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Abstract: How chronic pain affects brain functions remains unclear. As a potential indicator, brain
complexity estimated by entropy-based methods may be helpful for revealing the underlying
neurophysiological mechanism of chronic pain. In this study, complexity features with multiple time scales
and spectral features were extracted from resting-state magnetoencephalographic signals of 156 female
participants with/without primary dysmenorrhea (PDM) during pain-free state. Revealed by multiscale
sample entropy (MSE), PDM patients (PDMs) exhibited loss of brain complexity in regions associated
with sensory, affective, and evaluative components of pain, including sensorimotor, limbic, and salience
networks. Significant correlations between MSE values and psychological states (depression and anxiety)
were found in PDMs, which may indicate specific nonlinear disturbances in limbic and default mode
network circuits after long-term menstrual pain. These findings suggest that MSE is an important measure
of brain complexity and is potentially applicable to future diagnosis of chronic pain.

Keywords: multiscale sample entropy; chronic pain; primary dysmenorrhea; complexity;
magnetoencephalography; resting-state network

1. Introduction

Chronic pain, any continuous or recurrent pain lasting for more than three to six months [1,2],
may cause reorganization of the central nervous system [3]. It is a worldwide public health problem
associated with mildly increased mortality [4]. Primary dysmenorrhea (PDM), highly prevalent yet
undertreated and affecting 40–90% of the reproductive-age females [5–7], is a pelvic pain during
menstruation without identifiable structural lesion or anomaly in the internal female genital organs [8].
PDM is a good clinical model for studying chronic pain because of its natural “on” (painful) and
“off” (pain-free) states. PDM patients (PDMs) suffer from long-term recurrent menstrual pain, lasting
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for an extended period (8 to 72 h) during each menstrual cycle for years [9,10]. This highlights the
uniqueness of long-term PDM, which comprises the experiences of visceral acute tonic pain during
menstrual cramp and recurrent pain during each menstrual cycle over the course of reproductive age.
Such long-term menstrual pain shapes their brains and changes the way they perceive, modulate,
and react to pain, leading to reduced quality of life, various mental and physiological health problems
such as pain catastrophizing, depression, anxiety, and sleep disorders [7,11,12], and high comorbidity
with many functional pain disorders later in life [13,14]. Alterations in brain structures [15–18] and
functions [13,19–26] in PDMs have been reported, albeit far too little attention has been paid to the
changes of cortical dynamics in PDMs.

The brain encompasses both regular and irregular neuronal interactions. The former is often
regarded as linear, predictable, synchronous, or oscillatory and the latter is regarded as nonlinear,
unpredictable, asynchronous, or nonoscillatory [27]. The irregularity and unpredictability of brain
activity can be regarded as neural complexity, which is related to the brain functions and the
information processing between neurons [28,29]. However, up-to-now, neural activities in the brain are
typically analyzed using linear approximations, such as power-spectrum or time-frequency analyses.
It is noteworthy that nonlinear interactions are thought to be as important as, if not more important,
and more sensitive than linear interactions in characterizing brain dynamics [30]. These interactions
can be reflected by brief neuronal transients between synaptic reentrant loops and are embedded
in time-series neurophysiological signals [31]. The complexity of brain signal patterns reveals the
neurophysiological information [28,32]. Quantification of moment-to-moment temporal variability
would provide a useful metric of brain dynamics [33], which may not be resolved by conventional
spectral-based analysis. Entropy-based analysis, such as sample entropy [34], is a powerful tool to
quantify complexity in nonlinear dynamics of neuronal activities.

The spatial and temporal scales of neurophysiological systems range from microscopic to
macroscopic aspects [35]. Alterations at any scale of these aspects could challenge the normal/healthy
brain functioning. Local neuronal populations constitute intra-regional and inter-regional functional
brain networks, give rise to various physiological and psychological functions, and ultimately
generate simple and complex human behaviors. Multiscale entropy (MSE) approach, which measures
complexity or irregularity by calculating sample entropy over multiple time scales [36,37], provides
additional information of temporal scales from neurophysiological time-varying signals. MSE has
been applied in characterizing various types of neurophysiological signals [38,39], including
electroencephalography (EEG) [40–50], event-related potentials [51–55], magnetoencephalography
(MEG) [26,47,56–59], and functional magnetic resonance imaging (fMRI) data [28,33,49,60,61].
MEG, as a noninvasive neurophysiological measurement with superior temporal resolution
(approximately 1 ms) and good spatial resolution (approximately 4~5 mm), possesses high sensitivity
in capturing entropy changes of neural activities across multiple temporal scales. By applying MSE
analysis on MEG signals, it is possible to capture information of intra-region neuronal interactions
in millisecond resolution. Loss of complexity [35,62], towards both regularity and uncorrelated
randomness, is regarded as the representation of pathologic dynamics [32,35–37,47,61,63], including
Alzheimer’s disease [42,43,47,64,65] and schizophrenia [43,58,61].

However, there remains a paucity of evidence on the spontaneous neural complexity at rest in chronic
recurrent menstrual pain. Recently, we applied MSE estimation to MEG signals in PDMs in the presence of
painful menstruation (state-related changes) for pain level prediction [26]. We found that MSE calculated
from source activities could be used to predict pain scores, and the degree of hemispheric asymmetry in
both source-level and sensor-level brain complexity reveals the intensity of pain.

Pain chronicity in PDM leads to functional neuroplasticity changes [13] and structural
reorganization [18] (trait-related changes). In this study, we further extend our work with a large
study cohort (156 participants) to examine whether PDMs’ brain complexity in the absence of painful
physiological state differs from those in healthy female controls (CONs). Complexity and spectral
features of brain activity were extracted from resting-state MEG signals. MSE analysis revealed
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significant alterations in brain complexity, whereas only limited alterations were detected through
spectral analyses. The correlations between brain complexity features and clinical manifestations were
also investigated. This paper is organized as follows: Section 2 elucidates the study sample, clinical
and psychological assessments, brain signal acquisition and data analysis, and statistical analyses to
investigate the group differences between PDMs and CONs. Section 3 presents our results. In Section 4
we discuss and compare our findings with previous studies.

2. Materials and Methods

2.1. Participants

In this study, we included a subset of the participants from our multimodal imaging studies of PDM
in Taiwan [11]. Readers should refer to our recent studies [13,24] for detailed inclusion and exclusion
criteria for PDMs and CONs. CONs had to meet all the same inclusion criteria, except that they must have
no menstrual pain experience. All PDMs underwent pelvic ultrasonography to exclude organic pelvic
diseases and were clinically diagnosed by a registered gynecologist. No analgesics were used within 24 h
prior to the experiment [24].

Data from 82 PDMs and 79 age-matched CONs collected during pain-free periovulatory phase
(Day 12–14 of menstruation) were included in our group analysis dataset. Due to the incompleteness
of psychological inventory answers in a few participants, psychological data of 80 PDMs and 76 CONs
were eventually included in our statistical analyses. This study was conducted in accordance with the
Declaration of Helsinki. Written informed consent form and psychological inventories were approved
by the ethics committee of Institutional Review Board of Taipei Veterans General Hospital, Taiwan.
Before the study, all participants assessed for eligibility signed the written informed consent form.

2.2. Demographic, Menstrual Features, Pain Experiences, and Psychological Characteristics

Demographic data included age, body mass index (BMI), and handedness; menstrual features
included age at menarche, years of menstruating, and averaged menstrual cycle length. Menstrual pain
experiences were evaluated only in PDMs. Different aspects of recalled overall menstrual pain intensity
over the last six months were evaluated in PDMs using McGill Pain Questionnaire (MPQ) [66,67]
and verbal numerical rating scale (VNRS). MPQ total pain rating index (PRI-Total) composes four
components: sensory, affective, evaluative, and miscellaneous; MPQ present pain index (PPI) is a
1-to-5 intensity scale (1 = mild, 5 = excruciating). VNRS was reported as menstrual pain recalled score
with a range of 0 to 10 (0 = not at all, 10 = the worst imaginable pain).

Quality of life, personality traits, depressive mood, anxiety, and pain catastrophizing were assessed
in all participants. The International Quality of Life Assessment Short-form-36 (IQOLA SF-36) Taiwan
Standard Version 1.0 [68,69] (hereinafter, SF-36) was used to assess long-term physical and mental quality
of life. The Chinese version of Basic Personality Inventory (BPI) [70] was used to assess personality traits,
especially the personal emotional adjustment scale cluster (depression, anxiety, and hypochondriasis
scales). Psychological inventories for anxiety and depression included Spielberger State-Trait Anxiety
Inventory (STAI) [71], Beck Depression Inventory-IA (BDI-IA) [72], and Beck Anxiety Inventory (BAI) [73].
Pain Catastrophizing Scale (PCS) [74] was used to study the negative appraisal style of pain.

2.3. Data Acquisition

2.3.1. Resting-State Magnetoencephalography (MEG) Signals Acquisition

A whole-head 306-channel neuromagnetometer (Vectorview, Elekta Neuromag, Helsinki, Finland)
comprising 102 triple sensors (two orthogonal planar gradiometers and one magnetometer) was
used to record the resting-state MEG signals. Electrooculography (EOG) from two vertical (VEOG)
and two horizontal (HEOG) electrodes were recorded. A 3D digitizer (Isotrak 3S10002, Polhemus,
Colchester, VT, USA) was used to identify the initial locations of four head position indicator (HPI)
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coils and three anatomical landmarks (nasion and bilateral preauricular points). The online sampling
rate was 1000 Hz; online bandpass filter was 0.03–330 Hz; notch filter was 60 Hz. EOG signals
exceeding 600 µV and MEG signals exceeding 6000 fT/cm were online-artifact rejected. MEG signals
recorded from 102 gradiometers were excluded due to the susceptibility to distant noises, leaving
signals from 204 planar gradiometers for further analyses.

Participants sat comfortably in a magnetically shielded room with their heads surrounded by
the MEG helmet. Eye-closed resting-state MEG signals were recorded for three minutes in which the
participants were instructed to relax, eliminate eye movements, and focus only on their breathing.

2.3.2. Structural MRI T1 Images Acquisition

T1-weighted brain images were acquired using a 3 Tesla magnetic resonance imaging
(MRI) scanner (Magnetom Trio Tim, Siemens, Erlangen, Germany) with 12-channel head
coil and standard three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE)
sequence. The parameters were as follows: TR = 2530 ms, TE = 3.03 ms, TI = 1100 ms, flip angle = 7◦,
field-of-view (FOV) = 224× 256 mm2, number of slices = 192, matrix size = 224× 256, thickness = 1 mm.

2.4. Source Analyses

2.4.1. Preprocessing

Eight-second epochs were extracted from the three-minute eye-closed recordings without
temporal overlap to avoid potential temporal dependency and were eliminated if their amplitudes
in any channel at any time point exceeded 2000 fT/cm. To prevent the MEG recordings from the
interference of eye movement and eye blinks, epochs with an amplitude of any EOG channel
exceeding 250 µV were also eliminated. This resulted in an average of 14 (standard deviation = 5)
artifact-free eight-second epochs and 8000 data points per epoch (with a sampling rate of 1000 Hz).
For each epoch, MEG signals were projected onto a signal subspace using the signal space projection
method [75].The projected signals were then passed through a 0.5–90 Hz band-pass filter followed by
a 55–65 Hz band-stop filter for the elimination of power line interference. To remove the trend of the
recordings, zero-mean adjustment was applied to signals of each channel.

2.4.2. Source Reconstruction

Maximum contrast beamformer [76] was used to estimate brain activity from MEG signals.
To obtain the approximate source signal y(t) of the dipole source θ, a spatial filter wθ was applied to
the MEG recordings m(t):

y(t) = wT
θ m(t) (1)

The spatial filter was obtained by applying the unit-gain constraint wT
θ lθ = 1 and minimizing

variance of the signal y(t):

ŵθ = argmin
wθ

(E[‖y(t)− E[y(t)]‖2] + α‖wθ‖2) subject to wT
θ lθ = 1 (2)

where E[·] denotes the expectation operator, lθ denotes the lead field vector of the dipole source θ,
and α is the Tikhonov regularization parameter [77], which can restrict the norm of wθ . The estimated
brain activity can be calculated by multiplying the MEG signals by the spatial filter ŵθ .

2.5. Feature Extraction

Three types of scale-invariant features were extracted from the estimated source activity, including
brain complexity features (sample entropy, multiscale sample entropy, Shannon spectral entropy,
Lempel-Ziv complexity), brain spectral features (relative band power, median frequency, spectral edge
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frequency), and indices of hemispheric asymmetry (A). For each epoch and each subject, we calculated
the features of each brain region using the following methods.

2.5.1. Feature Extraction of Brain Complexity Features via Nonlinear Analysis

Sample Entropy

Sample entropy (SE) proposed by a previous study [34] can be used to measure complexity. Two
parameters, m and r, in SE refer to the length of the patterns to be compared (m = 2 in this study)
and the tolerance range, respectively. Value r is usually set by c× σ, where c is a constant (c = 0.25 in
this study) and σ is the standard deviation of the signal. Given a signal containing N sample points,
x = [x1, x2, . . . , xN ]. First, a vector of length m was defined by:

xm(i) = [xi, xi+1, . . . , xi+m−1], where i = 1, . . . , N −m (3)

Next, for 1 ≤ j ≤ N −m and j 6= i, the distance of two vectors xm(i) and xm(j) was calculated as
the maximum value of the difference between corresponding elements, as follows:

dist(xm(i), xm(j)) = max
k=1,2, ... ,m

(
‖xi+k−1 − xj+k−1‖

)
(4)

For each i, i = 1, . . . , N −m, if dist(xm(i), xm(j)) ≤ r then xm(i) and xm(j) were matched and the
number of matching count, lm

r , was increased by one. Then we defined vectors of length m + 1 by:

xm+1(i) = [xi, xi+1, . . . , xi+m], where i = 1, . . . , N −m (5)

and calculate the number of matching lm+1
r . Once the lm

r and lm+1
r were obtained, the SE of the signal x

can be obtained as follows:

SE(m, r, x) = − ln
lm+1
r
lm
r

(6)

Multiscale Sample Entropy

MSE can be used to further measure complexity over different time scales [36]. The coarse-grained
time series zτ = [zτ

1 , zτ
2 , . . . , zτ

N/τ] of the original time series x = [x1, x2, . . . , xN] is obtained according
to scale factor τ:

zτ
j =

1
τ

jτ

∑
i=(j−1)τ + 1

xi, 1 ≤ j ≤ N
τ

(7)

We can obtain the multiscale SE of each time scale factor τ (τ is set from 1 to 100 in this
study) by applying the SE method to each time series zτ

j [26]. Given m = 2, r = 0.25 × σ,
N = 1000 Hz × 8 s/epoch = 8000 data points per epoch, and τ = 1 to 100, we had 80 to 8000 data
points (N/τ = 8000/100 to 8000/1) for multiscale time-series data. The amount of data points was
sufficient for SE calculation, as recommended in [34,78] (at least 10m and preferable 30m, that is,
100 to 900). Moreover, a minimum of 50 data points was also reported in EEG/MEG [52,79] and
fMRI [28,60] studies. Figure 1 illustrates examples of time series data ranging from fine to coarse scales.
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Figure 1. Examples of time series data for an 8-s epoch over a range of representative scale factors (τ)
from fine to coarse scales: 1, 5, 30, 60 and 90. The x-axis represents time and the y-axis represents the
estimated brain activity index.

Shannon Spectral Entropy

We applied Shannon entropy [80] to amplitude components of the normalized power spectrum
density (PSDn) as probability in Shannon entropy. Shannon spectral entropy (SSE) is a method to
quantify the flatness of the PSDn, which implies the irregularity of signal. The SSE is defined as the
following equation:

SSE = −
90 Hz

∑
f=0.5 Hz

PSDn( f ) ln[PSDn( f )] (8)

where PSDn( f ) is normalized PSD of the total power between 0.5 Hz and 90 Hz and is written by the
following equation:

PSDn( f ) =
PSD( f )

∑90 Hz
i=0.5 Hz PSD(i)

(9)

A high value of SSE means that the power spectral density is uniformly distributed whereas a
low value of SSE means that the spectral concentrates at few frequencies. White noise has a high value
of spectral entropy, whereas a signal composed of sinusoids has a low value of spectral entropy.

Lempel-Ziv Complexity

The analysis of Lempel-Ziv complexity (LZC) [81] is based on a finite symbol sequence, so the
given signal must be coarse-grained by transforming it into a sequence with only a few symbols.
Readers may consult Appendix A for the estimation and equations of LZC we used.

2.5.2. Feature Extraction of Brain Spectral Features in the Frequency Domain

Relative Band Power

In this study, the frequency band for analysis was set between 0.5 and 90 Hz and six frequency
sub-bands were defined: δ (0.5–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), Lγ (30–55 Hz),
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and Hγ (65–90 Hz). For each frequency sub-band (B), we calculated the relative band power (RP(B))
as the ratio of the overall power in that frequency sub-band to that of the entire frequency band:

RP(B) =
∑ f∈B PSD( f )

∑90 Hz
f=0.5 Hz PSD( f )

(10)

where PSD( f ) is the power spectrum density of frequency f.

Median Frequency

Median frequency (MF) is a measure which summarizes the information of the entire power
spectrum [56] and can be defined as the frequency which accounts for 50% of the total power. MF can
be regarded as a rough representation of the distribution of power spectrum. It is written by the
following equation:

0.5
90Hz

∑
f=0.5Hz

PSD( f ) =
MF

∑
f=0.5 Hz

PSD ( f ) (11)

Spectral Edge Frequency

Just like median frequency, spectral edge frequency 90 (SEF90) is defined as the frequency which
accounts for 90% of the total power. SEF90 has been applied to study the depth of anesthesia [82] and
Alzheimer’s disease [64], and it is written as the following equation:

0.9
90Hz

∑
f=0.5Hz

PSD( f ) =
SEF90

∑
f=0.5 Hz

PSD( f ) (12)

2.5.3. Regional Features of Resting-State Networks

Brain complexity and spectral features were calculated from the estimated source activity at
each voxel and were averaged across all eight-second epochs. For cortical-level analysis, 90 brain
regions (45 regions in each hemisphere) were defined using an automated anatomical labeling (AAL)
template [83] with a 1 mm × 1 mm × 1 mm resolution, which is available in the MRIcro medical image
viewer freeware [84]. The AAL label of each voxel was obtained by registering the AAL template to
each participant’s MRI T1 anatomical images using IBASPM (Individual Brain Atlases using Statistical
Parametric Mapping) [85], an extension of the image analysis academic software toolkit Statistical
Parametric Mapping version 5 (SPM5). To be noted, AAL region whose averaged voxel number
across all participants was less than 10 voxels (that is, volume smaller than 10 mm3) were excluded
from further statistical analysis. Subsequently, brain features were averaged across all voxels within
each region, yielding one representative mean value for each brain feature at each brain region.

To characterize resting-state functional brain activities, the brain regions were categorized into
eight resting-state networks (RSNs) based on literature review: limbic network (LIMBIC) [86–88],
default mode network (DMN) [86,89–101], salience network (SAN) [92,93,102], sensorimotor
network (SMN) [86,92,93,97,103], executive control network (ECN) [86,92,93,97,102,104,105], attention
network (AN; including dorsal and ventral attention network; DAN and VAN) [86,92–94,97,106,107],
visual processing network (VIS) [86,92,97,108], and auditory processing network (AUD) [86,92,97].
Brain regions and corresponding RSNs are listed in Supplementary Materials Table S1, where each
region might be indicated in at most four RSNs because the same region might engage in different
RSNs simultaneously [109]. Same RSN categories were assigned to the same brain region in the left
and right hemispheres.
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2.5.4. Asymmetry Features

Subsequently, the indices of hemispheric asymmetry (A) for each region were calculated by using:

A =
R− L
R + L

(13)

where R and L denote one of the features in the corresponding brain regions in the right and left
hemispheres, respectively. The more positive the A was, the larger the MSE value in the right
hemisphere compared to that in the left hemisphere for that feature; the more negative the A was,
the larger the MSE value in the left hemisphere compared to that in the right hemisphere for that feature.

2.6. Statistical Analyses

2.6.1. Demographic, Menstrual Features, Pain Experiences, and Psychological Characteristics

Demographic data, menstrual features, menstrual pain experiences, and psychological
scores of PDMs and CONs were processed in IBM SPSS Statistics 22.0 software (IBM Corp.,
Armonk, NY, USA). Prior to any inferential statistical testing, descriptive statistical tests and normality
tests (Shapiro-Wilk test) [110] were performed in each group. Since some of the psychological data
were not normally distributed, Mann-Whitney U tests (α = 0.01, two-tailed) were subsequently
applied to compare group differences. Median, interquartile range (IQR, 25% to 75%), p values,
and Mann-Whitney U scores were reported accordingly.

2.6.2. Brain Features

To investigate the effect of long-term menstrual pain on brain complexity, spectral,
and hemispheric asymmetry features, permutation testing based upon t-statistics [111] were performed
to deal with the multiple comparisons problem. In permutation tests, all participants were randomly
divided into two groups with the same size as the original data set (80 PDMs vs. 76 CONs).
This procedure was repeated 5000 times (5000 permutations) for each brain region and for each feature
to compare group differences. Each time a new t-test compared two randomly divided “groups” and
gave one t-score. As a result, a distribution of 5000 t-scores was created. Only p-values within the
5% of the lower or higher values (α = 0.05) were considered statistically significant for complexity
and spectral features, or 1% (α = 0.01) for asymmetry features. To further examine whether there is
global or network-wise effect of long-term menstrual pain on MSE, we performed the following four
independent t-tests (two-tailed, α = 0.05) by comparing the averaged MSE values in two-groups across
(i) the whole brain for each scale factor; (ii) each network for each scale factor; (iii) each network in each
hemisphere for each scale factor, and (iv) all scale factors in each brain region. In addition, to delineate
significant hemispheric asymmetry (lateralization) in each group, for each significant between-group
hemispheric asymmetry feature, we further examined significant within-group hemispheric asymmetry
by comparing the mean value of that feature in the left versus right hemispheres in each group using
Wilcoxon sign-rank tests (α = 0.05, two-tailed) (as reported in Supplementary Materials Tables S2–S4).
BrainNet viewer visualization tool [112] was used to depict the significant differences.

2.6.3. Correlations between Pain Experiences, Psychological Traits, and Brain Features

To understand how clinical and psychological levels of long-term menstrual pain correlate with the
altered brain complexity and spectral features (physiological level), we analyzed how PDMs’ menstrual
pain experiences, anxiety, depression, and pain catastrophizing characteristics were correlated with
brain features that differed significantly between PDMs and CONs. Spearman correlations (α = 0.01,
two-tailed) were carried out in IBM SPSS Statistics 22.0 software.
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3. Results

3.1. Demographic, Menstrual Features, Pain Experiences, and Psychological Characteristics

3.1.1. PDMs and CONs had Similar Demographic Characteristics and Menstrual Features

Table 1 shows the demographic characteristics and menstrual features from 80 PDMs and
76 CONs. As expected, PDMs and CONs had similar demographic characteristics and menstrual
features, indicating that PDMs in this study were otherwise-healthy females. Hence, any group
differences found in further analyses were not likely to be contributed by demographic and
menstrual features.

3.1.2. PDMs Experienced Long-Term Moderate-to-Severe Menstrual Pain

Table 1 also shows the clinical manifestations of menstrual pain experiences in 80 PDMs. PDMs in
our study have been suffering from moderate-to-severe menstrual pain (7 in the 0–10 scale; IQR: 6–8)
lasting for two days (IQR: 1–3) every month for about eight years (IQR: 6–10). The recalled present
pain index (McGill Pain Questionnaire PPI) of menstrual pain over the last six months also showed
that PDMs experienced moderate-to-severe menstrual pain (3 in the 1–5 scale; IQR: 2–4).

Table 1. Demographic characteristics, menstrual features, and clinical manifestations of menstrual pain
experiences. PDMs and CONs had similar demographic characteristics and menstrual features.

Demographic and
Clinical Manifestations PDM (n = 80) CON (n = 76) Between-Group (p) Mann-Whitney U

Demographic characteristics
Age (y/o) 22.78 (22–25) 23.87 (22–26) 0.036 2449.5

BMI 20.11 (19–22) 20.55 (19–23) 0.560 2142.5
Edinburgh handedness (%) 86.67 (70–100) 89.00 (70–100) 0.723 2867.5

Menstrual features
Age at menarche (y/o) 12 (11–13) 12 (12–13) 0.131 2591.0

Years of menstruating (y) 10 (9–12) 11 (10–13) 0.248 2679.5
Menstrual cycle length (d) 30 (28–30) 30 (29–30) 0.627 2796.5

Menstrual pain experiences
Age of PDM onset (y/o) 14.5 (13–16) - - -

Menstrual pain history (y) 8 (6–10) - - -
Menstrual pain duration (d) 2 (1–3) - - -

Absenteeism (%) 54.7 - - -
Medication (%) 54.8 - - -

Menstrual pain recalled score (0–10) 7 (6–8) - - -
MPQ: Recalled PPI (1–5) 3 (2–4) - - -

MPQ: Recalled PRI—Total (0–78) 36 (28–45) - - -
Sensory (0–42) 18 (13–24) - - -

Affective (0–14) 4 (2–9) - - -
Evaluative (0–5) 4.5 (1–5) - - -

Miscellaneous (0–17) 9 (6–12) - - -

Group differences were compared using Mann-Whitney U test (p < 0.01, two-tailed). Unit or range is bracketed after
each item name. Data are presented as median (IQR). Menstrual pain recalled score, recalled PPI, and recalled PRI
scores are average recalled menstrual pain intensities over the last six months. PDM, primary dysmenorrhea patients;
CON, healthy female controls; BMI, body mass index; MPQ, McGill pain questionnaire; PRI, pain rating index; PPI,
present pain index; y/o, years old; y, year, d, day.

3.1.3. PDMs Displayed Significantly Higher Anxiety, Depression, and Pain Catastrophizing
Characteristics than CONs

Table 2 displays the results of quality of life, personality traits, anxiety, depression, and
pain catastrophizing characteristics in both PDMs and CONs. After long-term menstrual pain,
PDMs manifested significantly lower quality of life in both physical well-being (p < 0.00001) and
mental well-being (p < 0.00001). Group differences regarding the psychological traits and mental
health conditions were more alarming: compared to CONs, PDMs exhibited higher personal emotional
adjustment problems (anxiety, p = 0.00068; depression, p = 0.00003; hypochondriasis, p < 0.00001),
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anxiety (BAI, p = 0.00014; state anxiety, p = 0.00007; trait anxiety, p < 0.00001), pain catastrophizing
characteristics (helplessness, p < 0.00001; magnification, p < 0.00001; rumination, p < 0.00001),
and marginal significantly higher of depressive mood (p = 0.01307).

Table 2. Between-group comparison of psychological assessments. PDMs displayed significantly
lower quality of life and higher anxiety, depression, and pain catastrophizing characteristics than those
of CONs.

Psychological Assessment PDM (n = 80) CON (n = 76) Between-Group (p) Mann-Whitney U

Quality of life
SF-36 total scores (0–200) 96.25 (83–104) 111.35 (106–115) <0.00001 † 960.00

PCS (Physical; 0–100) 50.14 (43–54) 55.00 (52–58) <0.00001 † 1387.0
MCS (Mental; 0–100) 46.88 (41–54) 56.66 (50–61) <0.00001 † 1617.5

Personality traits
BPI: Personal emotional adjustment scale cluster

Anxiety (0–14) 5 (3–8) 4 (2–6) 0.00068 * 2055.5
Depression (0–14) 2.5 (1–6) 1 (0–2) 0.00003 * 1844.5

Hypochondriasis (0–14) 5 (3–7) 2 (1–3) <0.00001 † 1420.5

Depressive mood
BDI (0–63) 4 (1–11) 3 (1–6) 0.01307 2344.0

Anxiety
BAI (0–63) 5 (2–10) 2 (1–5) 0.00014 * 1969.5

STAI total scores (40–160) 83 (71–91) 70 (62–77) <0.00001 † 1471.0
State anxiety (20–80) 37 (33–42) 32 (28–36) 0.00007 * 1888.0
Trait anxiety (20–80) 45 (38–50) 37 (32–41) <0.00001 † 1403.5

Pain catastrophizing
PCS total score (0–52) 17 (9–24) 3 (0–8) <0.00001 † 1121.0

Pain helplessness (0–16) 7 (4–12) 1 (0–4) <0.00001 † 1172.0
Pain magnification (0–24) 3 (1–4) 1 (0–2) <0.00001 † 1595.0

Pain rumination (0–12) 7 (3–10) 1 (0–3) <0.00001 † 1116.0

Significant between-group differences were tested using Mann-Whitney U tests (p < 0.01, two-tailed). * p < 0.001,
† p < 0.00001. Unit or range is bracketed after each item name. Data are presented as median (IQR) with IQR
displayed as integers due to space limitation. PDM, primary dysmenorrhea patients; CON, healthy female controls;
SF-36, International Quality of Life Assessment Short-form-36 Taiwan standard version 1.0; PCS, physical component
summary; MCS, mental component summary; BPI, basic personality inventory; BDI, Beck depression inventory;
STAI, Spielberger state-trait anxiety inventory; BAI, Beck anxiety inventory; PCS, pain catastrophizing scale.

3.2. Brain Complexity, Spectral, and Hemispheric Asymmetry Features

3.2.1. Brain Complexity Feature: Multiscale Sample Entropy

Figure 2 shows the group differences between PDMs and CONs in brain complexity featured
by MSE, and are quite revealing in several ways. First, significant group differences only emerged
at larger scale factors (SFs) beginning from SF 52 (Figure 2a,b). Second, counts of significant group
differences within each scale factor-interval were SFs 1~50 (0), 51~60 (4), 61–70 (8), 71~80 (6), 81~90 (10),
and 91~100 (14). SF 92 was the most frequent feature (count = 4) that differentiated the brain complexity
of PDMs from CONs, followed by SF 81 and SF 99 (3 counts each) (Figure 2a). Third, what stands out
from the bird’s-eye view in Figure 2c is that MSE values in PDMs were mostly lower (blue spheres)
than those in CONs, and the differences emerged mainly in the right hemisphere. Table 3 reveals
that compared to CONs, PDMs showed decreased MSE in chronic pain-related brain regions such as
limbic/subcortical regions (amygdala, hippocampus, parahippocampal gyrus), default mode network
(angular gyrus, inferior parietal lobule, precuneus, inferior temporal gyrus, middle temporal gyrus),
and pain sensory-related regions such as sensorimotor network (rolandic operculum, thalamus),
indicating a loss of complexity in chronic pain-related regions after long-term menstrual pain.
Conversely, PDMs demonstrated higher MSE values than did CONs at the anterior cingulate
cortex (ACC), the key region in salience network and also an important pain-regulating region.
No significant group differences in all global or network-wise tests were found.
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Figure 2. Significant multiscale sample entropy (MSE) group differences from resting-state MEG brain
signals during pain-free state. MSE values of PDMs were mostly lower than those of CONs. Significant
MSE group differences were found at larger scale factors (SFs) and mainly in the right hemisphere.
(a) Histogram of the number of regions showing significant group differences (permutation testing
with 5000 iterations, p < 0.05, two-tailed) from SFs 1 to 10: SFs 1~50 (0), 51~60 (4), 61–70 (8), 71~80 (6),
81~90 (10), and 91~100 (14). Top three: SF 92 (count = 4), SF 81 (count = 3), and SF 99 (count = 3);
(b) MSE group differences. The x-axis represents the SFs of MSE ranging from 51 to 100. The y-axis
represents the AAL brain regions, which were categorized into different RSNs (indicated by thick lines
and text in different colors) for functional attribution. The color bar represents between-group t-values
after 5000 permutation tests, with the most positive t-values (PDMs > CONs) shown in bright yellow
and the most negative t-values (PDMs < CONs) shown in bright blue; (c) Brain regions that revealed
significant MSE group differences were grouped into five SF-intervals for demonstration: SFs 51~60,
61–70, 71~80, 81~90 and 91~100. Brain regions where MSE measures in PDMs were higher or lower
than those in CONs are represented in red or blue spheres, respectively. Size of sphere represents the
count of scale factors that showed significant group differences. PDM, primary dysmenorrhea patients;
CON, healthy female controls; L, left hemisphere; R, right hemisphere; LIMBIC, limbic network;
DMN, default mode network; SAN, salience network; SMN, sensorimotor network; ECN, executive
control network; AMYG, amygdala; ANG, angular gyrus; ITG, inferior temporal gyrus; CAL, calcarine;
ROL, rolandic operculum; IPL, inferior parietal lobule; LING, lingual gyrus; IFGoperc, opercularis of
inferior frontal gyrus; SOG, superior occipital gyrus; CUN, cuneus; PHG, parahippocampal gyrus;
FFG, fusiform gyrus; MTG, middle temporal gyrus; MOG, middle occipital gyrus; ACG, anterior
cingulate gyrus; THA, thalamus; HIP, hippocampus; PCUN, precuenus.



Entropy 2017, 19, 680 12 of 27

Table 3. Significant group differences in multiscale sample entropy (p < 0.05, 5000 permutation tests).

Contrast/RSN Brain Region L/R Abbr. Count Scale Factor t Score (Range) p Value (Range)

PDM < CON
LIMBIC Amygdala R AMYG.R 3 52, 67, 94 −2.601~−2.058 0.0110~0.0400

Hippocampus R HIP.R 2 91~92 −2.238, −2.136 0.0244, 0.0364
Parahippocampal g. R PHG.R 2 83, 92 −2.085, 1.985 0.0392, 0.0450

DMN Angular g. R ANG.R 11
57~58, 62, 64,
68, 70, 74, 78,

81, 84, 88
−2.418~−1.988 0.0146~0.0462

IPL L IPL.L 1 73 −2.283 0.0252
R IPL.R 1 80 −2.406 0.0196

Precuneus R PCUN.R 2 99~100 −2.124~−2.034 0.0338, 0.0430
ITG L ITG.L 4 59, 66, 92, 99 −2.368~−2.031 0.0162~0.0424

MTG R MTG.R 1 89 −2.331 0.0220
SMN Rolandic operculum L ROL.L 2 80, 97 −2.690~−2.406 0.0044~0.0172

Thalamus L THA.L 1 97 −2.222 0.0274
ECN/VAN IFG, opercular L IFGoperc.L 1 87 −2.175 0.0278

VIS Cuneus L CUN.L 1 81 −2.118 0.0322
R CUN.R 1 99 −2.087 0.0368

Fusiform g. R FFG.R 2 88, 92 −2.452, −2.017 0.0140, 0.0412
MOG R MOG.R 1 86 −2.407 0.0178
SOG L SOG.L 1 81 −2.024 0.0424

R SOG.R 1 100 −2.186 0.0314
PDM > CON

SAN ACC R ACG.R 1 95 2.061 0.0404
VIS Calcarine R CAL.R 2 63~64 2.015~2.188 0.0256~0.0446

Lingual g. R LING.R 1 77 2.111 0.0350

PDM, primary dysmenorrhea patients; CON, healthy female controls; RSN, resting-state network; L, left hemisphere;
R, right hemisphere; g., gyrus; DMN, default mode network; SMN, sensorimotor network; ECN, executive
control network; VIS, visual processing network; SAN, salience network; g.: gyrus; IPL, inferior parietal lobule;
ITG, inferior temporal gyrus; MTG, middle temporal gyrus; IFG, inferior frontal gyrus; MOG, middle occipital
gyrus; SOG, superior occipital gyrus; ACG, anterior cingulate gyrus.

3.2.2. Hemispheric Asymmetry of Multiscale Sample Entropy

Table 4 summarizes the significant group differences of hemispheric asymmetry of MSE (asymMSE).
We summed their counts within each SF-interval: SFs 1~10 (1), 11~20 (2), 21~30 (7), 31~40 (13), 41~50 (13),
51~60 (11), 61–70 (4), 71~80 (4), 81~90 (5), and 91~100 (4). Unlike MSE, which group differences only
emerged at larger scale factors (SFs), asymMSE group differences were distributed across all SF-intervals
with the most seen between SFs 31~60 (Figure 3a).

Table S2 displays the lateralization of MSE within PDM and CON groups sorted by scale factor
intervals and hemispheric asymmetry alteration in PDMs, as depicted in Figure 3c. We found that
CON group exhibited mostly left-lateralization. In contrast, as presented in Table S3, PDMs exhibited
altered hemispheric asymmetry, including loss of asymmetry across different scales (count = 48),
enhanced left-lateralization at the limbic regions (count = 5), and enhanced right-lateralization at the
default mode network regions (count = 8). Hemispheric asymmetry of brain complexity further
exposed group differences that were not seen in MSE analysis, including those in the superior
frontal gyrus (ORBsupmed, SFGdor, and SFGmed), orbital middle frontal gyrus (ORBmid), putamen,
caudate, and Heschl’s gyrus. The altered hemispheric asymmetry in PDMs may imply the changes of
neurophysiological complexity associated with menstrual pain.
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Figure 3. Hemispheric asymmetry of multiscale sample entropy (asymMSE) group differences from
resting-state MEG brain signals during pain-free state. Significant group differences were found
across all scale factor-intervals with the most differences seen between SFs 31~60. (a) Count of each
SF that showed significant group differences (permutation testing with 5000 iterations, p < 0.01,
two-tailed); (b) Group differences in hemispheric asymmetry of MSE (asymMSE). The x-axis represents
the scale factors (SFs) of asymMSE ranging from 1 to 100; the y-axis represents the AAL brain regions
which were categorized into different RSNs (indicated by thick lines and text in different colors) for
functional attribution; the color bar represents between-group t-values after 5000 permutation tests
(α = 0.01) as listed in Table S2, with the most positive t-values (PDMs > CONs) shown in bright
yellow and the most negative t-values (PDMs < CONs) shown in bright blue; (c) Altered hemispheric
asymmetry of MSE in PDMs. Brain regions that revealed significant asymMSE group differences
were grouped into six SF-intervals for demonstration (Table S2): SFs 1~30, 31~40, 41~50, 51~60,
61–80 and 81~100. CON group exhibited mostly left-lateralization. Compared to CONs, grey, red,
and blue spheres indicate the brain regions with loss of hemispheric asymmetry, right-lateralization,
and left-lateralization in PDMs, respectively. Size of sphere represents count of scale factors that showed
significant group differences. PDM, primary dysmenorrhea patients; CON, healthy female controls;
LIMBIC, limbic network; DMN, default mode network; SAN, salience network; SMN, sensorimotor
network; ECN, executive control network; L, left hemisphere; R, right hemisphere; MFG, middle
frontal gyrus; ORBmid, orbital MFG; ROL, rolandic operculum; PUT, putamen; HES, Heschl gyrus;
SFG, superior frontal gyrus; ORBsupmed, medial orbital SFG; SFGmed, medial SFG; ACG, anterior
cingulate gyrus; CAU, caudate; IFGoperc, opercularis of inferior frontal gyrus; AMYG, amygdala; PHG,
parahippocampal g.; SFGdor, dorsolateral SFG; HIP, hippocampus; THA, thalamus.
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Table 4. Significant group differences in hemispheric asymmetry of multiscale sample entropy (p < 0.01,
5000 permutation tests).

Contrast/ RSN Brain Region Abbr. Count Scale Factor t Score (Range) p Value (Range)

LIMBIC

Parahippocampal g. PHG 2 72, 83 −3.393, −3.201 0.0012, 0.0016
Amygdala AMYG 1 67 −2.518 0.0080

Hippocampus HIP 1 87 −2.693 0.0092
Caudate CAU 11 35~41, 45, 55, 66, 78 2.613~3.752 0.0004~0.0096
Putamen PUT 3 22, 31, 35 2.663~3.020 0.0034~0.0080

DMN
SFG, medial orbital ORBsupmed 3 37, 42, 59 2.660~3.050 0.0016~0.0088
SFG, dorsolateral SFGdor 2 86, 97 2.512, 2.958 0.0026, 0.0090

SFG, medial SFGmed 5 31, 39, 47, 55, 58 2.544~2.918 0.0056~0.0098

SAN
ACC ACG 4 37, 55, 59, 100 2.876~3.139 0.0012~0.0050

MFG, orbital ORBmid 1 2 −2.671 0.0076

SMN
Rolandic operculum ROL 23

18, 20~21, 23, 26~27,
29, 36, 41, 43~45, 47,
49, 51, 53, 55, 58, 67,

80, 84, 96~97

2.589~3.390 0.0006~0.0086

Thalamus THA 1 80 2.722 0.0072

ECN/VAN IFG, opercular IFGoperc 6 43~45, 53, 65, 87 2.608~3.474 0.0010~0.0094

AUD Heschl g. HES 1 25 2.695 0.0068

PDM, primary dysmenorrhea patients; CON, healthy female controls; g.: gyrus; RSN, resting-state network; LIMBIC,
limbic network; DMN, default mode network; SAN, salience network; SMN, sensorimotor network; ECN, executive
control network; AUD, auditory network; SFG, superior frontal gyrus; ACC, anterior cingulate gyrus; MFG, middle
frontal gyrus; IFG, inferior frontal gyrus.

3.2.3. Brain Spectral Features, Other Complexity Features, and Their Hemispheric Asymmetry

No significant group differences were found in relative band power, median frequency, spectral
edge frequency, Shannon spectral entropy, and Lempel-Ziv complexity. Significant group differences
were only disclosed in the hemispheric asymmetry (asymSpectral) of high gamma relative band power,
median frequency, and spectral edge frequency. PDMs showed left-lateralized asymSpectral mainly
in the frontal regions, including ORBmid and ORBinf, and lingual gyrus, as seen in Figure 4 and
Table 5. Overall, results from brain temporal and spectral features indicated that MSE might be more
sensitive than spectral analyses in extracting spontaneous neurophysiological complexity of long-term
menstrual pain over multiple time series.

Table 5. Significant group differences in asymmetry of spectral and other complexity features (p < 0.01,
5000 permutation tests).

Feature/Contrast Brain Region Abbr. Count t Score (Range) p Value (Range)

Hemispheric asymmetry

High gamma
PDM < CON IFG, orbital ORBinf 1 −3.258 0.0014
PDM < CON MFG, orbital ORBmid 1 −2.600 0.0094

Median frequency
PDM < CON Lingual g. LING 1 −3.463 0.0004

Spectral edge frequency
PDM < CON IFG, orbital ORBinf 1 −3.130 0.0016

PDM, primary dysmenorrhea patients; CON, healthy female controls; L, left hemisphere; R, right hemisphere;
g., gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus.
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Figure 4. Group differences of hemispheric asymmetry of spectral and other complexity features
from resting-state MEG brain signals during pain-free state. Significant group differences were
only disclosed in hemispheric asymmetry of high gamma relative band power, median frequency,
and spectral edge frequency, and were left-lateralized mainly in the frontal regions in PDMs. (a) Group
differences in hemispheric asymmetry. The x-axis of the matrix represents the hemispheric asymmetry
of spectral and other brain complexity features; the y-axis represents the AAL brain regions which
were categorized into different RSNs (indicated by thick lines and text in different colors) for functional
attribution; the color bar represents between-group t-values after 5000 permutation tests (α = 0.01),
with the most positive t-values (PDMs > CONs) shown in bright yellow and the most negative t-values
(PDMs < CONs) shown in bright blue; (b) Hemispheric asymmetry alterations in PDMs were displayed
(Table S4). Blue spheres depict the brain regions with enhanced left lateralization in PDMs compared
to CONs. PDM, primary dysmenorrhea patients; CON, healthy female controls; L, left hemisphere;
R, right hemisphere; g., gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; ORBmid,
orbital MFG; ORBinf, orbital IFG, orbital; LING, lingual gyrus; RP, relative band power; δ, RP(δ);
θ, RP(θ); α, RP(α); β, RP(β); Lγ, RP(low γ); Hγ, RP(high γ); MF, median frequency; SEF, Spectral edge
frequency; SSE, Shannon sample entropy; LZC, Lempel-Ziv complexity.

3.3. Correlations between Multiscale Sample Entropy and Pain Experiences/Psychological Characteristics

Table 6 presents the relationships between significant findings in MSE and PDMs’ clinical pain
experiences as well as their psychological characteristics. Spearman correlation analysis revealed that the
higher the depression scores, the higher the brain complexity in the hippocampus (rho = 0.303, p = 0.0064;
Figure 5a), thalamus (BPI-Depression: rho = 0.329, p = 0.0029; BDI: rho = 0.318, p = 0.0041; Figure 5b),
and angular gyrus (BDI: rho = 0.304, p = 0.0060; scale factor 88: rho = 0.291, p = 0.0087). Brain complexity
in the Rolandic operculum was negatively correlated with physical well-being (rho = −0.296, p = 0.0085;
Figure 5c), and its asymmetry index was negatively correlated with depression score (rho = −0.304,
p = 0.0061). Brain complexity in the fusiform gyrus was positively correlated with pain magnification
catastrophizing thought (rho = 0.300, p = 0.0072). Brain complexity in the left inferior temporal gyrus was
positively correlated with pain recalled score (rho = 0.323, p = 0.0045). Interestingly, these relationships
appeared primarily at larger (coarse) scale factors, suggesting that brain complexity at larger scale factors
might reflect macroscopic changes at the psychological and/or behavioral levels.
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Table 6. Correlations between multiscale sample entropy/hemispheric asymmetry of multiscale sample
entropy and anxiety-, depressive-, and pain-related psychological characteristics in PDMs. (p < 0.01,
two-tailed).

Feature Brain Region RSN Psychological Score Scale Factor Rho p Value

MSE

Hippocampus (R) LIMBIC BDI 91 0.303 0.0064

Thalamus (L) SMN/DMN/LIMBIC BPI-Depression 97 0.329 0.0029

BDI 97 0.318 0.0041

ITG (L) DMN Pain recalled score 95 0.323 0.0045

Rolandic operculum (L) SMN SF-36, Physical
component 97 −0.296 0.0085

Angular g. (R) DMN/ECN/AN
BDI 84 0.304 0.0060
BDI 88 0.291 0.0087

Fusiform g. (R) VIS PCS-Magnification 88 0.300 0.0072

asymMSE
Parahippocampal g. DMN/LIMBIC BAI 72 0.348 0.0016
Rolandic operculum SMN BPI-Depression 84 −0.304 0.0061

SFG, medial DMN BPI-Depression 55 −0.321 0.0037

PDMs, primary dysmenorrhea patients; RSN, resting-state network; MSE, multiscale sample entropy; asymMSE,
hemispheric asymmetry of MSE; SMN, sensorimotor network; DMN, default mode network; LIMBIC, limbic
network; ECN, executive control network; AN, attention network; SAN, salience network; VIS, visual network;
BPI, basic personality inventory; BDI, Beck depression inventory; PCS, pain catastrophizing scale; SF-36, International
Quality of Life Assessment Short-form-36 Taiwan standard version 1.0; BAI, Beck anxiety inventory.
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Figure 5. Spearman correlation between multiscale sample entropy and pain experiences or
psychological characteristics in primary dysmenorrhea patients (PDMs). The x-axis of each subfigure
is the value of MSE or hemispheric asymmetry of MSE (asymMSE) in each PDMs; the y-axis is
the pain and/or psychological scores. Spearman rho and p-values are listed for each correlation.
(a) Brain complexity in the right hippocampus positively correlated with depression score; (b) Brain
complexity in the left thalamus positively correlated with depression scores; (c) Brain complexity
in the left Rolandic operculum negatively correlated with physical component score of quality
of life; (d) Asymmetry of brain complexity in the parahippocampal gyrus was positively correlated
with anxiety score. MSE, multiscale sample entropy; asymMSE, hemispheric asymmetry of MSE;
BDI, Beck depression inventory; BAI, Beck anxiety inventory; PCS, pain catastrophizing scale;
MPQ, McGill pain questionnaire; PRI, MPQ pain rating index; PPI, MPQ present pain index.
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4. Discussion

In this study, we investigated the resting-MEG signals during pain-free state after long-term
menstrual pain in a large study cohort (156 participants). The major finding of this study is that
PDMs presented loss of complexity in brain regions associated with sensory, affective, and evaluative
components of pain, including the thalamus, hippocampus, and anterior cingulate gyrus, even in the
absence of menstrual pain. Our results demonstrated that MSE analysis serves as a good probe for
changes of brain complexity sculptured by long-term pain experience.

4.1. Measures of Neural Complexity

PDMs experienced mental health consequences, including anxiety, depression, and pain
catastrophizing characteristics. Our results are consistent with previous studies in depression,
anxiety disorders, autistic spectrum disorder, bipolar disorder, and schizophrenia [35,42,61,64,113]
that support the loss of complexity theory. Hornero et al. [47] reported that patients with Alzheimer’s
disease, characterized by degeneration of the nervous system that decreases regional dynamical
complexity, exhibited less complex and more regular neural activities at rest. Similar “slowing effect”
in Alzheimer’s patients, that is, an increase of regularity of the signal and a reduction in complexity,
was observed by Labate et al. [114,115] using entropic complexity measures. On the other hand,
Brookes et al. [58] demonstrated that patients with schizophrenia, characterized by loss/breakdown of
local synchrony (more disordered and increased randomness) and dysconnectivity between distributed
brain regions, manifested significantly increase in task-induced entropy. In our study, PDMs were
found to exhibit loss of complexity in pain-related brain regions. Complexity has been reported
to reflect the increase of transitions between stable and synchronous microstates through neuronal
reentrant loops [116]. We speculate that the loss of complexity in PDMs could be attributed to the
chronic stress elicited by recurrent menstrual pain. In our previous structural brain study, gray matter
volume loss in regions of pain transmission, sensory processing, and affect regulation was found in
PDMs [17]. Two resting-state fMRI studies reported trait-related hypoconnectivity between DMN and
salience network during non-painful state [13,24]. The loss of complexity in PDMs may result from
inter-regional structural disconnections or decreased neuronal coupling interactions, and the possible
underlying mechanisms include loss of neurons [17] or loss of local connectivity [13,24].

4.2. Clinical Implications of Altered Brain Complexity at Rest in Chronic Pain

In this study, PDMs demonstrated loss of complexity in considerable pain-related brain regions
(Table 3), including regions in the default-mode network (DMN), limbic regions, sensorimotor
network (SMN), and salience network (SAN) compared to healthy female controls.

DMN, ECN, SMN, and SAN are largely influenced by chronic pain experiences [24,117,118]
and are highly interactive with the descending pain modulatory system [24]. In healthy individuals,
DMN emerges at rest, mainly deactivated towards stimuli or task [117], and has also been reported to
involve in the modulation of pain experience [118]. In our previous resting-state fMRI connectivity study,
trait-related hypoconnectivity between DMN and salience network was observed during non-painful
state [24]. Loss of complexity in the DMN regions in PDMs, even during pain-free state, may add to prior
research findings in resting-state fMRI pain studies that reveal decreased functional connectivity of the
anterior to posterior parts of DMN in chronic pain patients [24,118], indicating a maladaptive state in
chronic pain patients. In addition, hemispheric asymmetry of brain complexity and spectral features in
the anterior parts of DMN differed significantly between PDMs and CONs, implying that differences in
the hemispheric asymmetry pattern might provide additional neurophysiological information related to
chronic pain [26,119,120].

The hippocampus and parahippocampal gyrus, though located in the limbic region, are also
regarded as core regions associated with DMN [89]. Hippocampus is substantially involved in
emotional learning, and parahippocampal gyrus is thought to be involved in stress-related disorders
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and anticipatory anxiety [121]. As long-term menstrual pain serves as a chronic stressor in life,
this explains that the asymmetry of brain complexity in the parahippocampal gyrus was found to be
positively associated with anxiety level in PDMs in this study. Brain complexity in the left thalamus
and the right hippocampus were positively associated with depression level. On the other hand,
the amygdala is a well-known region related to the affective-motivational dimension of pain [122] and
shows altered resting-state activities in chronic pain conditions [123]. The complexity of the amygdala
was also found to be decreased in PDMs in this study, implying that emotional processing could
be altered.

In this study, loss of complexity was found in the sensorimotor regions, including the thalamus
and Rolandic operculum, in PDMs. Sensorimotor network (SMN) is involved in the processing of
sensory-discriminative dimension of pain. Cross-network functional connectivity in the sensorimotor
cortex is associated with measures of physical function and is influenced by chronic pain [117].
Thalamus, in particular, is a key region in ascending pain modulatory system that transmits
sensory/nociceptive stimuli to cerebral and has reciprocal connections with cerebral cortex [124].
Our results support the evidence that indicates damage in thalamus leads to severe chronic pain [124].

In contrast, activity in salience network is normally anticorrelated with that in DMN [117].
Anterior cingulate cortex (ACC) engages in the emotional/motivational component of pain
perception [125,126] and is a key region in the salience network (SAN) [102], which is activated
when we constantly engage and focus on the pain but is normally deactivated when pain is gone.
In a structural brain study [17], the gray matter volume of ACC was found the be increased in PDMs.
We found that MSE in ACC is higher in PDMs compared to that in healthy controls, which suggest
excessive attention processing of potential pain salience even in the absence of pain. Together with
the negative findings in the between-group grand-averaged MSE global and network-wise tests,
our findings suggest that brain complexity of PDM females does not alter globally or systematically,
but at specific brain regions at some temporal scales.

4.3. Entropy with Multiple Scales Corresponding to Various Ranges of Frequency

Previous studies have found distinct results for different scales in MSE and suggested that a single scale
is not enough for the analysis of biological signals [36,38,40,54,113,127,128]. However, the interpretation of
the biological mechanisms reflected by multiple scales has not been well-established. A known fact is that
there is a close relationship between the temporal scales in MSE and the frequencies of the signals: the
small scale (fine scales) factors reflect the complexity of oscillations at higher frequencies whereas larger
scale (coarse scales) factors reflect those at lower frequencies [43,46,129]. Recently, Courtiol et al. [129] have
used simulated white noises and experimental EEG data to investigate how the values of MSE across
different scales change along with different power spectra of the signals. The procedure of temporal
averaging in MSE can be regarded as performing downsampling or low-pass filtering on the original
signals. Therefore, according to Nyquist-Shannon’s sampling theorem, the MSE at scale factors can
detect the irregularity of signals with frequencies less than ( fs/τ)/2, where fs is the sampling rate
of the original signals. Previous studies have linked the signals with high frequencies to information
processing in local region whereas those with low frequencies to long-range communication between
brain regions [46,130]. Together with the previous findings that the entropy of brain signals reflects the
information processing in the brain, it is possible that MSE at different temporal scales may reveal the
brain dynamics with different spatial scales [129]. Power spectral analyses in chronic pain patients at rest
suggests an increased EEG power in lower frequency bands, including theta and alpha bands [131,132].
In our previous study, we also successfully predicted current pain level in PDMs during menstruation
using low frequency components [26]. In this study, MSE group differences only emerged at large scale
factors (τ = 52~100), approximately below 10 Hz, implicating that the loss of complexity in PDMs might be
related to dysfunction of the distributed/global processing and inter-region communication in the brain
after long-term pain experience.
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4.4. MSE Versus Spectral Analyses

Increased theta, alpha, beta, or delta band power in chronic pain patients at rest has been
reported [131]. In our recent study, the combination of MSE and spectral features could accurately
predict current pain intensity in PDMs during painful menstruation [26]. The present study further
extends the MSE and spectral analyses to capture brain complexity alterations shaped by long-term
menstrual pain during non-painful state. The possible explanations of the findings that MSE features
revealed more differences than spectral features might be due to the symptoms of PDM and the
study state (pain-free state). First, primary dysmenorrhea, as regarded as “primary” [2], is a chronic
pain syndrome without identified structural lesion or anomaly in the affected area (female genital
organs). Other chronic pain disorders that involved tissue damage or systemic symptoms, such as
chronic low back pain (CLBP) and fibromyalgia, might suffer from constant peripheral nociceptive
feedbacks [122] and are thus more likely to show systemic and rhythmic changes in central nervous
system that can be captured by linear analyses, such as spectral analysis. Second, although PDMs do
suffer from significant negative cognitive and emotional consequences when compared to healthy
females including depression, anxiety [7,11], they are considered as otherwise-healthy females who
do not suffer from cognitive impairments or mental dysfunctions. This is reasonable to consider that
local linear synchrony neural activities in PDMs are similar to those in CONs when spontaneous
pain (menstrual pain) does not exist. On the other hand, MSE can effectively capture distributed and
long-range dynamics mixed by different brain regions and time scales.

4.5. Limitations

There are some limitations in the present study. First, regional features of MSE were defined using
an automated anatomical labeling (AAL) template, which is relatively coarse in spatial resolution
comparing to voxel-wise analyses. Second, other MSE measures [38,39] could be used to explore brain
complexity in chronic pain. Finally, categorization and nomenclature of the resting-state networks
vary across different studies, thereby warrant cautious interpretation of their functions.

5. Conclusions

The brain encompasses both regular and irregular neuronal activities interacting at different
spatial and temporal scales. Pain chronicity leads to functional neuroplasticity changes and structural
reorganizations, yet the neural complexity, which is reflected by the moment-to-moment temporal
variability of nonlinear neural activities, altered by chronic pain is understudied. In this study,
we investigated the resting-state magnetoencephalographic signals during pain-free state in 80 PDMs with
long-term menstrual pain history and 76 CONs. Revealed by multiscale sample entropy (MSE), PDMs
exhibited loss of brain complexity in pain-related brain regions including regions in the default-mode
network, limbic circuits, sensorimotor network, and salience network. Significant correlations between MSE
values and psychological states (depression and anxiety) found in PDMs may indicate specific nonlinear
disturbances in limbic and default mode network circuits after long-term menstrual pain. Our findings
suggest that MSE is an important measure of brain complexity and is potentially applicable to future
diagnosis of chronic pain.
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Appendix A

The analysis of Lempel-Ziv complexity (LZC) [81] is based on a finite symbol sequence, so the
given signal must be coarse-grained by transforming it into a sequence with only a few symbols.
In this study, we binarized the time series of the cortical source activity into a binary sequence by
comparing sample points with the threshold Td. The original time series is converted to a binary
sequence P = [s1, s2, . . . , sN], where si is defined by:

si =

{
0, if xi < Td
1, otherwise

(A1)

The value Td was assigned as the median of the time series in this study due to median is
insensitive to outliers [133].

To compute the LZC of sequence P, sequence P was scanned from left to right. Whenever a new
subsequence was found, complexity counter c(N) would be increased by one unit. The algorithm of
LZC is as follows:

Let S and Q denote the subsequences of the sequence P, and SQ denote the cascade of S and Q.
The expression π denotes the operation used to remove the last symbols in a sequence. Therefore,
subsequence SQπ is derived from the removal of the last symbol of SQ. The expression v(SQπ) denotes
the set which contains all different subsequences of SQπ.

To begin with, we assign the initial values of c(N) = 1, S = s1, Q = s2, and SQπ = s1, and to be
general, we suppose S = s1, s2, . . . , sr, Q = sr+1, sr+2, . . . , sr+i, and SQπ = s1, s2, . . . , sr, sr+1, . . . ,
sr+i−1. While P is being scanned from left to right, either of the two conditions may occurs:

If Q ∈ v(SQπ), then Q is a subsequence of SQπ, namely, Q is not a new sequence, so SQ can be
extended from S by recursive copying a certain subsequence of S [134]. In this case, S is unchanged,
and Q is renewed to be sr+1, sr+2, . . . , sr+i, sr+i+1.

If Q /∈ v(SQπ), then Q is not a subsequence of SQπ but a newly emerging sequence, namely, SQ
cannot be extended from S by recursive copying a certain subsequence of S. In this case, increase
c(N) by one, renew S with the concatenation of S and Q, and renew Q with sr+i+1. At this time, S is
s1, s2, . . . , sr, sr+1, . . . , sr+i and Q is sr+i+1.

Repeat the previously mentioned procedure until Q involves the last symbol of the sequence P,
and in the meantime, the complexity counter c(N) is the LZC measure. The last step is to normalize
c(N) by the upper bound of c(N) [81] which is written below:

lim
N→∞

c(N) = b(N) =
N

logα N
(A2)

For a binary sequence, α = 2:

b(N) =
N

log2 N
(A3)

and the normalized c(N) is:

C(N) =
c(N)

b(N)
(A4)
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The normalized LZC C(N) can be regarded as the occurrence frequency of new patterns along
with the sequence [135].
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