
U · ∆T/2

(
1− e−

U·∆T/2
T(T+∆T)

)
(1− niR)

]
≈ − T

Teff
(ε− µ +

U
2
) , ε + U

2 ≈ µ

ε− µ +
U
2

[
2− T(T + ∆T)

U · ∆T

(
e

U·∆T
T(T+∆T) − 1

)
niR

]
≈ ε− µ + U , ε + U ≈ µ .

(43)

For ε− µ close to 0,−U, the flat ε/U-dependence and the anomalously small thermal broadening of niR

by T/2, see Equation (32), lead to a complete suppression of the ∆T-dependent non-equilibrium terms.
By contrast, the sizable linear ε/U-dependence of 1− niR with slope −U/T stated in Equation (35) for
ε− µ = −U/2 does introduce a relevant ∆T-dependence of the slope of Snl linearized in ε, given by
the inverse effective temperature

1
Teff

U�T≈ 1
T
·
[

T
∆T
− T + ∆T

∆T
· exp

(
− U

2T
· ∆T

T + ∆T

)] U∆T
T+∆T�T
≈ 1

∆T
. (44)

As expected, taking the limit ∆T → 0 in Equation (43) immediately gives back the linear Seebeck
coefficient (31). We also note that a useful demarcation of the regime where the second line in
Equation (43) is a good approximation is obtained by finding the crossing points of the linear
ε-expansions in all three regimes:

|ε + U/2− µ| . ∆T
T + ∆T

·
[

1 + coth
(

U
4T
· ∆T

T + ∆T

)]
· U

4

U∆T
T+∆T�T
≈ ∆T

T + ∆T
· U

2
. (45)

The approximations in Equations (43) and (45) will be helpful for the understanding of the nonlinear
Fourier coefficient in Section 4.3.

Let us now address larger temperature gradients ∆T � T, approaching and exceeding the
interaction strength U. An interesting feature of this regime is that the roots of Snl(ε) close to the
Coulomb resonances are shifted towards the root at ε − µ = −U/2, and that all roots can even
merge entirely at this single level-position for large enough ∆T. This both experimentally [9] and
theoretically [74] studied effect is captured by the analytic expression (42) of the thermovoltage,
as clearly visible in Figure 6c. Our duality makes explicit that there is no reason that the thermopower
roots at ε− µ = 0,−U should remain fixed; only the position of resonance at ε− µ = −U/2 is dictated
by the dual model. Indeed, the linear thermopower (31) is not exactly 0 at ε− µ = 0,−U, although
this effect is exponentially suppressed with large interaction [0 < (2− ni,eq)/2 ∼ e−U/T at ε = µ].

For large temperature gradients ∆T/T � 1, the effect can, however, clearly be seen: Figure 6d
displays a sizable root shift on the scale U/2 as a function of ∆T/U, obtained numerically from
Equation (42) for different T/U. We also observe that all roots merge at ε− µ = −U/2 at a relatively
large temperature gradient, which we define as ∆T0/U. To get an approximate analytical description
of this quantity, we start from the condition dSnl/dε = 0 at ε− µ = −U/2, which sets the point beyond
which only one root can exist. Since this typically happens at large ∆T/T, we can Taylor expand the
derivative in T/∆T at fixed T/U to analytically solve for

∆T0

U
≈ 1

2

[
T
U

exp
(

U
2T

)
− T

U
− 1

2

]
. (46)

Equation (46) is in good agreement with the numerics shown in Figure 6d. Altogether, this confirms
that the root shift is observable for achievable temperature gradients as long as the the interaction
strength U does not exceed the base temperature T by more than an order of magnitude.
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Figure 6. (a) Nonlinear Seebeck coefficient Snl as a function of the level position of the dot for different
values of the temperature difference ∆T. The solid-blue line reproduces the linear response result
shown in Figure 3, to contrast with ∆T = 0.5T (dashed-orange line), and ∆T = T (dotted-green
line); (b) Curve for ∆T = 0.5T (dashed-orange line), together with the approximate slopes, 1/T and
−1/Teff as discussed in the text; (c) Snl for large temperature gradients ∆T � T; (d) Level position
ε0 − µ > −U/2 at which Snl(ε0) = 0 as a function of the temperature gradient ∆T/U and for different
T/U. Here, the blue curve represents the situation in (c). Note that we always assume ΓL = ΓR � T
and, except for (d), U = 10T.

4.2. Electro-Thermal Response and Peltier Coefficient

The nonlinear Peltier coefficient Πα
nl = (Jα/Iα)|∆T=0 determines the heat transferred per charge

in response to a finite voltage bias V (∆T = 0). It therefore quantifies one of the desired thermoelectric
effects: the ability of the quantum dot system to electrically cool one of the contacts (via a heat current
out of this contact). Due to the absence of heat current conservation under nonequilibrium conditions,
the nonlinear Peltier coefficient depends on the lead α that it refers to, ΠL

nl 6= ΠR
nl, and furthermore

differs substantially from the Seebeck coefficient, as we now discuss.
Since the Peltier coefficient, in contrast to the Seebeck and Fourier coefficient, is not restricted

by charge-current balancing, we can not express it entirely in lead-resolved equilibrium variables.
Nevertheless, we can exploit our duality to a large extent. First, we decompose the Peltier coefficient
into a part that stems from the heat current contribution that is tightly coupled to the charge current,
Πα

nl,tc [first term in Equation (22b)], and the non-tightly coupled contribution, Πα
nl,ntc, stemming from

the fermion-parity mode [second term in Equation (22b)],

Πα
nl = Πα

nl,tc + Πα
nl,ntc . (47)

The first term of Equation (22b) couples the charge current to Eα, the average energy (22c). This is
the same energy that determines the linear thermopower (Seebeck coefficient), but with respect to
µα. Therefore,

Πα
nl,tc = T S|µ→µα , (48)

and ΠL
nl,tc is just the linear thermopower curve shifted by the applied bias V, in contrast to ΠR

nl,tc,
which is not shifted. This can be seen in Figure 7a,b, where we plot the Peltier coefficient and its



Entropy 2017, 19, 668 20 of 39

decomposition, the dashed curves showing the tight-coupling part. It means that, interestingly,
the nonlinear Peltier coefficient, although not related to the nonlinear Seebeck coefficient, is actually
related to the linear Seebeck coefficient.

The remaining non-tight-coupling contribution Πα
nl,ntc is completely due to the parity mode,

Πα
nl,ntc = −

γpαU
Iα

(ziα(−1)N|z)|∆T=0. (49)

Using Equation (22d), this can be expressed in the average occupation and parity in the stationary
state |z) and α-resolved inverted stationary state |ziα). In order to make further quantitative progress,
the evaluation of the expectation values nz and pz with respect to the stationary state |z) cannot be
avoided (see Appendix B). However, we stress that Equation (49) together with Equation (22d) already
present a significant simplification relative to the standard way of writing the same result.

Figure 7. (a) Nonlinear Peltier coefficient ΠL
nl as a function of ε− µ for different values of the voltage

difference V; (b) Decomposition of the nonlinear Peltier coefficient for the parameters chosen for (a)
into the tight-coupled ΠL

nl,tc (dashed lines) and non-tight-coupled ΠL
nl,ntc (dotted lines) contributions.

The parameters U = 10 T and ΓL = ΓR � T are fixed for all panels.

Moreover, we can still further exploit the duality in a qualitative discussion. For example,
the results in Figure 7 show that ΠL

nl,ntc contributes only in a limited interval of ε values. This can be
explained using only the observation that this contribution depends on the overlap of the stationary
state ẑ and the α-resolved inverted equilibrium state ẑiα, as given in Equation (49). Intuitively, this overlap
is a measure of how much the two mixed states ẑ and ẑiα resemble each other, modulo parity signs.
Taking µL = µ − V, the inverted equilibrium state ẑiL switches from an empty state for ε − µ ≤
−U/2 − V to a doubly occupied state for ε − µ ≥ −U/2 − V. In contrast, the nonequilibrium
stationary state ẑ has a less simple bias dependence and determines the evolution of the panels of
Figure 7b, where V was chosen to be negative, |V| = −V: (Left): For |V| � U/2 the overlap (49)
is nonzero only at ε + U/2 = µ up to thermal broadening. (Center): For U/2 < |V| < U, there
exists a region ε− µ ∈ [0, |V| −U/2], where the state ẑ is a mixture of an empty and singly-occupied
state while the inverted state ẑiL is empty, leading to a nonzero overlap (49). (Right) For |V| > U
there is a double step. Here, the inverted state ẑiL is empty for all ε− µ ≤ |V| −U/2. The double
step in the overlap (49) arises due to the state ẑ being empty with probability p0 ≈ 1/4 and 1/3 for
ε− µ ∈ [0, |V| −U] and [|V| −U, |V| −U/2], respectively.
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The duality thus allows to understand the stepwise contributions of ΠL
nl,ntc and thereby the

details of Figure 7b: its effect is to shift the tight-coupling part (determined by the Seebeck coefficient,
i.e., the “Onsager part”) to lower values for moderate bias |V| < U, and to double the saw-tooth
behavior for high bias |V| > U. Overall, a large bias gives more negative values for ΠL

nl, restricting the
regime of effective cooling of the left reservoir to ε− µ > |V|, for which heat is carried out of the left
reservoir (equivalently, the right reservoir for this setting can only be cooled if ε− µ < −U).

4.3. Thermal Response and Fourier Coefficient

Finally, we examine the nonlinear Fourier heat coefficient, κα
nl := Jα|I=0/∆T, for lead α = L,R,

the ratio of the heat current and the finite temperature bias in the absence of a charge current. Since the
Fourier heat is independent of the Joule heating, we have κL

nl ≡ −κR
nl by energy conservation. Our heat

current formula (22b) immediately shows that the nonlinear Fourier heat current is produced solely by
the parity mode contribution:

κL
nl = −γpL

U
∆T

(ziL(−1)N|z)
∣∣∣

I=0
. (50)

In contrast to the expression (49) for the non-tight-coupling contribution to the Peltier coefficient,
the above Equation (50) can be fully analyzed in terms of equilibrium quantities, dictated by the duality.
We therefore make use of the remarkable fact that under current balanced conditions (41), the full
non-equilibrium stationary state |z) simplifies to a sum of the lead-resolved equilibrium states |zα):

|z)|I=0 = ∑
α

Γα

Γ
|zα)

∣∣∣∣∣
I=0

. (51)

This is shown in Appendix D, in fact for any number of leads α. With this, we find

κL
nl =

1
4

ΓLΓR

Γ
U

∆T
(pzL − pzR)|I=0 . (52)

Remarkably, it shows that the nonlinear Fourier heat coefficient can be rationalized in terms of two
relatively simple equilibrium observables of the quantum dot, the lead-resolved parities pzL and
pzR. As previously pointed out, the parity pzR with respect to the right lead, plotted in Figure 8c,
simply equals the equilibrium parity pz,eq, since µR = µ and TR = T are kept fixed in the right lead.
This equilibrium parity simply changes sign at both resonances, ε−µ = 0,−U. In contrast, the required
value pzL|I=0 is obtained by evaluating the explicit expression (A40) of pz,eq = pzR at temperature
T + ∆T, and at a chemical potential shifted compared to µR = µ by the nonlinear thermovoltage
V|I=0 = Snl∆T, which depends nontrivially on the parameters according to Equation (42):

pzL = pz,eq [µ→ µ− Snl(ε− µ, U, T)∆T , T → T + ∆T] . (53)

In the following, more detailed analysis of Equation (52), we can exploit (53) in the regime of
moderate temperature gradients 0 < ∆T < T. Namely, an inspection of Figure 8c,d shows that
the parity with respect to the left lead, Equation (53), is expected to take a constant value, equal to the
value of pzR = pz,eq at the electron-hole symmetric point but at a different temperature T + ∆T, in a
∆T-dependent range around ε− µ = −U/2. And indeed, explicitly evaluating the thermovoltage (42)
in the piecewise-linear approximation (43) and for U∆T/(T(T + ∆T))� 1, we find

pzL ≈


pzR , ε ≈ µ

pz,eq (ε− µ = −U/2, U, T + ∆T) , ε + U/2 ≈ µ

pzR , ε + U ≈ µ .

(54)
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With the help of Equations (52) to (54), we can now fully understand the plots of κL
nl as a function of

the dot level ε as shown in Figure 8a,b for different values of the Coulomb interaction. For increasing
thermal bias ∆T, the linear response peak at ε − µ = −U/2 (Figure 4) increases in both height
and width, depending on the ratio U/T. Namely, the broadened peak around ε− µ = −U/2 for
U/T = 10 clearly assumes a plateau shape at large values of U/T, such as U/T = 30 in Figure 8b.
(With decreasing temperature relative to U, it is interesting how cotunneling corrections modify the
plateau.) Now, the approximate expressions for the Fourier coefficient in Equation (54) tell us that
there is a difference between the parities pzL and pzR only between the two resonances in the regime
delimited by condition (45). The width of this regime, U ∆T

T+∆T , first increases linearly with ∆T � T and
starts to become of order U once ∆T & T, as indicated by thin, dashed vertical lines in panels (a) and
(b). The difference in parities assumes a constant value in the regime given by U∆T/(T(T + ∆T))� 1,
for which the second line in Equation (54) is valid. As visible in panel (b) of Figure 8, this results in the
plateau at the maximum value

κL
nl = −

ΓLΓR

Γ
U

4∆T

[
tanh

U
4(T + ∆T)

− tanh
U
4T

]
for |ε + 1

2 U − µ| . U
2

∆T
T + ∆T

, (55)

increasing with ∆T as indicated by the different dashed horizontal lines in panel (a) and (b) of Figure 8.
Taking the limit ∆T → 0, we obtain the linear response formula (40) reported in Section 3.4.

Figure 8. (a) Nonlinear Fourier coefficient κL
nl ≡ −κR

nl as a function of the level position of the dot
with respect to the electrochemical potential of the right lead, for different values of the temperature
difference and U = 10T. The blue lines reproduce the linear response result shown in Figure 4.
Dashed vertical lines indicate the plateau values, approximated in Equation (55), while fine vertical
lines indicate the width (45) of the broadened peak; (b) Same as in (a), but for U = 30T, where the
Fourier coefficient develops a plateau for large values of ∆T; (c) Parity pzR, which is independent
of V, ∆T; (d) Energy level shifted by the thermovoltage, ε− µ− Snl∆T as function of ε− µ for the
temperature differences of (a). The parameters U = 10T, ΓL = ΓR � T are fixed in all panels unless
indicated otherwise.

5. Conclusions and Outlook

We have shown that besides time-reversal symmetry, our duality involving fermion-parity
superselection is a crucial general principle for understanding both the linear and nonlinear
thermoelectric transport through strongly interacting electronic nanoscale systems. If one is unaware
of this, many computed results seem to reflect model-specific features whereas in reality they are fixed
from the beginning by the physical restrictions imposed by duality.
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Our study illustrates that thermoelectrics is not only interesting for future applications, but also
provides new ways in which fundamental effects can be studied: thermal transport properties are
particularly susceptible to effects tied to the new duality, since the Coulomb interaction is an additional
channel for storing and transporting energy. This naturally brings the fermion-parity operator into the
problem, which is an open-system evolution mode that is fundamentally “protected” by the duality.

Concretely, the duality explains why the thermoelectric response of a strongly repulsive system
shows features characteristic for attractive interaction. This is particularly visible in the characteristic
energy scale of stationary linear transport of heat and charge, which is governed by a resonance
occurring at an anomalous energy with unexpected thermal broadening. Both were shown to derive
from the occupation number of a quantum dot with inverted Coulomb interaction. In addition,
the fluctuations of this dual occupation number were shown to play a similarly important role for the
linear heat conductance as the usual occupation fluctuations have for the charge conductance.

The technical advantage offered by the new duality relation is most obvious in the more
complicated nonlinear regime. We provided very compact analytical formulas for all transport
coefficients, namely the nonlinear thermopower, Peltier coefficient and Fourier heat, allowing for
intuitive predictions and analyses of their characteristic features. Strikingly, in most cases, the duality
allowed us to express the nonlinear thermoelectric properties in terms of equilibrium variables.

The definite advantages for the analysis and understanding of the thermoelectric response of
an interacting single-level quantum dot are expected to extend also to more complex systems with,
e.g., multiple levels and contacts. Indeed, the duality applies quite generally beyond the limitations [29]
of the present paper, also to low-temperature, strongly-coupled quantum dot systems, which are of
current interest [75–77] as there are still many interesting thermoelectric properties yet to be explored.
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Appendix A. Non-Equilibrium Master Equation Kernel from Physical Principles and Symmetries

In this appendix, we derive the non-equilibrium master equation kernel by appealing only to
its physicality (dissipativity), the validity of the fermion-parity duality, and the fact that each lead
individually is in a local equilibrium state. Moreover, we use that we only consider the first order in
the tunnel coupling. This means that only sequential tunneling processes are possible and, due to
the full spin symmetry, that the coherent dynamics decouple from the time evolution of the energy
eigenstate probabilities. In the following, we can thus restrict the treatment to these probabilities only.

Appendix A.1. Kernel for a Single Lead

Before we turn to the full, non-equilibrium kernel W, we start by arguing only for any individual
kernel Wα in the reservoir sum

W = ∑
α

Wα . (A1)

Note that this decomposition can be obtained in the sequential tunneling approximation, in which
simultaneous transitions from two reservoirs are neglected. In particular, any Wα contains only the dot
variables and quantities with respect to the lead α, meaning µα, βα and Γα.

Now, by construction, each kernel Wα must be linear in Γα. This means that if we turn off the
couplings Γα′ to all other reservoirs α′ 6= α, the complete dynamics of the dot are governed exclusively
by Wα. Each Wα is a physically valid, probability conserving and dissipative kernel in its own right.
This implies
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(1|Wα = 0 , (x|Wα + (Wα)†

2
|x) ≤ 0 for any |x), (A2)

and furthermore dictates real non-negative transition rates [78], Wα( f ← i)/( f | f ) = ( f |Wα|i)/( f | f ) ≥ 0,
for transitions from an initial dot energy eigenstate |i) to a different final dot state | f ). Additionally,
for reasons that become clear in the next paragraph, we make the—not explicitly required yet
plausible—assumption that a sequence of single electron tunneling events to and from lead α

eventually connects any possible initial dot energy eigenstate |i) to any other final dot state | f ) 6= |i):

∃n ∈ N : ( f |(Wα)
n|i) 6= 0 for any |i), | f ) . (A3)

A hypothetical way to violate this condition in the wide-band description of the single-level dot would
be to take the zero temperature limit in the Coulomb blockade regime, leading to completely blocked
transitions out of the singly occupied state. This is, however, neither physical nor practical, since
the zero temperature limit cannot be appropriately described by the Markovian sequential tunneling
approximation, and since it is of course impossible to realize Tα = 0 exactly in practice.

Note now that the first statement in Equation (A2) means that (1| is a nontrivial left eigenvector
of Wα to the eigenvalue 0, (1|Wα = 0 · (1|. Importantly, the property (A3) then ensures [29] that this
eigenvalue 0 is non-degenerate, and that the only trace-normalized right zero-eigenvector |zα) 6= 0
is the unique, stationary mixed state of the dot, with truly positive probabilities 0 < Pχ < 1 for
all dot energy eigenstates |χ). Since the lead itself is assumed to be in equilibrium, and since the
grand-canonical ensemble ∼e−βα(Ĥ−µα N̂) is a possible stationary state of the dot if the latter is in
equilibrium with the lead in terms of particle and energy exchange, the unique stationary state |zα)

must be the grand-canonical ensemble:

|zα) =
exp

(
−βα

(
Ĥ − µαN̂

))
Tr
[
exp

(
−βα

(
Ĥ − µαN̂

))]
=

1
Z(ε, U, µα, βα)

|0)+ 2e−βα(ε−µα)

Z(ε, U, µα, βα)
|1)+ 2e−βα(2ε+U−2µα)

Z(ε, U, µα, βα)
|2)

(A4)

with the partition function Z(ε, U, µα, βα) = 1 + 2e−βα(ε−µα) + e−βα(2ε+U−2µα). We have used that,
due to the spin-degeneracy, the occupation number states and energy eigenstates (8) of Ĥ, as well
as their dual counterparts, form an orthogonal set of Liouville space vectors spanning the relevant
Liouville space:

I = |0)(0|+ 2|1)(1|+ |2)(2|. (A5)

The factor 2 in the second term appears to due to (1|1) = 1/2.
In the wide-band limit, Wα belongs to the class for which the fermion-parity duality (13) holds:[

Wα(Ĥ, µα)
]†

= −Γα − P̂Wα(−Ĥ,−µα)P̂ , P̂ |•) = |(−1)N•) (A6)

As in Reference [29], we assume that neither the physicality (A2) nor the connectiveness of all states
(A3) are spoiled by the energy inversion in the dual kernel Wα(−Ĥ,−µα). In the wide-band limit [79],
this is reasonable because both local energies and electrochemical potential are inverted, and because
only energy differences to the electrochemical potential matter for the tunneling rates! The important
consequence of this assumption is that the parity rate −Γα is a non-degenerate eigenvalue of the
kernel Wα with the left and right eigenvectors (ziα(−1)N| and |(−1)N), as reported in Equation (15).
Here, we have introduced the inverted or dual stationary state |ziα) = |z(−H,−µα)) as defined in
Equation (19) as the stationary state of the dual kernel; it derives from the stationary state |zα) for
lead α by inverting the sign of all local energy scales and of the electrochemical potential. Since the
stationary state (A4) is the grand-canonical ensemble, this inverted stationary state can also explicitly
be written as
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|ziα)
(A4)
=

1
Z(−ε,−U,−µα, βα)

|0)+ 2eβα(ε−µα)

Z(−ε,−U,−µα, βα)
|1)+ 2eβα(2ε+U−2µα)

Z(−ε,−U,−µα, βα)
|2). (A7)

By now we have already found two left and right eigenvectors of Wα that must be biorthogonal to each
other. Since the relevant Liouville subspace and its dual are spanned only by the 3 spin-symmetric
physical states written in (8), we span the entire relevant Liouville [dual] space by only one other
spin-symmetric [left] right vector [(c′α|] |cα) that is orthogonal to the previously found two [right] left
eigenvectors. Up to normalization factors, both |cα) and (c′α| are hence uniquely determined by the
Gram-Schmidt algorithm. To efficiently carry out this orthogonalization procedure, we use the fact
that also |1), |N − 1), and |(−1)N) form an orthogonal basis of the Liouville space of interest:

I =
1
4
|1)(1|+ 1

2
|N − 1)(N − 1|+ 1

4
|(−1)N)((−1)N|. (A8)

This shows that in order to be orthogonal to the parity mode |(−1)N), (c′α| must be a linear combination
of (N| and (1|. Enforcing also orthogonality to the stationary state |zα), applying an analogous
procedure for the right vector |cα), and finally choosing an appropriate normalization factor, such that
(c′α|cα) = 1, we obtain

(c′α| = (N|− nzα(1| , |cα) =
1
2
(−1)N̂ [|N)− niα|1)] . (A9)

Here, nzα = (N|zα) is the average charge number in the stationary state, and niα = (N|ziα) the
corresponding average in the dual stationary state:

nzα = (N|zα)
(8)
= 2 [(1|zα)+ (2|zα)]

(A4)
=

2 fα(ε)

1 + fα(ε)− fα(ε + U)

niα = (N|ziα)
(8)
= 2 [(1|ziα)+ (2|ziα)]

(A7)
=

2(1− fα(ε))

1− fα(ε) + fα(ε + U)
,

(A10)

where fα(x) = [exp (βα [x− µα]) + 1]−1 is the Fermi function. The left vector is thus interpreted as the
charge deviation from the stationary average, and the right vector is called charge mode.

Now, since 0 is a non-degenerate eigenvalue of Wα, the vectors (A9) can only be eigenvectors
or generalized eigenvectors in a Jordan block of Wα to the eigenvalue −Γα, or true eigenvectors to
an eigenvalue that differs from 0,−Γα. Remembering moreover that we have assumed full state
connectiveness (A3) and a non-degenerate eigenvalue 0 for the dual kernel Wα(−Ĥ,−µα), the duality
(A6) dictates −Γα to also be a non-degenerate eigenvalue of Wα. Thus, using finally that Wα is real,
we can conclude that (c′α| and |cα) must be amplitudes and modes of Wα to an eigenvalue−γcα obeying
0 > −γcα > −Γα. These eigenvectors are associated with the decay of the average charge number
to its stationary value nzα. The timescale of this decay—the charge rate γcα—will be determined
explicitly below.

Collecting all previous results, we arrive at the set of left and right eigenvectors that diagonalizes
the kernel, and that is stated in Equation (15):

Amplitude − Eigenvalue = decay rate Mode

(z′α| = (1| γzα |zα)

(cα
′| = (N|− nzα(1| γcα |cα) =

1
2 (−1)N̂

[
|N)− niα|1)

]
(p′α| = (ziα(−1)N| γpα |pα) = |(−1)N)

(A11)

with eigenvalues −γzα = 0,−γcα,−γpα = −Γα. The eigenmode expansion of the kernel reads

Wα = −γcα

[
1
2
(−1)N̂ [|N)− niα|1)]

] [
(N|− nzα(1|

]
− Γα|(−1)N)(ziα(−1)N|. (A12)
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The explicit expression of γcα finally follows from the fact that in sequential tunneling, direct transitions
between the empty and doubly occupied state are not possible. Using (−1)N̂|0/2) = |0/2) and
N̂|0) = 0, N̂|2) = 2|2), this leads to

(0|Wα|2)
!
= 0

(A12)⇒ γcα = 2Γα
(2|ziα)

niα(2− nzα)

(A7)
=

(A10)

Γα

2
[1 + fα(ε)− fα(ε + U)] . (A13)

In summary, the Equations (A10) to (A13) show that instead of calculating explicit transition rates using,
e.g., Fermi’s golden rule, an equivalent result for the master equation kernel Wα of the single-level
dot with one lead can be obtained by appealing to general principles, reasonable assumptions and
symmetries. The latter includes in particular the fermion-parity duality.

Appendix A.2. Full Multi-Lead Kernel

The remaining question is what happens in case of a non-equilibrium situation with several leads,
at different electrochemical potentials and temperatures. Since the fermion-parity duality holds for
the full non-equilibrium kernel W, we can formally obtain its eigenmode expansion by repeating the
same procedure as for Wα in Section A.1, using the same properties related to the connectiveness
and physicality of the (dual) kernel. Namely, if each kernel Wα is dissipative (A2) and eventually
connects all states (A3), this is also true for the sum of all kernels, since their off-diagonal elements
in the probability sector are non-negative! Similarly to Equation (A11), this then yields the three
biorthonormal left and right eigenvectors

Amplitude − Eigenvalue = decay rate Mode

(z′| = (1| γz |z)
(c′| = (N|− nz(1| γc |c) = 1

2 (−1)N̂
[
|N)− ni|1)

]
(p′| = (zi(−1)N| γp |p) = |(−1)N)

(A14)

to the eigenvalues −γz = 0,−γc,−γp = −Γ = −∑α Γα, and

W = −γc

[
1
2
(−1)N̂ [|N)− ni|1)]

]
[(N|− nz(1|]− Γ|(−1)N)(zi(−1)N|, (A15)

where 0 < γc < Γ restricts the total charge rate γc.
The problem of Equation (A15) is that it is not yet obvious what exactly the non-equilibrium

stationary state |z) and all derived quantities including |zi) are, since we cannot simply assume the
grand-canonical ensemble as for the equilibrium case (A4). Starting from (A1), a straightforward
but cumbersome approach to this problem would be to calculate the full kernel explicitly from
all single-lead kernels Wα, and then explicitly solve W|z) = 0 with (1|z) = 1 to obtain the
non-equilibrium stationary state |z). However, our goal here – and in general in this article—is
to instead show that for everything we are interested in, we never once need the full expression of |z).

As a first step, we derive nz and γc. Since (1|W = (1|Wα = 0, we can always write

(N|W = (c′|W (A14)
= −γc [(N|− nz(1|] = −γc(N − 1|+ γc(nz − 1)(1|

(A1)
= ∑

α

(N|Wα = ∑
α

(c′α|Wα = −∑
α

γcα [(N|− nzα(1|] (A16)

=

[
−∑

α

γcα

]
(N − 1|+

[
∑
α

γcα (nzα − 1)

]
(1|.

Acting from the right with |N − 1) yields the total charge rate

γc = ∑
α

γcα
(A13)
= ∑

α

Γα

2
[1 + fα(ε)− fα(ε + U)] . (A17)
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Likewise, acting from the right with the unit operator |1) gives

nz = ∑
α

γcα

γc
nzα

(A17)
=

(A10)

1
γc

∑
α

Γα · fα(ε) . (A18)

Second, when evaluated at equilibrium, µα′ = µα = µ , βα′ = βα = β for all reservoirs α′, α, denoted
by . . . |eq, the expressions (A17) and (A18) for the charge rate and average particle number simplify to

γc,eq = γc|eq =
Γ
Γα

γcα|eq , nz|eq = nzα|eq ∀α. (A19)

Moreover, |z) must also become the grand-canonical ensemble with respect to the common
electrochemical potential µ and inverse temperature β under these conditions, and equivalently for
the dual stationary state. While this is intuitively clear, it now follows explicitly from our construction.
Namely, we realize from the Equations (A10), (A12) and (A13) that at equilibrium, the kernels Wα

differ only by the coupling prefactor Γα, such that Wα = ΓαW0 with some common superoperator W0.

More explicitly, Wα|eq = ΓαW0 (A1)⇒ W|eq = ∑α′ Γα′W0 = Γ
Γα

Wα|eq. Since W|z) = 0 is a homogeneous
equation, and since the stationary state is unique by construction, we indeed have

|zeq) := |z)|eq = |zα)|eq , |zi,eq) := |zi)|eq = |ziα)|eq , (A20)

with (1|zeq) = 1 and (1|zi,eq) = 1. This then finally also implies

|ceq) = |c)|eq
(A20)
= |cα)|eq , (c′eq| = (c′|

∣∣
eq

(A20)
= (c′α|

∣∣
eq . (A21)

As it turns out, the relations (A20) are almost everything we need to know about the full
non-equilibrium stationary state and its dual, apart from the stationarity W|z) = 0 and the
orthogonality relation (zi(−1)N|z) = 0 that also hold far away from equilibrium.

Appendix B. Explicit Expressions for the Kernel

In this appendix, we provide explicit expressions for the full non-equilibrium Kernel W and its
stationary state for completeness. We emphasize that these expressions are not needed except for
producing plots of the nonlinear Peltier coefficient as shown in Figure 7, requiring the non-equilibrium
parity p.

As mentioned before, the transition rates W f ,i = ( f |W|i)/( f | f ) of the full kernel W can be
derived from the sequential tunneling decomposition (9) of W combined with explicitly known form of
the lead resolved kernel Wα obtained using duality, see Equation (A12) combined with Equations (A7),
(A10) and (A13). More traditionally, one finds (W f ,i)α by explicitly using Fermi’s Golden rule or
first order diagrammatic perturbation theory. In any case, the full matrix of transition rates in the
occupation number basis |0), |1), |2) reads −W1,0 W0,1 0

W1,0 −W0,1 −W2,1 W1,2

0 W2,1 −W1,2

 = ∑
α

 −(W1,0)α (W0,1)α 0
(W1,0)α −(W0,1)α − (W2,1)α (W1,2)α

0 (W2,1)α −(W1,2)α

 (A22)

with the transition rates (W f ,i)α = ( f |Wα|i)/( f | f ) given by

(W1,0)α = Γα f+α (ε) (W2,1)α = (Γα/2) f+α (ε + U)

(W0,1)α = (Γα/2) f−α (ε) (W1,2)α = Γα f−α (ε + U). (A23)

The stationary state |z)—being the right eigenvector of W to the eigenvalue γz = 0 is found to be
represented by
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|z) ·= 1
W0,1
W1,0

+
W2,1
W1,2

+ 1


W0,1
W1,0

1
W2,1
W1,2

 (A24)

in the basis |0), |1), |2). The inverted stationary state, |zi), is then simply found by replacing all
f+α ↔ f−α . From this expression for the stationary state of the original and the inverted model,
the following quantities required for the plot of the nonlinear Peltier coefficient can be obtained from a
standard trace operation: nz = Tr{N̂ẑ}, ni = Tr{N̂ẑi}, pz = Tr{(−1)N̂ ẑ}, and pi = Tr{(−1)N̂ ẑi}.

Appendix C. Derivation of the Linear Response Coefficients

Here, we show how to derive the well-known linear response coefficients in their new shape
(27a)–(27c) by combining the linear state response (24) with the eigenmode expansion (15) induced by
the duality (13).

Appendix C.1. First Derivatives at Equilibrium

The most important prerequisite to calculate the linear response coefficients is the state
linearization relation (24), which we here derive using the decay eigenmode expansion (15). In principle,
the final result stated in Equation (24) is well-known from earlier works on Coulomb blockade
oscillations [56,57] in more general quantum dot systems. However, we stress that due to the simplicity,
the symmetries and due to the resulting conservation laws of the model considered here, we can
obtain the result without ever assuming that detailed balance [56,57] or more general linear balance
relations [11] continue to hold for small deviations away from equilibrium.

Due to current conservation under stationary conditions we find for all leads α,

∑α Iα
N

(22a)
= −∑α γcα(c′α|z)

(10)
= ∑α(N|Wα|z)

(A1)
= (N|W|z) (A14)

= 0

∑α Iα
E

(22b)
= ∑α

{[
ε + (2− niα)

U
2

]
Iα
N −UΓα(ziα(−1)N|z)

} (11)
= ∑α(H|Wα|z)

(A1)
= (H|W|z) (A14)

= 0.
(A25)

As intuitively clear, at equilibrium, charge and energy current to every lead α vanish separately:

Iα
N|eq

(22a)
= − γcα(c′α|z)

∣∣
eq

(A21)
= − γcα(c′|z)

∣∣
eq

(A14)
= 0 (A26)

Iα
E|eq

(22b)
=

[
ε + (2− niα)

U
2

]
Iα
N

∣∣∣∣
eq
−UΓα (ziα(−1)N|z)

∣∣∣
eq

(A26)
=

(A20)
−UΓα (zi(−1)N|z)

∣∣∣
eq

(A14)
= 0. (A27)

Now the main trick to derive the desired result is to cleverly represent the non-equilibrium stationary
state |z) in terms of all local equilibrium states |zα). Using the complete basis (A11), one can write

|z) = (1|z)︸ ︷︷ ︸
=1

·|zα)+ (c′α|z) · |cα)+ (ziα(−1)N|z) · |(−1)N) (A28)

for any lead α. Multiplying by γcα > 0, summing over α, and dividing the result by ∑α γcα = γc > 0,
Equation (A17) yields

|z) = ∑
α

γcα

γc
|zα)+ ∑

α

γcα(c′α|z) ·
1
γc

|cα)+

[
∑
α

γcα

γc
· (ziα(−1)N|z)

]
|(−1)N)

(22a)
= ∑

α

γcα

γc
|zα)−∑

α

Iα
N ·

1
γc

|cα)+

[
∑
α

γcα

γc ·UΓα
·UΓα(ziα(−1)N|z)

]
|(−1)N)

(22b)
= ∑

α

γcα

γc
|zα)−∑

α

Iα
N ·

1
γc

|cα)−
{

∑
α

γcα

γc ·UΓα
·
[

Iα
E −

(
ε + (2− niα)

U
2

)
Iα
N

]}
|(−1)N).

(A29)
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In the second and third step, we have identified the charge current Iα
N and energy current Iα

E from lead
α as part of the expansion coefficients in order to use the conservation laws (A25) and the equilibrium
conditions (A26) and (A27) in the following steps.

When taking equilibrium derivatives of |z) with respect to x = µα or x = βα, we are always free to
take the equilibrium limit separately for all terms outside of derivatives (when using the product rule),
and to interchange sums with derivatives or the equilibrium limit, since every term in Equation (A29)
is separately continuously differentiable. This finally justifies the following computation:

d
dx

|z)
∣∣∣∣
eq

(A29)
= ∑

α

d
dx

(
γcα

γc

)∣∣∣∣
eq
· [|zα)]|eq︸ ︷︷ ︸

(A20)
= |zeq)

+∑
α

γcα

γc

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= Γα/Γ

· d
dx

|zα)

∣∣∣∣
eq
−∑

α

d
dx

Iα
N

∣∣∣∣
eq
· 1

γc
|cα)

∣∣∣∣
eq︸ ︷︷ ︸

(A21)
= |c)/γc |eq

−∑
α

Iα
N|eq︸ ︷︷ ︸

(A26)
= 0

· d
dx

(
1
γc

|cα)

)∣∣∣∣
eq
−
{

∑
α

d
dx

(
γcα

γcUΓα

)∣∣∣∣
eq
·
[

Iα
E −

(
ε +

2− niα

2
U
)

Iα
N

]∣∣∣∣
eq︸ ︷︷ ︸

(A26)
=

(A27)
0

+ ∑
α

γcα

γcUΓα

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= 1/(UΓ)

·
[

d
dx

Iα
E

∣∣∣∣
eq
− d

dx

(
ε +

2− niα

2
U
)∣∣∣∣

eq
· Iα

N|eq︸ ︷︷ ︸
(A26)
= 0

]

−∑
α

γcα

γcUΓα

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= 1/(UΓ)

·
[(

ε +
2− niα

2
U
)∣∣∣∣

eq︸ ︷︷ ︸
(A20)
= ε+

2−ni,eq
2 U

· d
dx

Iα
N

∣∣∣∣
eq

] }
|(−1)N)

= ∑
α

Γα

Γ
d

dx
|zα)

∣∣∣∣
eq

+

[
d

dx
∑α γcα

γc︸ ︷︷ ︸
(A17)
= 1

∣∣∣∣
eq

]
· |zeq)−

 d
dx ∑

α

Iα
N︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣∣
eq

 · 1
γc

|c)
∣∣∣∣
eq

− 1
UΓ
·

 d
dx ∑

α

Iα
E︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣∣
eq

−
(

ε +
2− ni,eq

2
U
)∣∣∣∣

eq
· d

dx ∑
α

Iα
N︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣∣
eq

 |(−1)N).

(A30)

Equation (A30) yields the central relation

d
dx

|z)
∣∣∣∣
eq

= ∑
α

Γα

Γ
d

dx
|zα)

∣∣∣∣
eq

. (A31)

It reduces equilibrium derivatives of the non-equilibrium stationary state |z) to derivatives of the local
equilibrium states |zα). The latter are in turn straightforward to perform for x = µα or x = βα. Namely,
defining the affinities Âα = βα

(
Ĥ − µαN̂

)
, using the exponential form (A4) of |zα) and the fact that

the local dot Hamiltonian conserves the local particle number, [Ĥ, N̂] = 0, the basic rules of taking
derivatives yield

d
dx

|zα)

∣∣∣∣
eq

= −
[(

d
dx

Âα

)
− (

(
d

dx
Aα

)
|zα) · 1

]∣∣∣∣
eq
· |zα)|eq . (A32)

The relations (A31) and (A32) together prove the wanted result

d
dx

|z)
∣∣∣∣
eq

= ∑
α

Γα

Γ
d

dx
|zα)

∣∣∣∣
eq

= −∑
α

Γα

Γ

[(
d

dx
Âα

)
− (

(
d

dx
Aα

)
|zα) · 1

]∣∣∣∣
eq
· |zα)|eq . (A33)
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This is the key ingredient which allows us, in the following steps, to express and relate the linear
response coefficients to the additional insights provided by the duality relation. This appeals in
particular to the role of the fermion parity and the significance of the dual stationary state |zi).

Appendix C.2. Linearized Charge Current and Conductance

We start with the linear response of the particle current Iα
N to a variation δx of the variable

x = µα′ , Tα′ .

∂Iα
N

∂x

∣∣∣∣
eq

(22a)
=

∂

∂x
[γcα (nzα − nz)]

∣∣∣∣
eq

(A19)
=

 ∂γcα

∂x

∣∣∣∣
eq
· (nz − nz)︸ ︷︷ ︸

=0

+γcα ·
(

∂nzα

∂x
− ∂nz

∂x

)∣∣∣∣
eq


=

Γα · γc,eq

Γ
·
[
(N| ∂

∂x
|zα)− (N| ∂

∂x
|z)
]∣∣∣∣

eq

(24)
=

Γα · γc,eq

Γ ∑
α′′

Γα′′

Γ
(N| ∂

∂x
[|zα)− |zα′′)]

∣∣∣∣
eq

(24)
=

(A20)
−

Γα · γc,eq

Γ ∑
α′′

Γα′′

Γ

{
d

dx
(βα − βα′′)

∣∣∣∣
eq
(N|

[
Ĥ − (H|zeq) · 1

]
· |zeq),

− d
dx

(µαβα − µα′′βα′′)

∣∣∣∣
eq
(N|

[
N̂ − (N|zeq) · 1

]
· |zeq)

}

=
Γα · γc,eq

Γ ∑
α′′

Γα′′

Γ

{
d

dx
(µαβα − µα′′βα′′)

∣∣∣∣
eq

δn2
z,eq −

d
dx

(βα − βα′′)

∣∣∣∣
eq
·
[〈

N̂Ĥ
〉

eq −
〈

N̂
〉

eq

〈
Ĥ
〉

eq

]}
,

(A34)

where
δn2

z,eq =
〈

N̂2
〉

eq
−
〈

N̂
〉2

eq , 〈•〉eq = (•|zeq) = Tr
[
• · ẑeq

]
(A35)

for any dot observable • = •†.
To compute the linear response of the particle current Iα

N in lead α to a variation of the
electrochemical potential δµα′ from the equilibrium, we set x = µα′ and realize that only the first term
proportional to the average charge fluctuations survives in Equation (A34). More precisely, we obtain

dIα
N

dµα′

∣∣∣∣
eq

(A34)
=

γc,eq

T
· Γα

Γ
·
[
∑
α′′

Γα′′

Γ
(δαα′ − δα′′α′)

]
· δn2

z,eq =
γc,eq

T
· Γα(Γδαα′ − Γα′)

Γ2 · δn2
z,eq. (A36)

Restricting our considerations to the two-contact case as presented in the main paper the result
simplifies to

L11 = −T
2

 dIL
N

dV

∣∣∣∣∣
eq

−
dIR

N
dV

∣∣∣∣∣
eq

 (A36)
= γc,eq ·

ΓLΓR

Γ2 · δn2
z,eq. (A37)

To finally plot the conductance, one needs the explicit expressions for the equilibrium charge
fluctuation δn2

z,eq as a function of the system parameters, including the equilibrium expectation value
of N̂2. One way to obtain this expectation value is by using the Liouville space identity (A8) and the
scalar products (1| )N2 = 6, (N − 1| )N2 = 4, ((−1)N|N2) = 2. The latter can be shown using the
definition of the states |0), |1), |2) and observables N̂, (−1)N̂ in terms of creation and annihilation
operators, their anti-commutation relations, and the fact that an annihilation operator acting on the
vacuum gives 0. As a result, we can reduce N̂2 to

N̂2 (A8)
=

1
4
(1|N2) · 1+ 1

2
(N − 1|N2) · (N − 1) + 1

4
((−1)N|N2) · (−1)N̂ = −1

2
· 1+ 2 · N̂ +

1
2
· (−1)N̂ , (A38)

and write〈
N̂2
〉

eq
= (N2|zeq)

(A38)
= 2(N|zeq)+

1
2

[
((−1)N|zeq)− (1|zeq)

]
= 2nz,eq +

1
2
(

pz,eq − 1
)

. (A39)
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The parity pz,eq is, due to Equation (A20), calculated by taking the equilibrium limit of the lead
resolved parity:

pz,eq = pzα|eq , pzα = (0|zα)+ (2|zα)− 2(1|zα)
(8)
=

(A4)
1− 4

fα(ε)[1− fα(ε + U)]

1 + fα(ε)− fα(ε + U)
. (A40)

With this, we explicitly find

δn2
z,eq =

〈
N̂2
〉

eq
− (nz,eq)

2 (A39)
= nz,eq(2− nz,eq) +

1
2
(

pz,eq − 1
)

(A10),(A19)
=

(A40)
2

f (ε) [1− f (ε + U)] [1− f (ε) + f (ε + U)]

[1 + f (ε)− f (ε + U)]2
,

(A41)

where f (x) = fR(x) is the Fermi function with respect to the equilibrium potential µ and temperature
T. As stated in the main paper, an alternative way to arrive at the explicit expression (A41) is to take
an ε-derivative of the equilibrium occupation number. Namely, this follows from the relation

dnz,eq

dε
= (N| d

dε
|zeq) = (N| d

dε
|zα)

∣∣∣∣
eq

(A32)
= −(N|

[(
d
dε

Âα

)
− (

(
d
dε

Aα

)
|zα) · 1

]∣∣∣∣
eq
· |zα)|eq

(A20)
= −β(N|

[
dĤ
dε
− (

(
dH
dε

)
|zeq)

]
· |zeq)

(3)
= −β

[
(N2|zeq)− (N|zeq)

2
]
= − 1

T
δn2

z,eq.

(A42)

In summary, the above analysis shows that we can explicitly calculate every ingredient in
Equation (A37): γc,eq and nz,eq using Equations (A13) and (A10) combined with Equation (A19),
and finally δn2

z,eq according to Equation (A41).

Appendix C.3. Charge-Energy Correlation and Seebeck Effect

We continue by calculating the response of the charge current to a temperature gradient. The first
crucial step is to evaluate the equilibrium correlation function

〈
N̂Ĥ

〉
eq by expanding it in terms of

the decay eigenmodes and amplitudes (15) taken at equilibrium. Using that all operators, i.e., N̂, Ĥ
and ẑeq, are hermitian and mutually commute (The particle number is locally conserved, [Ĥ, N̂] = 0
and the equilibrium state is just the Boltzmann factor containing Ĥ and N̂ in the exponential), we can
insert the Liouville space identity

I (15)
= |z)(1|+ |c)(c′|+ |(−1)N)(zi(−1)N| (A20)

= |zeq)(1|+ |ceq)(c′eq|+ |(−1)N)(zi,eq(−1)N| (A43)

to write〈
N̂Ĥ

〉
eq −

〈
N̂
〉

eq

〈
Ĥ
〉

eq = (H|Nzeq)− (H|zeq)(N|zeq)

(A43)
= (H|ceq)(c′eq|N · zeq)+ (H|(−1)N)(zi,eq(−1)N|N · zeq)

(15)
=

(A35)
(H|ceq) · δn2

z,eq + (H|(−1)N)(zi,eq(−1)N|N · zeq).

(A44)

To further simplify the remaining traces in Equation (A44), we realize that the scalar products

(1|(−1)N) = (N|(−1)N) = 0 , (2|N) = (2|(−1)N N) = 2 , (2|(−1)N) = (2|1) = 1, (A45)

and the important orthogonality

(ziα(−1)N|N · z)
∣∣∣
eq

= 0 (A46)
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pointed out in the main text [Equation (25)] causes the second term of (A44) to vanish. The charge-energy
correlator of the dot at equilibrium with the bath is thus simply proportional to the average equilibrium
charge fluctuation:

〈
N̂Ĥ

〉
eq −

〈
N̂
〉

eq

〈
Ĥ
〉

eq
(A44)
=

(A46)
(H|ceq) · δn2

z,eq. (A47)

The proportionality factor is obtained from the decay mode expansion of the Hamiltonian [29]

(H|ceq)
(3)
=

(15)

ε

2

[
(N|(−1)N N)− ni,eq(N|(−1)N)

]
+

U
2

[
(2|(−1)N N)− ni,eq(2|(−1)N)

]
(A45)
= ε + U

2− ni,eq

2
(31)
= µ + Eeq.

(A48)

Let us finally calculate the linear response of the particle current to temperature gradients. Evaluating
Equation (A34) with Equations (A47) and (A48) gives for x = µα′ , Tα′

dIα
N

dx

∣∣∣∣
eq

(A47)
=

(A48)

Γα · γc,eq

Γ ∑
α′′

Γα′′

Γ
d

dx
((

µα − µ− Eeq
)

βα −
(
µα′′ − µ− Eeq

)
βα′′
)∣∣∣∣

eq
δn2

z,eq. (A49)

With x = Tα′ and dβα/dTα′ = −δαα′β
2
α, we furthermore find

dIα
N

dTα′

∣∣∣∣
eq

(A49)
=

Eeq

T
·

dIα
N

dµα′

∣∣∣∣
eq

. (A50)

For the symmetrized charge current response between two contacts to a temperature bias ∆T = TL− T,
we then find the relation S = −L12/(TL11) = Eeq/T used in the main paper:

L12 = −T2

2

[
d(IL

N − IR
N)

dTL

]∣∣∣∣∣
eq

(A50)
=

(A37)
−Eeq · L11 . (A51)

Appendix C.4. Peltier Effect and Fourier Heat

We now compute the linear response of the heat current to a potential or temperature gradient

∂Jα

∂x

∣∣∣∣
eq

(6)
=

∂Iα
E

∂x

∣∣∣∣
eq
−

∂(µα Iα
N)

∂x

∣∣∣∣
eq

(A27)
=

(A26)

[
∂Iα

E
∂x

∣∣∣∣
eq
− µ

∂Iα
N

∂x

∣∣∣∣
eq

]
(22b)
=

{
d

dx

([
ε− µ +

U
2
(2− niα)

]
Iα
N

)∣∣∣∣
eq
− Γα U

d
dx

(ziα(−1)N|z)
∣∣∣∣
eq

}
(31)
=

[
Eeq ·

dIα
N

dx

∣∣∣∣
eq
− Γα U

d
dx

(ziα(−1)N|z)
∣∣∣∣
eq

]
.

(A52)

The first part in Equation (A52) can be fully understood from the charge current response discussed
in the previous Appendices C.2 and C.3. To further simplify Equation (A52), we rewrite the second
term as
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d
dx

(ziα(−1)N|z)
∣∣∣∣
eq

= (
d

dx
ziα

∣∣∣∣
eq
(−1)N|zeq)+ (zi,eq(−1)N| d

dx
z
∣∣∣∣
eq
)

(A20)
=

(A32)
(zi,eq|

 dÂα

dx

∣∣∣∣∣
eq

 (−1)N̂|zeq)+ (zi,eq(−1)N| d
dx

z
∣∣∣∣
eq
)

=
dβα

dx

∣∣∣∣
eq
(zi,eq|Ĥ(−1)N̂|zeq)−

d(µαβα)

dx

∣∣∣∣
eq
(zi,eq|N̂(−1)N̂|zeq)+ (zi,eq(−1)N| d

dx
z
∣∣∣∣
eq
)

(A46)
=

dβα

dx

∣∣∣∣
eq
(zi,eq|Ĥ(−1)N̂|zeq)+ (zi,eq(−1)N| d

dx
|z)
∣∣∣∣
eq

.

(A53)

Expanding the dot Hamiltonian as

Ĥ
(A8)
=

(A45)

(
ε +

U
2

)
· N̂ +

U
4
(−1)N̂ − U

4
1, (A54)

and using the orthogonality relations (A46) as well as (zi,eq(−1)N|zeq) = 0 [Equation (A14)],
Equation (A53) reduces to

d
dx

(ziα(−1)N|z)
∣∣∣∣
eq

(A53)
=

(A54),(A46)

dβα

dx

∣∣∣∣
eq
· U

4
(zi,eq|zeq)+ (zi,eq(−1)N| d

dx
|z)
∣∣∣∣
eq

(24)
=

dβα

dx

∣∣∣∣
eq
· U

4
(zi,eq|zeq)

−∑
α′

Γα′

Γ
dβα′

dx

∣∣∣∣
eq

[
(zi,eq|(−1)N̂ Ĥ|zeq)− (zi,eq(−1)N|zeq)︸ ︷︷ ︸

(A14)
= 0

(zi,eq · H|zeq)
]

+ ∑
α′

Γα′

Γ
d(βα′µα′)

dx

∣∣∣∣
eq

[
(zi,eq|(−1)N̂ N̂|zeq)− (zi,eq(−1)N|zeq)︸ ︷︷ ︸

(A14)
= 0

(zi,eq · N|zeq)
]

(A14)
=

(A54),(A46)

U
4
·∑

α′

Γα′

Γ
d(βα − βα′)

dx

∣∣∣∣
eq
· (zi,eq|zeq).

(A55)

Consequently, the equilibrium derivative of the heat current (A52) can be expressed as

dJα

dx

∣∣∣∣
eq

(A52)
=

(A55)
Eeq ·

dIα
N

dx

∣∣∣∣
eq
+ Γα

(
U
2T

)2
·∑

α′′

Γα′′

Γ
d(Tα − Tα′′)

dx

∣∣∣∣
eq
· (zi,eq|zeq) for x = µα′ , Tα′ . (A56)

Let us summarize what we learn from Equations (A55) and (A56). The first important message is that
for potential gradients, x = µα′ , only the first part of the heat current that is tightly coupled to the
particle current contributes, since

d
dµα′

(ziα(−1)N|z)
∣∣∣∣
eq

(A55)
= 0. (A57)

As claimed in the main text, this ensures compliance with Onsager’s reciprocity relation. Namely, the
linear response of the heat current with respect to electrochemical potential variations is given by

dJα

dµα′

∣∣∣∣
eq

(A56)
= Eeq ·

dIα
N

dµα′

∣∣∣∣
eq

. (A58)

For two contacts, this yields

L21 =
T
2

d(JL − JR

dV

∣∣∣∣
eq

(A58)
= −Eeq ·

T
2
·

d(IL
N − IR

N)

dV

∣∣∣∣∣
eq

(A37)
= −Eeq · L11

(A51)
= L12. (A59)
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The final task is to determine the linear response of the heat current to a temperature gradient, involving
in particular the second term in Equation (A56). Motivated by the general fluctuation-dissipation
theorem at equilibrium, we first aim to express the state overlap (zi,eq|zeq) entering the second term in
terms of particle number fluctuations. With respect to the stationary and dual stationary state, these
fluctuations can be conveniently written as

δn2
z,eq = (N2|zeq)−

[
(N|zeq)

]2 (A14)
= (c′eq|N · zeq)

δn2
i,eq = (N2|zi,eq)−

[
(N|zi,eq)

]2 (A14)
= 2(zi,eq · (−1)N · N|ceq).

(A60)

Forming the product of both fluctuations, we can rewrite the result by solving the Liouville space
identity (A43) for |ceq)(c′eq|, inserting the result and using the nontrivial orthogonality relation (A46):

δn2
i,eq · δn2

z,eq
(A60)
= 2(zi,eq · (−1)N N|ceq)(c′eq|N · zeq)

(A43)
= 2(zi,eq(−1)N N2|zeq)− 2 (zi,eq(−1)N N|zeq)︸ ︷︷ ︸

(A46)
= 0

·(1|N · zeq)

− 2(zi,eq · N(−1)N|(−1)N) · (zi,eq(−1)N N|zeq)︸ ︷︷ ︸
(A46)
= 0

(A46)
=

(A38)
− (zi,eq(−1)N|zeq)︸ ︷︷ ︸

(A14)
= 0

+4 (zi,eq · (−1)N N|zeq)︸ ︷︷ ︸
(A46)
= 0

+(zi,eq · (−1)N(−1)N|zeq)

= (zi,eq|zeq).

(A61)

This leads to an explicit expression for the heat current response to a temperature gradient:

dJα

dTα′

∣∣∣∣
eq

(A56)
=

(A61)
Eeq ·

dIα
N

dTα′

∣∣∣∣
eq

+ Γα

(
U
2T

)2
·∑

α′′

Γα′′

Γ
(δαα′ − δα′′α′) · δn2

i,eq · δn2
z,eq

(A50)
=

E2
eq

T
·

dIα
N

dµα′

∣∣∣∣
eq

+

(
U
2T

)2
· Γα(Γδαα′ − Γα′)

Γ
· δn2

i,eq · δn2
z,eq.

(A62)

The corresponding result for the symmetrized heat current and temperature bias ∆T for the two-contact
system of the main paper reads

L22 =
T2

2

[
dJL

dTL

∣∣∣∣
eq
− dJR

dTL

∣∣∣∣
eq

]
(A62)
=

(A37)
E2

eq · L11 +

(
U
2

)2
· ΓLΓR

Γ
· δn2

i,eq · δn2
z,eq. (A63)

Note that in order to explicitly calculate δn2
i,eq, we use analogously to Equations (A39) and (A41) that

(N2|zi,eq)
(A38)
= 2(N|zi,eq)+

1
2

[
((−1)N|zi,eq)− (1|zi,eq)

] (A20)
= 2ni,eq +

1
2
(

pi,eq − 1
)

. (A64)

The dual parity pi,eq is obtained in the same way as the equilibrium parity pz,eq:

pi,eq = piα|eq , piα = (0|ziα)+ (2|ziα)− 2(1|ziα)
(8)
=

(A7)
1− 4

fα(ε + U)[1− fα(ε)]

1− fα(ε) + fα(ε + U)
. (A65)

The last remaining step is to confirm that Equation (A63) indeed contains all contributions of the
energy fluctuation Equation (38), i.e., when the single-particle energy is measured with respect to the
electrochemical potential: Ĥ = Ĥ − µ · N̂. The fact that N̂, Ĥ, ẑeq mutually commute leads to



Entropy 2017, 19, 668 35 of 39

δĤ2
eq = (H2|zeq)−

[
(H|zeq)

]2
= (H2|zeq)−

[
(H|zeq)

]2 − 2µ
[
(NH|zeq)− (N|zeq)(H|zeq)

]
+ µ2

{
(N2|zeq)−

[
(N|zeq)

]2}
(A47)
=

(A48)
(H2|zeq)−

[
(H|zeq)

]2 − µ
(
µ + 2Eeq

)
δn2

z,eq.

(A66)

The energy fluctuation can be efficiently calculated with the decay mode expansion of the Hamiltonian,

(H| (A43)
= (H|zeq)(1|+ (H|ceq)

[
(N|− (N|zeq)(1|

]
+ (H|(−1)N)(zi,eq(−1)N|

(A48)
=

(A54),(A45)
(H|zeq)(1|+ (µ + Eeq)

[
(N|− (N|zeq)(1|

]
+ U(zi,eq(−1)N|.

(A67)

Using (H2|zeq) = (H|Hzeq) together with (A67) in Equations (A66) yields

δĤ2
eq

(A66)
=

(A67)
(µ + Eeq)

[
(NH|zeq)− (N|zeq)(H|zeq)

]
− µ

(
µ + 2Eeq

)
δn2

z,eq + U(zi,eq(−1)N|Hzeq)

(A47),(A48)
=

(A54)
E2

eqδn2
z,eq −

(
U
2

)2
(zi,eq(−1)N|zeq)︸ ︷︷ ︸

(A14)
= 0

+U
(

ε +
U
2

)
(zi,eq(−1)N|Nzeq)︸ ︷︷ ︸

(A46)
= 0

+

(
U
2

)2
(zi,eq|zeq)︸ ︷︷ ︸

(A61)
= δn2

z,eqδn2
i,eq

= E2
eqδn2

z,eq +

(
U
2

)2
δn2

z,eqδn2
i,eq = Equation (38).

(A68)

Appendix D. Non-Equilibrium Relations for Current-Balanced System

In this final appendix, we derive the relations used in Section 4 to characterize energy transport in
a current-balanced non-equilibrium situation, that is, for

Iα
N = 0 ∀α. (A69)

Since Equation (A69) means 0 = Iα
N

(22a)
= γcα [nzα − nz] for all α, and since γcα > 0 (see Appendix A),

we have
nzα = nz ⇒ nzα = nzα′ ∀α, α′. (A70)

Clearly, the converse also holds, i.e., it follows from Equation (A18) that nz = nzα when assuming
nzα = nzα′ , which leads to Iα

N = 0 when using Equation (22a). Let us in the following exploit this
equivalence to derive the expansion (51) of the stationary state |z) used in the main text.

We start by expanding |z) in the eigenbasis (A11) of a given reservoir kernel Wα:

|z)|bal
(A11)
=

(A28)
|zα)|bal + (nz − nzα)|bal · |cα)|bal + (ziα(−1)N|z)

∣∣∣
bal
· |(−1)N)

(A70)
= |zα)|bal + (ziα(−1)N|z)

∣∣∣
bal
· |(−1)N),

(A71)

where . . . |bal denotes evaluation under the condition (A70). Analogously to Equation (A29), we
multiply by Γα, sum over α and divide by Γ = ∑α Γα:

|z)|bal
(A71)
= ∑

α

Γα

Γ
|zα)|bal +

1
UΓ

[
∑
α

UΓα(ziα(−1)N|z)
∣∣∣
bal

]
· |(−1)N)

(22b)
= ∑

α

Γα

Γ
|zα)|bal −

1
UΓ ∑

α

[
Iα
E −

(
ε +

2− niα

2
U
)

Iα
N

]∣∣∣∣∣
bal

· |(−1)N)

(A69)
= ∑

α

Γα

Γ
|zα)|bal −

1
UΓ ∑

α

Iα
E

∣∣∣∣∣
bal

· |(−1)N)

(A25)
= ∑

α

Γα

Γ
|zα)|bal = Eq. (51).

(A72)
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To find the explicit expression of the non-equilibrium Fourier heat coefficient (50), we apply
((−1)N| to Equation (A71) from the left, use ((−1)N|(−1)N) = 4, and combine the result with
Equation (A72). This gives

(ziα(−1)N|z)
∣∣∣
bal

(A71)
=

1
4

[
((−1)N|z)− ((−1)N|zα)

]∣∣∣
bal

(A72)
=

1
4 ∑

α′ 6=α

Γα′

Γ
(pα′ − pα)|bal (A73)

with the average parities pzα = ((−1)N|zα). In the case of only two leads, α = L,R, the relation (A73)
leads to Equation (52).

Finally, since we have proven equivalence between Equation (A69) and the right side of
Equation (A70), the prescription . . . |bal reduces the calculation of the thermopower to solving

nzα = nzα′
(A10)⇔ fα(ε)

1 + fα(ε)− fα(ε + U)
=

fα′(ε)

1 + fα′(ε)− fα′(ε + U)
(A74)

for all α, α′. Given one fixed potential µα, a fixed level position ε− µα and fixed inverse temperatures
Tα, Tα′ , this condition leads to an analytic expression for all other µα′ 6=α:

µα′ − µα

Tα′

∣∣∣∣
bal

= (ε− µα + U)

(
1

Tα′
− 1

Tα

)
+ ln

1− niα +

√
(1− niα)

2 + exp
(

U(Tα′−Tα)
Tα′Tα

)
niα(2− niα)

2− niα

 , (A75)

For two reservoirs α = L,R, this leads to expression (42) from the main text.
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62. Reference [63] also links the thermoelectric conversion efficiency to mixed charge-heat noise, which in

essence relates to the time-nonlocal version of the mixed particle-energy correlator appearing here.
63. Crépieux, A.; Michelini, F. Heat-charge mixed noise and thermoelectric efficiency fluctuations. J. Stat.

Mech. Theory Exp. 2016, 2016, 054015.
64. In the vicinity of a single resonance, the linear behavior of the Seebeck coefficient can simply

be understood from the exact solution of a single noninteracting level with transmission
probability T (ω) peaked around ω = ε. Then, I =

∫
dωT (ω) ( fL(ω)− fR(ω)) ≈∫

dωT (ω) (∂ f /∂x)|(x=ε−µ)/T
[
−(ω− µ)∆T/T2 + V/T

]
, when linearizing with respect to ∆T and

V. Approximating the transmission probability to be proportional to a δ function, this yields



Entropy 2017, 19, 668 39 of 39

I ≈ (G/T) [(ε− µ)∆T/T −V]. Getting a vanishing current requires V = S∆T = (ε − µ)∆T/T, such
that S is linear in ε.

65. Leijnse, M.; Wegewijs, M.R.; Hettler, M.H. Pair Tunneling Resonance in the Single-Electron Transport
Regime. Phys. Rev. Lett. 2009, 103, 156803.

66. Note that, when increasing Γ/T, the slope at the crossover is expected to be modified by renormalization
due to higher-order effects [67].

67. Kubala, B.; König, J. Quantum-fluctuation effects on the thermopower of a single-electron transistor.
Phys. Rev. B 2006, 73, 195316.

68. Dzurak, A.S.; Smith, C.G.; Barnes, C.H.W.; Pepper, M.; Martín-Moreno, L.; Liang, C.T.; Ritchie, D.A.;
Jones, G.A.C. Thermoelectric signature of the excitation spectrum of a quantum dot. Phys. Rev. B 1997,
55, R10197.

69. Staring, A.A.M.; Molenkamp, L.W.; Alphenaar, B.W.; van Houten, H.; Buyk, O.J.A.; Mabesoone, M.A.A.;
Beenakker, C.W.J.; Foxon, C.T. Coulomb-Blockade Oscillations in the Thermopower of a Quantum Dot.
EPL 2007, 22, 57.

70. Svensson, S.F.; Persson, A.I.; Hoffmann, E.A.; Nakpathomkun, N.; Nilsson, H.A.; Xu, H.Q.; Samuelson, L.;
Linke, H. Lineshape of the thermopower of quantum dots. New J. Phys. 2012, 14, 033041.

71. Contreras-Pulido, L.D.; Splettstoesser, J.; Governale, M.; König, J.; Büttiker, M. Time scales in the dynamics
of an interacting quantum dot. Phys. Rev. B 2012, 85, 075301.

72. For U = 0 there are no further contribution mechanisms to thermal transport in the absence of charge
transport to the leading order in tunnel coupling Γ. Higher orders in the tunnel coupling would, however,
allow for processes in which energy is transferred in a multi-particle tunneling process, while no net charge
transport occurs.

73. López, R.; Lim, J.S.; Sánchez, D. Fluctuation Relations for Spintronics. Phys. Rev. Lett. 2012, 108, 246603.
74. Sierra, M.A.; Sánchez, D. Strongly nonlinear thermovoltage and heat dissipation in interacting quantum

dots. Phys. Rev. B 2014, 90, 115313.
75. Dorda, A.; Ganahl, M.; Andergassen, S.; von der Linden, W.; Arrigoni, E. Thermoelectric response of a

correlated impurity in the nonequilibrium Kondo regime. Phys. Rev. B 2016, 94, 245125.
76. Sierra, M.A.; López, R.; Sánchez, D. Fate of the spin-12 Kondo effect in the presence of temperature

gradients. Phys. Rev. B 2017, 96, 085416.
77. Karki, D.B.; Kiselev, M.N. Thermoelectric transport through a SU(N) Kondo impurity. Phys. Rev. B 2017,

96, 121403.
78. Otherwise, it would always be possible to find an initial state |ρ0) for which the master equation predicts

energy eigenstate projections (i|ρ(t)) < 0 or even Im [(i|ρ(t))] 6= 0 at some time t, which obviously forbids
a probability interpretation.

79. For energy-dependent bare couplings Γ(E), this situation would change if Γ(E) had roots on the real axis!

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation and General Outline
	Overview of Main Ideas and Results

	Model, Master Equation, and Duality
	Model, Assumptions, and Notation
	Master Equation and Non-Equilibrium Currents
	Fermion-Parity Duality and Its Use in Thermoelectrics
	Charge and Energy Currents

	Linear Response Regime
	Electric Response
	Thermo-Electric Response and Seebeck Thermopower
	Peltier Coefficient
	Thermal Response and Fourier Heat Conductance

	Nonlinear Regime
	Thermo-Electric Response and Seebeck Thermopower
	Electro-Thermal Response and Peltier Coefficient
	Thermal Response and Fourier Coefficient

	Conclusions and Outlook
	Non-Equilibrium Master Equation Kernel from Physical Principles and Symmetries
	Kernel for a Single Lead
	Full Multi-Lead Kernel

	Explicit Expressions for the Kernel
	Derivation of the Linear Response Coefficients
	First Derivatives at Equilibrium
	Linearized Charge Current and Conductance
	Charge-Energy Correlation and Seebeck Effect
	Peltier Effect and Fourier Heat

	Non-Equilibrium Relations for Current-Balanced System
	References

