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Abstract: We study spatial scaling and complexity properties of Amazonian radar rainfall fields using
the Beta-Lognormal Model (BL-Model) with the aim to characterize and model the process at a broad
range of spatial scales. The Generalized Space q-Entropy Function (GSEF), an entropic measure
defined as a continuous set of power laws covering a broad range of spatial scales, Sq(λ) ∼ λΩ(q),
is used as a tool to check the ability of the BL-Model to represent observed 2-D radar rainfall
fields. In addition, we evaluate the effect of the amount of zeros, the variability of rainfall intensity,
the number of bins used to estimate the probability mass function, and the record length on the GSFE
estimation. Our results show that: (i) the BL-Model adequately represents the scaling properties
of the q-entropy, Sq, for Amazonian rainfall fields across a range of spatial scales λ from 2 km to
64 km; (ii) the q-entropy in rainfall fields can be characterized by a non-additivity value, qsat, at which
rainfall reaches a maximum scaling exponent, Ωsat; (iii) the maximum scaling exponent Ωsat is
directly related to the amount of zeros in rainfall fields and is not sensitive to either the number
of bins to estimate the probability mass function or the variability of rainfall intensity; and (iv) for
small-samples, the GSEF of rainfall fields may incur in considerable bias. Finally, for synthetic 2-D
rainfall fields from the BL-Model, we look for a connection between intermittency using a metric
based on generalized Hurst exponents, M(q1, q2), and the non-extensive order (q-order) of a system,
Θq, which relates to the GSEF. Our results do not exhibit evidence of such relationship.

Keywords: hydrology; tropical rainfall; statistical scaling; Tsallis entropy; multiplicative cascades;
Beta-Lognormal model

1. Introduction

1.1. Statistical Scaling and Multiplicative Random Cascades

Statistical scaling has provided a rich framework to understand and model the spatiotemporal
dynamics and the complexity and intermitency of rainfall fields, including (multi-)fractal, multiscaling,
and random cascade models [1–19].

The strong variability and intermittence of convective tropical rainfall constitute an adequate
setting to study the scaling characteristics of rainfall in a wide range of spatio-temporal scales [19–31].
In particular, Ref. [19] found that 2-D rainfall fields over Amazonia exhibit multiscaling properties in
space, which means that the relationship Mr(λ) ∼ λ−τ(r) exhibits a non-linear behavior, where λ is
the spatial scale, r the order of the statistical moment and τ(r) is the r-th moment scaling exponent.
Additionally, they show that both the diurnal cycle and the predominant atmospheric regime of
Amazonian rainfall (Easterly or Westerly) exert a strong control on the scaling properties of Amazonian
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storms, thus shedding light towards understanding the linkages between scaling statistics and physical
features of Amazonian rainfall fields.

1.2. Multiplicative Random Cascades and the Beta-LogNormal Model

The Beta-Lognormal Model (hereafter BL-Model) is a discrete 2-D random cascade non-Markovian
model [13] based on the observed scaling properties of rainfall, with only two parameters: σ denoting
the variability of rainfall intensity, and β representing the rainy area fraction. This model provides
a framework to carry out numerical experiments controlling features of rainfall (e.g., σ and β), but also
to link diverse statistical and physical characteristics across spatial scales (e.g., Refs. [19,31] and
Section 1.5, respectively). In addition, the model provides a tool to investigate the robustness and
sensitivity of statistical metrics to poor sampling, data sparsity and intermittency of high-resolution
2-D rainfall fields.

The construction of a spatially distributed discrete random cascade model usually begins with
a given mass (or volume) of rainfall over a two-dimensional (d = 2) bounded region [6]. The region
is successively divided into b equal parts (b = 2a) at each step, and during each iteration the mass
obtained at the previous step is distributed into the b subdivisions through multiplication by a set of
“cascade generator” W, as shown schematically in Figure 1 (for the case of d = 2 and b = 4). If the
initial area (at level 0) is assigned an average intensity R0, this gives an initial volume R0Ld

0, where L0

is the outer length scale of the study area. Thus, at the first level the volume is subdivided into b = 4
subareas denoted by ∆i

1, i = 1, 2, ..., 4. At the second level, each of the previous subareas is further
subdivided into b = 4 subareas, which are denoted by ∆i

2, i = 1, 2, ..., 16, for a total of b2 = 16 subareas.
This subdivision is continued further down the spatial scale, leading at the nth level, to bn subareas
denoted by ∆i

n, i = 1, 2, ..., bn.
As shown in Figure 1, after the first subdivision, the four subareas (∆i

1, i = 1, 2, ..., b) are assigned
volumes R0Ld

0 b−1 Wi
1, for i = 1, 2, ..., b. Upon subdivision, the volumes µn∆i

1 in subareas at the nth
subdivision, ∆i

n, i = 1, 2, ..., bn, are given by,

µn∆i
1 = R0Ld

0b−1
n

∏
j=1

Wi
j , (1)

where, for each cascade’s level j, i represents one subarea belonging to the level. The multipliers W in
Equation (1) are non-negative random cascade generators, with E[W] = 1 to ensure that the mass is
conserved on average, from one discretization level to the next one. Over and Gupta [13,32] proposed
the so-called BL-Model for the cascade generators W. The BL-Model considers W as a composite
generator, W = BY, where B is a generator from the “Beta model” and Y is drawn from a Lognormal
distribution [33]. Essentially, the Beta model partitions the region into sets with and without rain,
while the Lognormal model then assigns a certain amount of rainfall to each rainy area fraction.
The Beta model exhibits a discrete probability mass function with just two possible outcomes (B = 0
and B = bβ), given as

P(B = 0) = 1− b−β P(B = bβ) = b−β, (2)

where b is the branching number and β is a parameter. Since Y belongs to the Lognormal distribution,

it can be expressed as Y = b−
σ2 ln(b)

2 +σX , where X is a standard Normal r.v. and σ2(> 0) is a parameter
equal to the variance of logbY, with the condition that E[Y] = 1. In such case, it is easy to show that
the condition E[W] = 1 is also satisfied. The probability distribution function of W = BY can thus be
expressed as

P(W = 0) = 1− b−β, (3)

P(W = bβY = b−
σ2 ln(b)

2 +σX) = b−β. (4)
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The parameters of the BL-Model (β and σ2) can be estimated [13,32] through the so-called
Mandelbrot–Kahane–Peyriere (MKP) function [34,35]. The MKP function characterizes the fractal
or scale-invariant behavior of the multiplicative cascade process. Over and Gupta [32] theoretically
derived an expression for χ(r) for the BL-Model, in terms of the cascade parameters β, σ2, b and
exponent r, such that,

χb(r) = (β− 1)(r− 1) +
σ2 ln(b)

2
(r2 − r). (5)

Thus, provided that a rainfall field belongs to a discrete random cascade with generators satisfying
the BL-Model, the expression given in Equation (5) can be matched with the empirically determined
estimators, τ(r)/d, to estimate β and σ2. The first and second derivatives of τ(r) = dχ(r) with respect
to r, the latter of which is given by Equation (5), can be used to obtain [20,32],

τ(1)(r) = d
[

β− 1 +
σ2 ln(b)

2
(2r− 1)

]
, (6)

τ(2)(r) = d
[
σ2 ln(b)

]
(7)

Both τ(1)(r) and τ(2)(r) can be computed by numerically estimating the derivatives of the
empirical slopes of the scaling relation between τ(r) and r, using the log–log plotting of M(λn, r)
versus λn as,

M(λn, r) = [λn]
τ(r), (8)

where M(λn, r) are the sample moments M(λn, r) and λn is the corresponding scale ratio. Equations (6)
and (7) are combined together to express the cascade parameters β and σ2 in terms of τ(1)(r) and
τ(2)(r) as follows:

β = 1 +
τ(1)(r)

d
− σ2ln(b)

2
(2r− 1), (9)

σ2 = τ(2)(r)/d ln(b) (10)

Equations (9) and (10) are evaluated for a given value of r. The usual practice is to use r = 1,
although [6] used r = 2 for testing a space-time model of daily rainfall in Australia.

n=0

n=1

n=2

λ=1

λ=1/2

λ=1/4

Wo

WoW1

WoW1W2

Figure 1. Schematic plot of the random cascade geometry taken from Gupta and Waymire [33].
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1.3. q-Entropy

There is a wide family of generalized entropic functions with various degrees of sophistication
in the literature [36–40]. In particular, Tsallis [40] proposed the concept of nonadditive entropy Sq

(hereafter q-entropy), which has shown to be useful in the study of a broad range of phenomena across
diverse disciplines [41,42], related to the well known Rényi entropy [43]. The q-entropy is defined as,

Sq =
1−∑n

i=1 p q(xi)

q− 1

( n

∑
i=1

p(xi) = 1; q ∈ <
)

. (11)

which, in the limit q → 1, recovers the usual Boltzmann–Gibbs–Shannon entropy, S [44], which is
additive; in other words, for a system composed of any two (probabilistically) independent subsystems,
the entropy S of the sum is the sum of their entropies [45], such that, if A and B are independent,

Sq=1(A + B) = S(A + B) = S(A) + S(B). (12)

It turns out that Tsallis entropy, Sq (q 6= 1), violates this property, and is therefore nonadditive. Thus,
the additivity depends on the functional form of the entropy in terms of probabilities [45]. Therefore,
if A and B are independent, then

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (13)

More generally, if A and B are not probabilistically independent then,

Sq(A + B) = Sq(B) + Sq(A|B) + (1− q)Sq(B)Sq(A|B). (14)

Taking the words of Tsallis [45], the value of q is useful to characterize the universal classes of
nonadditivity. He argues that it is determined a priori by the microscopic dynamics of the system,
which means that the thermostatistical entropy is not universal but depends on the system or, more
precisely, on the non-additive universality class to which the system belongs. It is worth mentioning
the difference between additivity and extensivity, which is clearly explained in [45], as follows:

“An entropy of a system or of a subsystem is said extensive if, for a large number N of its elements
(probabilistically independent or not), the entropy is (asymptotically) proportional to N. Otherwise,
it is nonextensive. This means that extensivity depends on both the mathematical form of the entropic
functional and the possible correlations existing between the elements of the system. Consequently,
for a (sub)system whose elements are either independent or weakly correlated, the additive entropy
S is extensive, whereas the nonadditive entropy Sq (q 6= 1) is nonextensive. In contrast, however,
for a (sub)system whose elements are generically strongly correlated, the additive entropy S can be
nonextensive, whereas the nonadditive entropy Sq (q 6= 1) can be extensive for a special value of q.”

Additionally, recent studies [28,30,31] have investigated the relationship between the q-entropy
and the Generalized Pareto distribution (which is relevant in hydrological analysis). In particular,
the maximization of the q-entropy under a prescribed mean leads to a Pareto probability distribution
with power-law tail [28,46–48], which belongs to the family of Lévy stable distributions [49], specifically
to Type II Generalized Pareto distributions. For 1 < q < 2, the original distribution takes the form of
the Zipf–Mandelbrot type [50–52], which decays as a power law for large values of x, and all moments
are divergent when 3/2 < q < 2 [53].

As such, the q-entropy constitutes a useful tool for the characterization of rainfall, and at the
same time motivates interesting discussions about the physical interpretation of entropic non-linear
metrics, their connection with stochastic processes (Multiplicative Cascades), and allows revisiting its
applicability in geosciences (see Section 5).
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1.4. Generalized Space-Time q-Entropy in Rainfall Data

Previous studies [28,30,31] introduced the Generalized Space-Time q-Entropy as a new method
to study the organization degree and the scaling properties of rainfall, by considering the space-time
structure of rainfall as a system conformed by correlated subsystems, which is evident in the
hierarchical structure of convective rainfall. The time generalized q-entropy is defined as a function of
order, q, and aggregation interval, T, as [28]:

Sq(T) =
1−∑n

i=1 p q(xi, T)
q− 1

( n

∑
i=1

p(xi) = 1; q ∈ <
)

, (15)

where q is the statistical order and P(xi, T) is the probability of occurrence of xi at aggregation interval,
T. Ever since the original work [28], different characteristics of the Space and Time Generalized
q-entropy of rainfall were reported later on [30,31], such as:

• Sq(T) decreases monotonically with q for all values of T.
• For a given value of q, estimates are inversely related to T for q < 0, but directly related for q ≥ 0.
• Estimates of Sq(T) |q=1 recover the standard entropy for different values of T.
• Estimates of Sq(T) increase with T for values of q ≥ 0, up to a certain saturation value (maximum

q-entropy).
• The function S(T) vs. T in log–log space, for different values of q, can be considered an (time)

entropy analogous of the (space) structure function in turbulence [54].
• The scaling exponents, Ω(q), or the slope of the relation S(T) vs. T in log–log space, for different

values of q, exhibit a non-linear growth with q, such that Ωsat ≈ 0.5 for q ≥ 1. This result allowed
extending the conclusions from the standard Shannon entropy to the generalized q-entropy.

• The scaling exponents of saturation, Ωsat, are different in time and space for hydrological data,
such as time series of rainfall, for which Ωsat(q > 1.0) = 0.5, for time series of streamflows,
for which Ωsat(q > 1.0) = 0.0, and for the spatial analysis of radar rainfall fields in Amazonia,
for which Ωsat(q > 1.0) = 1.0.

Analogous to Equation (15), the Space Generalized q-Entropy was introduced by [31], to study 2-D
rainfall fields, using λ as the spatial scale, and P(xi, λ) the probability of occurrence of xi associated
with λ, such that

Sq(λ) =
1−∑n

i=1 p q(xi, λ)

q− 1

( n

∑
i=1

p (xi) = 1; q ∈ <
)

. (16)

With the aim of linking the present study with the previous ones, some important results are
worth mentioning:

• Poveda [28] studied the time scaling properties of tropical rainfall in the Andes of Colombia upon
temporal aggregation and introduced the Generalized Time q-Entropy Function (GTEF), as a time
analogous for q-entropy of the structure function in turbulence [54]. He showed that the scaling
exponents, Ω(q) of the relation Sq(T) vs. T in log–log space, for different values of q, exhibit
a non-linear growth with q up to Ω = 0.5 for q ≥ 1, putting forward the conjecture that the time
dependent q-entropy, Sq(T) ∼ TΩ(q) with Ω(q) ' 0.5, for q ≥ 1.

• Salas and Poveda [30] revisited results reported in [28], and analyzed the time scaling properties
of Shannon’s entropy for the same data set in terms of the sensitivity to the record length, and the
effect of zeros in rainfall data, and proposed the GTEF to study the scaling properties of river
flows. They highlighted two important results: (i) The scaling characteristics of Shannon’s entropy
differ between rainfall and streamflows owing to the presence of zeros in rainfall series; and (ii) the
GTEF exhibits multi-scaling for rainfall and streamflows. For rainfall, the relation Sq(T) vs. T
in log–log space for different values of q, exhibits a non-linear growth with q, up to Ω = 0.5 for
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q ≥ 1, in contrast to the scaling properties of river flows which exhibit a non-linear growth with q,
up to Ω = 0.0 for q ≥ 1.

• Poveda and Salas [31] studied diverse topics such as statistical scaling, Shannon entropy and
Space-Time Generalized q-Entropy of Mesoscale Convective Systems (MCS) as seen by the Tropical
Rainfall Measuring Mission (TRMM) over continental and oceanic regions of tropical South
America, and in Amazonian radar rainfall fields. The main result of their study is that both
the GTEF and GSEF exhibit linear growth in the range −1.0 < q < −0.5, and saturation of
the exponent Ωsat for q ≥ 1.0, but for the spatial analysis (GSEF) the exponent tappers off at
〈Ωsat〉 ∼ 1.0, whereas for the temporal analysis (GTEF) the exponent saturates at 〈Ωsat〉 = 0.5.
In addition, results are similar for time series extracted from radar rainfall fields in Amazonia
(radar S-POL) and in-situ rainfall series in the tropical Andes.

1.5. Easterly and Westerly Regimes of Amazonian Rainfall

The WETAMC/LBA campaign (January–February 1999) found that wet-season convection in
Amazonia exhibits two general modes, hereinafter, the Westerly and Easterly regimes [55], which are
highly correlated to changes in the 850–700 hPa zonal wind direction [56]. According to data from
the NCEP-NCAR Reanalysis, as well as from the Fazenda Nossa Senhora radiosonde, the Easterly
(negative values) and Westerly (positive) regimes are clearly differentiated in both data sets [19,31].
Furthermore, radar observations from southwestern Amazonia during TRMM-LBA suggest that
there was relatively little difference in the daily mean rainfall totals between Easterly and Westerly
regimes [57]. In addition, the TRMM-LBA and TRMM satellite observations suggested marked
differences in rainfall rate distributions, with the Easterly regime (Altiplano/southern Brazil) associated
with a broader rain-rate distribution and greater instantaneous rainfall rates [56]. Precipitation features
during both regimes can be summarized considering that during the Easterly regime atmospheric
conditions are relatively dry, with increased lightning activity and more intense and deeper convective
systems. In contrast, the Westerly regime is characterized by a diminished lightning activity, less deep
convection and less intense precipitation rates [56,58,59]. The regime associated with stronger vertical
development, more lightning activity, and larger instantaneous rainfall rates must be associated with
a more “concentrated” daily latent heat release. In addition, two mechanisms have been proposed to
explain the observed changes in the overall convective structure and lightning frequency between the
two regimes, these mechanisms are tied to either thermodynamics (changes in CAPE and CIN that
modify the energetics of the cloud ensemble), or aerosol loading (e.g., changes in cloud condensation
nuclei (CCN) concentration that modify microphysical structure of the cloud ensemble) [56].

The aforementioned results have important practical implications in the spatial and temporal
scaling features of rainfall fields [28,30,31] although the connections between entropic and scaling
statistics with physical characteristics remain elusive. Furthermore, the effect of the space-time
structure of rainfall in the scaling of the q-Entropy as well as its sensitivity to the number of bins and to
the variability of rainfall intensity and the sample-size must be investigated in depth. Therefore, in the
present study, we aim to investigate how the spatial scaling and complexity of rainfall is reflected in
different entropic scaling measures within the frameworks of information theory and non-extensive
statistical mechanics. The rationale and objectives of this work are presented next.

1.6. Rationale and Objectives

The objectives of our study are based upon the following considerations:

• The presence of zeros in high resolution rainfall records constitute highly important information
to understand, diagnose and forecast the dynamics of rainfall [28,60,61]. Salas and Poveda [30]
argued that zeros (inter-storm periods) in time series of tropical convective rainfall are associated
with the timescale required by nature to build up the dynamic and thermodynamic conditions of
the next storm, as an atmospheric analogous of the time of energy build-up between earthquakes,
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avalanches and many other relaxational processes in nature [62]. Therefore, the role of zeros
and their effect on scaling statistics must be investigated to further understand and model high
resolution rainfall.

• The aforementioned previous works [28,30,31] are based on available rainfall data (S-POL radar,
TRMM satellite and rain gauges), and it is difficult to understand differences of the q-statistics
in temporal and spatial scales due to factors such as the intermittency of rainfall, record length,
space-time resolution of data sets, and geographic setting.

• The number of bins in the probability mass function constitutes a central issue to quantify entropic
measures. Previous studies have shown that the scaling exponent of Shannon entropy under
aggregation in time it is not sensitive to either the number of bins [28] or record length [30]. Then,
it is necessary to study the sensitivity of the q-entropic measures in order to check their robustness
to characterizing 2-D tropical rainfall fields.

The objectives of this study are manifold. They involve questions based on the previous
studies [28,30,31], and new ones regarding the entropic scaling measures of rainfall. The objectives of
our study are thus:

• To test theBL-Model [13] for 2-D Amazonian rainfall fields considering the Easterly and Westerly
climatic regimes [55,56], and using the Generalized Space q-Entropy [31].

• To examine how the spatial structure of rainfall is reflected in the q-entropic scaling measures
using the BL-Model and considering the influence of zeros in the GSEF through Montecarlo
experiments, aimed at understanding the saturation of the exponent Ωsat reported by [28,30,31].

• To investigate the connection between parameters of the BL-Model [13] and Amazonian rainfall
fields considering the identified climatic regimes [55,56].

• To quantify the sensitivity of the q-entropic scaling statistics to the number of bins and to the
variability of rainfall intensity, in an attempt to check the robustness of such statistical tools in the
multi-scale characterization of rainfall.

• To link two important theoretical frameworks, namely stochastic processes (Multiplicative Cascades)
and Information Theory (non-extensive statistical mechanics), to advance our understanding about
the scaling properties of tropical rainfall.

The paper is organized as follows. Section 2 describes the study region and data set. Section 3
discusses the methods employed. Section 4 provides an in-depth discussion of results. Section 5
provides a brief discussion about the criteria and conditions to estimate entropy in geophysical data.
Finally, Section 6 contains the conclusions.

2. Study Region and Data Sets

General Information

We use a set of 2-D radar rainfall fields gathered in Amazonia during the January–February 1999
Wet Season Atmospheric Meso-scale Campaign/LBA (WETAMC/LBA), which was designed to study
the dynamical, microphysical, electrical, and diabatic heating characteristics of tropical convection
over southwestern Amazonia [19,59,63,64]. The WETAMC campaign was developed in the state of
Rondônia (Brazil). The data set used in the present study consists on radar scans of storm intensities
recorded by the S-POL radar (S-band, dual polarimetric) located at 61.9982◦ W, 11.2213◦ S. Data consist
of 2 km resolution microwave band reflectivity which is directly related to rainfall intensity, over a circle
of ∼31,000 km2. Scans produced by the Colorado State University Radar Meteorology Group were
available every 7–10 min at the URL http://radarmet.atmos.colostate.edu/trmm-lba/rainlba.html.

Additionally, information about zonal wind velocity at 700 hPa during the study period was
obtained from the NCEP/NCAR Reanalysis [65], over the region inside 61◦ W to 62.8◦ W and 10.4◦ S
to 12.1◦ S, corresponding to the area covered by the S-POL radar. Data were obtained 4 times per day

http://radarmet.atmos.colostate.edu/trmm-lba/rainlba.html
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at 0000, 0600, 1200 and 1800 LST. In addition, radiosonde data (62.37◦ W, 10.75◦ S) were used from
the WETAMC campaign in Ouro Preto d’Oeste at the Fazenda Nossa Senhora site, located inside
the S-POL radar coverage region. Radiosonde data were obtained in the URL http://www.master.iag.
usp.br/lba/.

3. Methods

A set of experiments were developed to study the sensitivity of the GSEF of 2-D Amazonian
rainfall fields attempting to link the spatial structure of rainfall and the emerging scaling exponents
of the q-entropic analysis [28,30]. To that aim we use the BL-Model proposed by [13] to generate 2-D
rainfall fields as a multiplicative random cascade, by varying the model parameters β and σ. A detailed
description of each experiment is presented below.

3.1. Parameters of the BL-Model and Amazonian Precipitation Features

The first experiment is carried out by controlling the percentage of wet (rainy) and dray (non-rainy)
areas, and the second one by controlling the average intensity of the rainfall field. A set of 1000 simulations
for each parameter were carried out. The mass of rainfall over a two-dimensional (d = 2) region was
considered the unit, the branching number b = 4 for 2-D cascades, and the level of subdivision n = 6
(see Figure 1) during all experiments, consistently with the observed scans from S-POL radar which
are 64 rows × 64 columns matrices (bn = 46 = 4096 values). On the other hand, with the aim to link
the numerical results from the BL-Model with the S-POL observations, we compared the samples
of the estimated cascade’s parameters (Equations (9) and (10)) considering βEasterly vs. βWesterly and,
σEasterly vs. σWesterly using the k-sample tests based on the likelihood ratio [66], which are more robust
than traditional methods (e.g., Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling),
but also because the climatic regimes prevailing in the study region are statistically different in terms
of the continental-scale flow and lightning activity, as well as in the vertical structure of convection
and other precipitation features [56].

3.2. Bin-Counting Methods and Entropic Estimators

The correct estimation of diverse informational entropy statistical parameters require to take
into account diverse practical considerations. Gong and others [67] argue that there are four practical
problems in the estimation of entropy using hydrologic data: (i) the zero effect; (ii) the widely used
bin-counting method for estimation of PDFs; (iii) the measure effect; and (iv) the skewness effect.
We focus our attention on the second practical issue within the framework of scaling theory using
Shannon theoretical entropy inequality [68],

S(T) ≤ ln
√

2πeV(T), (17)

where V(T) is the variance of the process at aggregation interval T, with the equality holding just
for the for the Gaussian distribution. We use a set of parametric and non-parametric bin-counting
methods, such as those introduced by Sturges [69], Dixon and Kronmal [70], Scott [71], Freedman and
Diaconis [72], Knuth [73,74], Shimazaki and Shinomoto [75,76], and a recent method for estimating
entropy in hydrologic data proposed by Gong et al. [67]. In work, we use common techniques reported
in the literature, although there are other methods [77]. Finally, we discuss the effect of the number of
bins on the scaling of q-entropy in rainfall fields [28,30,31].

3.3. Sample-Size and Entropy Estimators

Information-theory statistics require an adequate sample size for a proper estimation and
interpretation. In spite of the existence of a large body of literature dealing with the problem of
estimation of distributions for data sparsity and poor sampling [78,79], the problem constitutes a
challenge in geosciences. A recent study on the estimation of Shannon entropy in hydrological

http://www.master.iag.usp.br/lba/
http://www.master.iag.usp.br/lba/
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records under small-samples [80], employed three different estimators: (i) maximum likelihood (ML);
(ii) Chao–Shen (CS); and (iii) James–Stein-type shrinkage (JSS). Their results exhibited that the ML
estimator had the worst performance of the three methods, with the largest Mean Squared Errors
(MSE) for all sample sizes. In particular, when sample sizes are small (less than 200 data points),
the entropy estimator was dramatically underestimated, although errors turned out to decrease quickly
when sample sizes increased. Furthermore, when the sample size was larger than 100 data points,
the accuracy of the CS and JSS estimators were basically the same, with MSE nearly equal to zero. It is
worth mentioning that the said study [80] did not deal either with the effect of the number of bins or
the role of zeros in the estimation of entropy.

At the root of the problem of the numerical estimation of entropy, is the sample-size necessary for
adequately estimating the underlying probability mass function (pmf) of the process. For example,
it is well known that, for the ML estimators, the larger the sample size, the better the estimates
will be. In addition, high temporal resolution precipitation data sets (e.g., minutes or hours) are
mostly (approximately 90%) constituted by zeros [30], which it is not the case for low-resolution data
(e.g., months or years), so an adequate characterization of the tails of the Probability Distribution
Function (PDF) requires longer data sets for high-resolution rainfall data than for low-resolution.

With the aim of studying the influence of sample-size in the GSEF, we will compare the q-entropy
of the S-POL radar fields (matrices with 64 rows and 64 columns) and synthetic 2-D fields of the
BL-Model at different cascade levels, n, to obtain fields with different sizes, ξ, e.g., the cascade level
n = 1 means a 2 × 2 field, (2 rows and 2 columns) and, consequently, a cascade level n = 7 means a
128 × 128 field. In other words, a field of the BL-Model with n = 1 has a sample-size ξi = 4 and a field
of the BL-Model with n = 7 has a sample-size ξi = 16, 384. Using the synthetic fields, we quantify
the q-entropy: (i) estimating the pmf for all the values in the synthetic rainfall field (including zeros);
(ii) separing values in two subsets P(x) = {P(x = 0), P(x > 0)}; and (iii) the minimal quantity of
non-zero values in the fields, to ensure robustness in the estimation of Sq. Our results are discussed
in Section 4.5.

3.4. Intermittency and q-Order

High space-time resolution tropical rainfall is a highly complex and intermittent process. To analyze
its intermittent behavior, several techniques have been proposed in the literature such as: spectral
scale invariance analysis [31,81–84]; moment-scaling analysis [1,3,18,19,31,32,84], and intermittency
exponents [84,85]. In this sense, the Generalized Space q-Entropy Function (GSEF) (Section 1.4)
can be thought as a measure of (multi-) fractal behavior of a process [30,31]. In addition,
the BL-Model (Section 1.2) is directly related to the Mandelbrot-Kahane-Peyriere (MKP) function [34,35]
characterizing the fractal (or scale-invariant) behavior of a multiplicative cascade process. Therefore,
an interesting question arises: is there any relationship between the GSEF and intermittency estimators?
In order to shed light about such question, the BL-Model is used to estimate the q-order, Θq, and the
multifractality measure, M(q1, q2), defined by Bickel [86], Equation (22).

First, we carry out an experiment for high-resolution-spatial rainfall based on Bickel [86],
who showed the relationship between intermittency (multifractality) and the non-extensive order
(hereafter q-order) for point processes of dimension D ranging from 0.1 to 0.9. The order in a system is
defined in terms of its distance from equilibrium, so the higher disordered, the closer to the equilibrium
state. The q-order can be defined as,

Θ(q) ≡ 1−
Sq

Smax
q

(18)

where Sq is the q-entropy (Equation (11)) and Smax
q is the maximum possible value of Sq for the

equilibrium condition, which probabilistically can be denoted as pj = 1/N for all j = 1, 2, ..., N, whose
Smax

q can be written as,

Smax
q =

1− N(1−q)

q− 1
(19)
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At this point, it is necessary to emphasize that Equation (19) is a generalization for the extensive
order defined as a measure of complexity using the Boltzman-Gibbs-Shannon entropy [87]. In addition,
the non-extensive order satisfies 0 ≤ Θ(q) ≤ 1 with Θ(q) = 0 if Pj = 1/N ∀j and Θ(q) = 1 if
Pj = δjl ∀j, given any integer l between 1 and N [86,88].

Second, a generalization for Θ(q) ≡ Θq, at multiple spatial or temporal scales, is possible using
a similar procedure to Equation (15). Therefore, if the spatial scale is denoted as λ, and the maximum
possible value of q-entropy at each scale λ as Smax

q (λ), the q-order can be rewritten as,

Θq(λ) ≡ 1−
Sq(λ)

Smax
q (λ)

. (20)

From previous studies [30,31], it is easy to note that Θq(λ) 6= Sq(λ) but for the scaling laws
Θq(λ) ∼ λΩ(q) and Sq(λ) ∼ λΩ(q), the scaling exponents Ω(q) are exactly the same, which means that
GSEF, Ω(q), does not change under such transformation.

Third, considering that a process x(t) exhibiting a multifractal spectrum whose spectrum of
generalized Hurst exponents, H(q), is defined as [86],

ψ(q, T) =
〈
|x(t + T)− x(t)|q

〉1/q ∝ TH(q), (21)

which holds for some range T with non-extensive parameter q. For ψ(q = 1, T) is the mean
(first moment) of the absolute displacement and for ψ(q = 2, T) is the standard deviation of this
displacement. Therefore, the intermittency of a nonstationary process x(t) can be quantified by its
multifractality, M(q1, q2), as the difference between two generalized Hurst exponents,

M(q1, q2) =

{
−q1q2

H(q2)−H(q1)
q2−q1

q1 6= q2

limq1→q2 M(q1, q2) = −q2
2[∂H(q2)/∂q2] q1 = q2

(22)

normalized such that 0 ≤ M(q1, q2) ≤ 1 for nondegenerate processes, with M(q1, q2) = 0 for
monofractals [89].

From previously mentioned considerations, the generalized Hurst exponents for 2-D rainfall
fields can be computed as suggested by Carbone [90] in combination with the Equation (21) as follows,

ψ̂k(q) =

 1
(nx − k)(ny − k)

nx−k

∑
i=1

ny−k

∑
j=1
|x(i + k, j + k)− x(i, j)|q

1/q

, (23)

where x ∈ <2, nx and ny are the number of rows and columns, respectively. The estimates ψ̂k(q1) and
ψ̂k(q2) for k = kmin, 2kmin, 4kmin, · · · , kmax, with kmin and kmax such that log ψ̂k(q1) and log ψ̂k(q2)

exhibit linear relationship with log k. Then, Ĥ(q1) and Ĥ(q2) are the slopes of the least-square
regressions of log ψ̂k(q1) vs. log k and log ψ̂k(q2) vs. log k, respectively. Finally, the multifractality
is estimated as,

M̂(q1, q2) =

−q1q2
Ĥ(q2)−Ĥ(q1)

q2−q1
q1 6= q2

limq1→q2 M̂(q1, q2) q1 = q2
(24)

In this work, we explore the relationship between intermittency (multifractality), M̂(q1, q2),
and q-order, Θq, for synthetic rainfall fields from the BL-Model. The results will be discussed
in Section 4.6.
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4. Results

4.1. Linking Parameters of the BL-Model with Precipitation Features

Following previous studies [19,31], we classify the available information from the S-POL
radar considering the Easterly (negative values) and Westerly (positive) climatic regimes. Then,
for both climate regimes, we estimate the parameters of the BL-Model using Equations (9) and (10).
Subsequently, we estimate the pmf (histograms) and the Cumulative Distribution Functions (CDFs) of
the parameters β and σ2 (Figures 2 and 3). Results show that the histograms of β and σ2 are statistically
different for both climatic regimes, and, additionally, that the CDFs of the parameter β for the Easterly
and Westerly regimes are significantly different according to a k-sample test, based on the likelihood
ratio [66] at 95% confidence level, but no so for the parameter σ2.
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Figure 2. Histograms for Beta-Lognormal Model parameters in rainfall scans of the S-POL radar:
(a,b) Westerly events; and (c,d) Easterly events. (red) the Gaussian function for β and the Generalized
Extreme Value function for σ2.
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Figure 3. Empirical Cumulative Distribution Functions for cascade parameters: β (a); and σ2 (b) using
4227 scans of the S-POL radar considering climatic regimes of Amazonia (1867 scans for Westerly and
2360 for Easterly). The figure shows the 95% confidence bounds using Greenwood’s formula.

Secondly, we estimated the GSEF using a set of 1000 synthetic rainfall fields generated with the
average values of β and σ2 from the S-POL scans (see Figure 4). Figure 5b shows the GSEF of rainfall
fields generated using the BL-Model, and the average of the observed S-POL rainfall fields. In addition,
Figure 6a shows that the scaling exponents of the GSEF, Ω(q)-observed vs. Ω(q)-simulated, exhibit
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a very good fit. Furthermore, Figure 6b shows that the BL-Model represents adequately the relationship
Sq(λ) ∼ λΩ, with saturation for q ≥ 2.5 and Ωsat ∼ 0.5. However, observed and simulated rainfall
fields exhibit significant differences in the interval 0.5 ≤ q ≤ 2.5; the S-POL scans do not exhibit
power-laws for 1.0 ≤ q ≤ 1.5, albeit in this interval the model shows power-laws with R2 ≥ 0.7.
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Figure 4. Space Generalized q-Entropy for the S-POL radar scan 01/10/1999 18:23:15 LST: (a) 3D plot
of the Tsallis’ entropy, Sq, for different scale factors, λ, and q-values from −1.0 to 3.0; (b) projection of
S(q,λ) vs. q for different values of λ; (c) projection of S(q,λ) vs. λ, for different values of q, or spatial
structure function for entropy; and (d) values of the regression slopes of the spatial structure function
for entropy, Ω, as function of q, exhibiting a non-linear growth up to 〈Ω〉 ∼ 0.50 for q > 2.5.

Finally, considering that the BL-Model has two parameters, β and σ, it is necessary to link them
with precipitation features associated with both climatic regimes in Amazonian rainfall, as follows:

• The cascade parameter, β, (Table 1), for the Easterly events is greater than the Westerly events,
indicating more spatially concentrated rainfall fields (more zeros in the Easterly scans). This result
is related to diverse precipitation features observed during the Easterly regime, given that the
atmospheric conditions are relatively dry, with increased lightning activity and more intense and
deeper convective systems [56,58,59].

• The cascade parameter, σ, (Table 1), exhibits smaller (larger) values during the Easterly (Westerly)
regime, indicating that the variability of rainfall intensity for the Westerly events is higher than
for Easterly events. This result is coherent with diverse features observed during the Westerly
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regime, which is characterized by less lightning activity, less deep convection and less intense
precipitation rates [56,58,59].

Table 1. Scans of S-POL radar according to the two identified Amazonian climate regimes.

Description Westerly Easterly

Total number of scans 2607 3884
Average β for all scans 0.421 0.491
Average σ for all scans 0.235 0.221

q-value where the SGEF saturates for all scans 1.50 1.50
Average scaling exponent of saturation, Ωsat, for all scans 1.0 1.0
Scans with more than 200 values non-zero (Denoted as ∗) 1867 2360

Scans with all values zeros 86 21
Percentage of scans ∗ 71.6% 60.8%

Percentage of scans with less than 200 values non-zero 28.4% 39.2%
Average β for scans ∗ 0.336 0.365
Average σ for scans ∗ 0.248 0.242

q-value where the SGEF saturates for scans ∗ 2.5 2.5
Average scaling exponent of saturation, Ωsat, for scans ∗ 0.38 ± 0.15 0.4 ± 0.15
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Figure 5. Space Generalized q-Entropy Function for spatially distribute rainfall as a random cascade
varying cascade’s parameters σ and β for 1000 simulated independently fields including zeros in
the histogram. LCI95% and UCI95% are the lower and upper confidence intervals for Easterly and
Westerly events (E-W) and the BL-Model model (BL): (a–c) varying the cascade’s parameter β; and (d–f)
varying the cascade’s parameter σ. In all cases, varying the number of bins (nbins = 10, 30, 50 and 100).
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Figure 6. Validation of the BL-Model using Generalized Space q-Entropy: (a) comparison Ω(q)-Observed
vs. Ω(q)-Simulated, (Solid line) relation 1:1; and (b) box plots of the coefficients of determination, R2,
for the power fits Sq(λ) ∼ λΩ from 1000 synthetic fields of BL-Model with β = 0.351 and σ = 0.245.
R2 ≥ 0.85 in the intervals −1.0 ≤ q ≤ 0.0 and q ≥ 2.5. The histogram for estimate Sq includes zeros.

4.2. The Role of Zeros in the Generalized Space q-Entropy

With the aim of studying the influence of zeros in the estimation of the GSEF, we simulated rainfall
fields using the BL-Model with cascade parameters β = 0.10, 0.35 and 0.95. In addition, 1000 simulations
were carried out for each value of β. Modeling a 2-D rainfall field with β = 0 corresponds to the situation
in which the cascade assigns a uniformly distributed unit rainfall intensity over the whole area.
In contrast, β close to 1.0 indicates that rainfall is concentrated in a very small area. Our experiments
estimate the GSEF for varying values of β, while keeping σ constant and equal to the average value
for the Amazonian scans, σ = 0.245 (see Table 1). Results show that the saturation scaling exponent
Ωsat in the GSEF is significantly affected by the fraction of non-rainy cells (Figure 5a–c). A similar
result is found for the minimum value of the scaling exponent Ωmin in the GSEF, which is significantly
increased with the amount of zeros present in the rainfall fields. Figure 7 shows that the scaling
exponents Ωsat and Ωmin increase with the value of β. This behavior is explained by the loss rate of
zeros during the change in spatial resolution, as is explained below.
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Figure 7. Sensitivity analysis of the saturation Ωsat, and minimum Ωmin scaling exponents in the SGEF
for 1000 independent rainfall fields generated by random cascade model [13]. Confidence intervals
for 95% in dash line and mean value in solid line. (a) Varying cascade’s parameter β and considering
σ = 0.25 constant; (b) varying cascade’s parameter β and considering σ = 0.25 constant; (c) varying
cascade’s parameter σ and considering β = 0.5 constant; and (d) varying cascade’s parameter σ and
considering β = 0.5 constant.
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4.3. The Role of Rainfall Intensity Variability in Generalized Space q-Entropy

The influence of the variability in rainfall intensity on the GSFE was examined with a similar
strategy. We generated rainfall fields with cascade parameters σ = 0.05, 0.40 and 0.80 (1000 simulations
for each σ value), with a constant parameter β = 0.351 (see Table 1). Results show that the scaling
exponent of saturation, Ωsat, in the GSEF increases slowly in comparison with the case where
the cascade parameter β is considered variable. This result implies that the increase or decrease
in uncertainty across spatial scales is dominated by the dry areas and not by the variability in
rainfall intensity. In general, the scaling exponents Ωsat and Ωmin were not affected by changes
in σ (Figure 7c,d). A possible explanation for this result is that the scaling exponents Ωsat and Ωmin are
directly related to the loss rate of zeros in rainfall fields when data are averaged going from higher
resolution (2 km pixel size) to lower resolution scales (32 km pixel size) [30]. Then, if the amount of
zeros is constant and the variability of rainfall intensity increases, the loss rate of zeros remains the
same regardless of the spatial resolution, which means the scaling exponent Ωsat is not affected by the
cascade parameter σ.

4.4. Bin-Counting Methods and the Generalized Space q-Entropy

First, we discuss the numerical estimation of Shannon entropy for an i.i.d. Gaussian random
variable under increasing aggregation intervals, T, using the analytic inequality given by Equation (17),
and the multiple bin-counting methods mentioned in Section 3.2. From that equation, it is easy to see
why entropy increases under aggregation of T. The theorem [91] proves that if X1, X2, X3, ..., Xn are
i.i.d. random variables, then the expected value E(Xj) = µ, with finite variance V(Xj) = σ2. Defining
the sum Sn = X1 + X2 + X3 + ... + Xn, then the average is An = Sn

n , E(Sn) = nµ and V(Sn) = nσ2.
On the other hand, we revisit the classical problem [92] of how and how well diverse

information-theoretic quantities, can be estimated given a finite set of i.i.d. r.v., which lies at the heart of
the majority of applications of entropy in data analysis. Paninski’s paper focuses on the non-parametric
estimation of entropy, and compares different estimation methods without delving into the role of the
number of bins. For our proposes, we study the sensitivity of Shannon entropy (Equation (25)) to the
number of bins. According to Shannon [44], discrete data entropy can be estimated as,

S(X) = −
n

∑
i=1

p(xi) loga p(xi) (25)

where p(x1), p(x2), . . . , p(xk) represents the probability mass function, such that ∑n
i=1 p(xi) = 1,

and p(xi) ≥ 0, ∀i. Figure 8 shows that the main differences among the different estimation methods
are the following:

• The bin-counting method proposed by Dixon and Kronmal [70] is the nearest to the method
presented by Gong et al. (2014) for Gaussian r.v. under aggregation, for a number of aggregation
intervals greater than 70.

• The theoretical inequality given by Equation (17) is better captured by Scott’s method, although
this method shows lower values than the theoretical expression, for aggregation intervals T ≥ 100.

• The difference between the theoretical inequality (Equation (17)) and Gong et al.’s [67] method
is explained because the “Discrete Entropy” and the “Continuous Entropy” (also referred to as
“Differential Entropy”) are related as:

lim
∆→0

[H∆(Xd) + log(∆)] = h(Xc), (26)

where H∆(Xd) is the discrete entropy with the bin-width ∆ and h(Xc) is the corresponding
continuous entropy. Thus, the continuous entropy of a r.v. requires to add log(∆) in the numerical
estimation. In our numerical estimation, ∆ was selected as the average of the bin-width estimated
for the six methods (see the Section 3.2) for each aggregation interval, T, so the behavior of
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Gong et al.’s method is approximately the average of the set of methods. At this point, it is worth
noting that although Gong et al.’s method is designed for hydrological records, it is not free from
sensitivity to the number of bins.

• To check the sensitivity of the scaling exponents of the GSEF to the number of bins, we developed
a numerical experiment using the BL-Model and 1000 independent simulations for each number
of bins n = 10, 30, 50 and 100, with parameters β = 0.10, 0.351, and 0.950 and σ = 0.05, 0.40 and
0.80. Figures 5 and 7 show that the GSEF is not statistically affected either by the number of bins
or by the value of σ when nbins > 30 and the sample-size is bigger than 200 data. Consequently,
the GSEF is not affect by the bin-counting method.
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Figure 8. Numerical estimation of Shannon’s Entropy using multiple bin-counting methods and the
theoretical inequality (Equation (17), for a Gaussian r.v. for different levels of aggregation, T).

4.5. Sample-Size and the Generalized Space q-Entropy

We consider 6491 scans of the S-POL radar, each one with 4096 data (64 rows and 64 columns;
pixel-size 2 km), of which on average 82% are zeros. Furthermore, approximately 34% of all scans have
less than 200 non-zero values. Thus, using the complete data set, the probability mass function (pmf)
of some scans could be concentrated in the first bins, with small informational content to the entropic
estimator whereas the highest rain values could appear with a very low probability, contributing to
augment the entropy. To quantify the effect of sample-size in estimating q-entropy we performed the
following experiments:

First, we generated rainfall fields using the BL-Model with constant values of β = 0.351, σ = 0.245,
q = 2.5 in Sq, and the number of bins of the pmf, nbins = 50. Then, we calculated by Sq changing
the amount of cascade levels n = 1, 2, ..., 8 to obtain synthetic rainfall fields with different number of
values in the scan (or sample-size) ξ =4, 16, ..., 65,537, and finally we estimated Sq in the following
two manners:

• The pmf to calculate Sq was built considering all values in the synthetic rainfall field including zeros.
• The pmf to calculate Sq was built considering all values separated in two subsets: (i) values

greater than zero (rain), i.e., P(x > 0); and (ii) values equal to zero (dry), P(x = 0). For the
subset (i), the pmf was built and then corrected by the probability of rainfall (1− P(x = 0)) thus,
the probability of occurrence of rainfall can be written as P(x) = {P(x = 0), P(x > 0)}.

Figure 9 shows that, in both cases, Sq decreases with sample size, ξ, but the variance of Sq is
slightly greater when the pmf was built using all values including zeros (Figure 9a) than when the pmf
was built using two separated subsets (Figure 9b). Figure 10 shows that values of q-entropy Sq differ
when zeros are included in the pmf and when P(x = 0) is calculated separately. Figure 10a shows that
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values of Sq with zeros in the pmf versus Sq without zeros in the pmf are not significantly different
when the sample size ξ ≤ 4096 (i.e., 64 × 64 matrices or cascade level 6). In contrast, Figure 10b shows
that values of Sq with the zeros in pmf versus Sq without the zeros in the pmf are significantly different
in fields of sample size ξ > 4096 (i.e., 256 × 256 matrices or cascade level 8).
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Figure 9. Boxplots for q-Entropy Sq=2.5 vs. sample sizes, ξ, in 1000 independent random cascade
simulations of the Beta-Lognormal model with parameters β = 0.351 and σ = 0.245: (a) q-Entropy
including zeros in the histogram; and (b) q-Entropy without including zeros in the histogram. In both
cases, (nbins = 50).

Secondly, we performed a detailed examination of previous results [31] obtained using all the
S-POL radar scans, and re-calculated the GSEF varying the sample-size. Results show considerable
differences between sample-sizes with less and more than 200 non-zero values. Figure 11 shows
differences between the GSEF for all S-POL scans, and the GSEF considering only scans with more
than 200 non-zero values, but including zeros in the pmf. Furthermore, Figure 12 shows that the power
laws Sq(λ) ∼ λΩ, considering the two climate regimes in Amazonian rainfall, exhibit R2 ≥ 0.85 in
the intervals −1.0 ≤ q ≤ 0.5 and q ≥ 2.5. For scans with more than 200 non-zero values, the scaling
exponents Ω(q) of the relation Sq(λ) vs. λ exhibit a non-linear growth with q, up to Ω ∼ 0.5 for q ≥ 2.5,
while in our previous study [31], the GSEF exhibited a non-linear growth with q, up to Ω ∼ 1.0 for
q ≥ 1.0.

These results turned out to be even more interesting with respect to those presented by [31] for
the Generalized Time q-Entropy Function (GTEF) in Amazonian rainfall, whose scaling exponents
Ω(q) of the relation Sq(T) vs. T in log–log space, exhibit a non-linear growth with q, up to Ω ∼ 0.5
for q ≥ 1.0. A thorough analysis showed that for the 400 time-series of the S-POL radar used by [31],
only the 5% had less than 800 non-zero values, and that the 99% of the time-series had more than
200 non-zero values. Additionally, the scaling exponent of saturation, Ωsat, for the GTEF remains the
same, as well as the q-value for saturation. Therefore, our results suggest that the scaling exponent of
Sq across a range of scales in space and time reaches the same maximum value Ωsat = Ω ∼ 0.5, but the
non-additive q value of saturation differs between space scaling (q ∼ 2.5) and time scaling (q ∼ 1.0).
According to Tsallis [45], these results reflect the differences between the space and time dynamics of
the system, although their connection with the physics of rainfall is an open problem.
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Figure 10. Comparison of q-Entropy Sq=2.5 in 1000 independent random cascade fields of the
Beta-Lognormal model with parameters β = 0.351 and σ = 0.245: (a) q-Entropy Sq including zeros
in the histogram vs. q-Entropy Sq without zeros in the histogram, cascade’s level = 6, i.e., ξ = 4096;
and (b) q-Entropy Sq including zeros in the histogram vs. q-Entropy Sq without zeros in the histogram,
cascade’s level = 8, i.e., ξ = 65,536. In both cases, (nbins = 50).
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Figure 11. Space Generalized q-Entropy Functions (SGEFs) for the climate regimes of Amazonian
rainfall from the S-POL radar: (a) Westerly events; and (b) Easterly events. (circles) Average SGEF
for scans with more than 200 values greater than zero, (dashed lines) 95% confidence intervals (CI);
(squares) average SGEF for all the scans available of each climate regime; (solid lines) 95% confidence
intervals (CI).
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Figure 12. Coefficient of Determination, R2, for the power fits Sq(λ) ∼ λΩ from scans radars of
the climate regimes in Amazonian rainfall. R2 ≥ 0.85 in the intervals −1.0 ≤ q ≤ 0.5 and q ≥ 2.5.
The histogram for estimate Sq includes zeros: (a) Easterly events; and (b) Westerly events.
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4.6. Rainfall Intermittency and q-Order

As mentioned in Section 3.4, Bickel [86] showed a positive correlation between multifractality,
M̂(q1, q2), and q-order, Θq, for point process with dimension D ranging from 0.1 to 0.9. In this study,
we looked for an analogous relationship for synthetic 2-D rainfall fields from the BL-Model. Our results
show that for ψ̂k(q1) vs. k and ψ̂k(q2) vs. k, both cases exhibit linear relationship in the log–log graph
to estimate the generalized Hurst exponents H(q1) and H(q2) and subsequently M̂(q1, q2) as we
explained in Section 3.4. Figure 13 shows a typical regression for a synthetic rainfall field created
with the BL-Model with β = 0.351 and σ = 0.245, with average intermittency

〈
M̂(q1, q2)

〉
= 0.519.

However, there is no evidence of a clear-cut relationship between M̂(q1, q2) and Θq in our numerical
experiments (figures not shown here). Those results can be explained because the point-process model
used by Bickel [86] is a Markovian model whose stochastic properties and probability distribution
function (PDF) differ from point-process models for rainfall [93,94], which do not explicitly consider
statistical scaling properties [95]. In addition, the BL-Model is a non-Markovian rainfall model based
on the spatial statistical (multi) scaling properties, whose PDF is well known across spatial scales
emerging as power laws, Sq ∼ λΩ(q). The study of the linkages between intermittency and q-entropic
statistics are outside the scope of this work that deserves to be explored in detail in future works.

10
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1

10
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10
1

ψ̂
(q
)

 

 

ψ̂(q = 1)

ψ̂(q = 2)

k

Figure 13. Typical least-square regressions ψ̂k(q1) ∼ kH(q1) and ψ̂k(q2) ∼ kH(q2) with H(q = 1) = 0.097
and H(q = 2) = 0.412, for a synthetic 2-D rainfall field from the BL-Model with β = 0.351, σ = 0.245
and cascade level n = 8.0.

5. Discussion

In spite of the increasing interest in entropic techniques in geosciences, few studies have discussed
diverse underlying assumptions regarding the data to guarantee their applicability. In the case studied,
high-resolution rainfall records are neither i.i.d. nor with continuous pdf, so the appropriate estimation
of entropy needs clarity on the implicit assumptions in data analysis.

First, the i.i.d. condition for rainfall is not satisfied because: (i) the spatial dynamics of mesoscale
rainfall has strong spatial correlations [33] (e.g., for Amazonian rainfall see [31]); and (ii) the temporal
dynamics of tropical rainfall reflects long-term correlations [28] (see Figure 14). However, by definition,
q-entropy, Sq, for q 6= 1, considers probabilistically dependent subsystems, with non-negligible
global correlations, whereas Shannon entropy (Sq, for q→ 1) considers probabilistically independent
subsystems [45,96]. Hence, the non-i.i.d. nature of data is not a restriction in the framework of
non-extensive entropy, whereas in the framework of extensive entropy such non-i.i.d nature must be
used under specific assumptions (e.g., for weakly correlated sub-systems).
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Figure 14. Scale of fluctuation, θ(τ), for a time serie of Amazonian rainfall from S-POL radar.

Second, high-resolution Amazonian rainfall records do not satisfy the condition of continuous
pdf because zeros constitute more than 80% of data in spatiotemporal scales. Therefore, although
continuity in pdf is a fundamental requirement to estimate the additive (Shannon) entropy using the
most common estimators [77,97], the condition of pdf’s continuity for q-entropy is not clear in the
literature. This is a relevant topic for further research.

Finally, an alternative option to deal with the conditions behind entropic estimators consists
in finding a transformation that generates i.i.d data exhibiting a continuous pdf. However,
that transformation constitutes a great challenge in geosciences, more so having in mind that such a
transformation include multi-scale statistical properties.

6. Conclusions

Using 2-D radar rainfall fields from Amazonia, we investigate the spatial scaling and complexity
properties of Amazonian rainfall using the Generalized Space q-Entropy Function (GSEF), defined as
a set of continuous power laws covering a broad range of spatial scales, Sq(λ) ∼ λΩ(q), to test for the
validity of the random multiplicative cascade BL-Model in representing 2-D properties of observed
rainfall fields. The spatial scaling analysis considered the Westerly and Easterly weather regimes in the
Amazon basin. Our results show that for both climate regimes the GSEFs are not statistically different
whereas the BL-Model parameters σ and β are statistically different.

We tested the skill of the BL-Model in reproducing the space scaling properties of q-entropy
reported in previous works. Our results evidence that the BL-Model appropriately reproduces the
relationship Sq(λ) ∼ λΩ, with saturation for q ≥ 2.5 and Ωsat ∼ 0.5. Furthermore, the power laws,
Sq(λ) ∼ λΩ(q), observed in S-POL rainfall scans exhibit R2 ≥ 0.85 in the intervals −1.0 ≤ q ≤ 0.5
and q ≥ 2.5, whereas synthetic rainfall fields generated with the BL-Model exhibit power laws in the
intervals −1.0 ≤ q ≤ 0.5 and q ≥ 1.5. This result evidences that the q-entropy allows to successfully
characterizing the spatial scaling properties of high resolution Amazonian rainfall, thus confirming the
validity of this tool in the study of systems conformed by strongly correlated subsystems, for which
the Shannon entropy (Sq→1) is no longer valid. In particular, the spatial scaling structure of Amazonian
rainfall can be characterized by a non-additivity value, qsat ∼ 2.5, at which rainfall reaches its the
maximum scaling exponent Ωsat.
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Using Montecarlo experiments with the BL-Model, we studied the influence of zeros and rainfall
intensity on the estimation of the GSEF, aiming to explain the differences of the saturation exponent
Ωsat found between multiple data sets used in previous works [30,31]. Our results evidence that:
(i) the scaling exponent of saturation Ωsat is related to the non-rainy area fraction, represented by β;
and (ii) the variability in rainfall intensity, represented by σ, does not affect significantly the GSEF.
Then, changes in saturation of the scaling exponent Ωsat are related to the intermittence properties of
high-resolution rainfall.

In addition, we studied the influence of bin-counting methods and sample-size in the estimation
of entropy and q-entropy. We used a set of parametric and non-parametric bin-counting methods
showing the difficulties in estimating Shannon entropy with the well-known inequality linking variance
and entropy for Gaussian i.i.d. random variables. Furthermore, we explored the sensitivity of
the GSEF to the number of bins (nbins). Our results evidenced that the GSEF is a robust measure
provided nbins ≥ 30. On the other hand, we performed a detailed examination of the results by
Poveda and Salas [31] to check the influence of the sample-size, ξi, in the estimation of the q-entropy.
We studied synthetic 2-D fields of the BL-Model from 2× 2 (rows and columns) to 128× 128 (rows and
columns) quantifying the q-entropy with respect to: (i) all values inside the rainfall fields (including
zeros) in the probability mass function (pmf); (ii) pmf considering P(x) = {P(x = 0), P(x > 0)};
and (iii) the minimum amount of non-zero values inside the rainfall fields. Our results evidenced that
for small-samples the generalized space q-entropy function may incur in considerable bias, and our
experiments showed that a rainfall field requires at least 200 non-zero values so that the estimation of
q-entropy be robust.

Finally, we explored a possible relationship between a measure of multifractality M̂(q1, q2) and
the q-order Θq. Our results suggest that the relationship found by Bickel [86] could be related to the
point process used therein. In our case, for the BL-Model based on multiplicative cascades there is not
evidence of such links between M̂(q1, q2) and Θq.
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