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Abstract: The notion of topological entropy dimension for a Z-action has been introduced to measure
the subexponential complexity of zero entropy systems. Given a Z2-action, along with a Z2-entropy
dimension, we also consider a finer notion of directional entropy dimension arising from its subactions.
The entropy dimension of a Z2-action and the directional entropy dimensions of its subactions satisfy
certain inequalities. We present several constructions of strictly ergodic Z2-subshifts of positive
entropy dimension with diverse properties of their subgroup actions. In particular, we show that
there is a Z2-subshift of full dimension in which every direction has entropy 0.
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1. Introduction

Shannon introduced the notion of entropy to measure the information capacity of the process [1].
Since Kolmogorov brought the notion to dynamical systems, entropy provided the field with new
perspectives and has played one of the central roles for understanding the chaoticity of measurable
and topological dynamical systems [2,3]. Systems of positive entropy have been studied for several
decades and many of the properties are well understood at least in the case of Z-actions. Entropy has
been studied for amenable group actions and more recently for nonamenable group actions [4–6].

In the case of measurable dynamics, zero entropy systems make a dense Gδ subset of the
set of all ergodic systems. Given a full shift, the set of zero entropy subshifts is also a dense Gδ

subset [7]. Moreover, zero entropy systems arise rather naturally in the study of general group
actions. To understand the complexities of zero entropy Z2-actions, it is natural to ask the entropies of
their non-cocompact subgroup actions. It is well-known that their subgroup actions exhibit diverse
behaviors in their entropies. For example, the well-known three dot subshift (xi,j + xi,j+1 + xi+1,j ≡ 0
(mod 2) for all (i, j) ∈ Z2) has entropy zero while all of its non-cocompact subgroup actions have
positive entropy. In addition, there is a zero entropy Z2-subshift, all of whose directions have infinite
entropy. In his study of cellular automaton maps, Milnor extended the entropy of noncocompact
subgroup actions to irrational directions, and called it directional entropy [8]. It is easy to see that
the three dot model also has positive directional entropy in all irrational directions. If a Z2-action has
positive entropy, then each direction has infinite entropy. If a Z2-action has entropy zero, the entropy of
its directions could be zero, positive, or infinite. We note that there exists a Z2-subshift of entropy zero
that has directions of entropy zero, of positive entropy and of infinite entropy. Properties of directional
entropies and the dynamics of subgroups have been investigated in [9–13].
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Topological entropy dimension has been introduced and studied in [14,15] to classify the growth
rate of the orbits of zero entropy systems. For example, any positive entropy Z2-subshift has the
orbit growth rate in the order of 2n2

, while the three dot model has the orbit growth rate in the order
of 2n. The model has intermediate growth rate with nontrivial directional dynamics. Zero entropy
Z2-subshifts may contain subgroup actions whose directional entropy is 0. To understand the
complexity of Z2-actions, we introduce topological entropy dimension analogous to the one for
Z-actions. As in the case of Z-action, entropy dimension for Z2-action measures the intermediate
growth rate, which is bigger than polynomial and less than exponential. If a system has a polynomial
growth rate, then it has entropy dimension 0. Meyerovitch [15] has constructed a family of Z2-subshifts
of entropy dimension α for all α ∈ [0, 1]. To measure the subexponential growth rate in all directions
including the irrational directions, we define directional entropy dimension, which is the extension of
the entropy dimension for the noncocompact subgroup actions.

Our main interest is to look into the complexity of given group actions of entropy zero together
with their subgroup actions in terms of directional entropy dimension. In the case of Z2-actions,
if a direction has positive entropy or has entropy dimension 1, then clearly the Z2-entropy dimension
is greater than 1/2. In general, we show that if X is a Z2-subshift with entropy dimension D(X)

and D(v) is the directional entropy dimension of a direction vector v ∈ R2 \ {0}, then the following
inequalities hold: D(v) ≤ 2D(X) ≤ D(v) + 1 (see Theorem 2). We construct Z2-subshifts of different
positive entropy dimensions for which the equality holds in the second inequality. In fact, for each
1/2 ≤ α ≤ 1, we present a Z2-subshift of entropy dimension α whose directional entropy dimension is
2α− 1 for every direction (see Example 5).

We present a Z2-subshift of entropy dimension 1, where the directional entropy is 0 for every
direction (see Example 7). This example indicates that Z2-complexity may be spread out in all directions.
It is interesting to compare the example with the three dot model whose entropy dimension is 1/2.
It also shows that there is a difference between zero entropy subshifts of entropy dimension 1 and
positive entropy subshifts, as every directional entropy is infinite for the latter ones.

The paper is organized as follows. Section 2 presents necessary terminology for Z2-subshifts
and the definitions of the entropy dimension and directional entropy dimension. In Section 3, we
discuss equivalent definitions for entropy dimension. An inequality for entropy dimension and
directional entropy dimension is presented in Section 4. In Section 5, we first present a general
method to construct strictly ergodic Z2-subshifts with positive entropy dimension, and then construct
Z2-subshifts exhibiting interesting behaviors in their directional entropy dimensions.

2. Topological Entropy Dimension for Z2-Actions

As we assume some familiarity with topological and symbolic dynamics, we introduce a few
terminology and known results. For details on symbolic dynamics, see [16], and, for topological
entropy dimension of Z-actions, see [14].

A two-dimensional full shift is a set AZ2
for a finite set A, together with the Z2-shift actions

σi : AZ2 → AZ2
given by translations σi(x)j = xi+j for i, j ∈ Z2. A Z2-subshift (or Z2-shift space) X is

a closed σ-invariant subset of a full shift. A finite set F ⊂ Z2 is called a shape. A member of AF is called
a pattern on the shape F. For a shape F ⊂ Z2, denote by BF(X) the set {x|F : x ∈ X} of all patterns on
the shape F occurring in X. For F ⊂ R2, we denote by BF(X) the set BF∩Z2(X) for notational simplicity.
In particular, for m, n ∈ N, let

Rm,n = {v = (v, w) ∈ Z2 : 0 ≤ v < m and 0 ≤ w < n}

be a rectangular shape in Z2 and

Bm,n(X) = {x|Rm,n : x ∈ X}

be the set of the patterns on the shape Rm,n occurring in X. We simply put Bn(X) = Bn,n(X).
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The (two-dimensional) topological entropy of X is defined by

h(X) = lim
n→∞

log |Bn(X)|
n2 .

It is well known that the limit exists and equals the maximum of the measure-theoretic entropies
of the shift-invariant probability measures. As in the case of Z-actions, the entropy dimension of
a Z2-subshift X is defined.

Definition 1. The (two-dimensional) upper entropy dimension of X is defined by

D(X) = lim sup
n→∞

log log |Bn(X)|
log n2 .

The lower entropy dimension D(X) is defined analogously by using lim inf instead of lim sup.
If D(X) = D(X), we denote it by D(X) and call it the (topological) entropy dimension of X.

Note that the (upper and lower) entropy dimension of X lies in the interval [0, 1]. They are
invariant under topological conjugacy between two Z2-subshifts. One can check that D(X) is the
unique critical value for α of the function

D(X, α) = lim sup
n→∞

log |Bn(X)|
(n2)α ,

that is,
D(X) = inf{α : D(X, α) = 0} = sup{α : D(X, α) = ∞}.

The similar equivalences hold for D(X) and D(X) using lim inf and lim, respectively. We note
that if X has positive entropy, then it has entropy dimension 1.

We recall the definition of directional entropy introduced by Milnor [8,9]. For a Z2-subshift,
the definition is stated much simpler. For v ∈ R2 \ {0}, let v⊥ be a unit vector orthogonal to v.
Given t > 0 and n > 0, we let

E(v, n, t) = {av + bv⊥ ∈ R2 : 0 ≤ a < n and 0 ≤ b < t}.

Then, directional entropy h(v) of a Z2-subshift X in the direction v is defined by

h(v) = sup
t>0

lim sup
n→∞

log |BE(v,n,t)(X)|
n

= lim
t→∞

lim sup
n→∞

log |BE(v,n,t)(X)|
n

.

Note that there are two vectors orthogonal to v, and E(v, n, t) depends on the choice of v⊥.
However, the set of patterns BE(v,n,t)(X) in both cases are the same.

By definition, it is clear that h(tv) = th(v) for all t > 0. Note that, for v ∈ Z2, h(v) coincides with
the entropy of the Z-topological dynamical system (X, σv). Analogously, we define directional entropy
dimension as follows.

Definition 2. Let X be a Z2-subshift and v ∈ R2 \ {0}. The directional upper entropy dimension of X in
the direction v is defined by

D(v) = sup
t>0

lim sup
n→∞

log log |BE(v,n,t)(X)|
log n

.

The directional lower entropy dimension D(v) is defined analogously using lim inf. If D(v) = D(v), and
we denote it by D(v) and call it the directional entropy dimension of X in the direction v.
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Using a similar argument as for entropy dimension, one can check that D(v) is equal to
limt→∞ D(v, t) where D(v, t) is a unique critical value for α of the function

D(v, t, α) = lim sup
n→∞

log |BE(v,n,t)(X)|
nα

.

As for the case of directional entropy, for v ∈ Z2, D(v) coincides with the topological upper
entropy dimension [14] of the Z-topological dynamical system (X, σv). One can see that D(v) = D(tv)
for all t > 0. Hence, we may assume that v lies on the unit circle S1 as far as the directional entropy
dimension is concerned. The properties similar to the mentioned hold for D(v) and D(v).

3. Equivalent Definitions for Entropy Dimension

In this section, we present equivalent formulations for two-dimensional entropy dimension
using the entropy generating shape, which generalizes the notion of entropy generating sequence for
one-dimensional case in [14]. The argument directly extends to the case of Zd-actions for any integer
d > 2. Throughout the paper, N denotes the set of nonnegative integers.

Let S ⊂ N2 be an infinite subset. For τ ≥ 0, we define a function

D(S, τ) = lim sup
n→∞

|[0, n)2 ∩ S|
(n2)τ

and denote by D(S) the critical value for τ of the function D(S, τ), that is,

D(S) = inf{τ : D(S, τ) = 0} = sup{τ : D(S, τ) = ∞}.

This definition is equivalent to

D(S) = lim sup
n→∞

log |[0, n)2 ∩ S|
log n2 .

We call D(S) the upper dimension of S. The lower dimension D(S) and the dimension of S, D(S),
are defined similarly. Following [14], we say that S is an entropy generating shape of the Z2-subshift X if

lim inf
n→∞

log |B[0,n)2∩S(X)|
|[0, n)2 ∩ S| > 0.

As for the Z-case, the intuitive idea of an entropy generating shape is to specify positions where
the independence occurs. An infinite subset S ⊂ N2 is called a weak entropy generating shape of X if

lim inf
n→∞

log |B[0,n)2∩S(X)|
|[0, n)2 ∩ S|β

> 0 for all 0 < β < 1.

It is easy to see that if S is a weak generating shape of X, then

lim inf
n→∞

log log |B[0,n)2∩S(X)|
log |[0, n)2 ∩ S| = 1.

Theorem 1. Let X be a Z2-subshift. Then, the following three values are equal.

1. D(X),
2. the supremum of D(S) over all entropy generating shapes S of X,
3. the supremum of D(S) over all weak entropy generating shapes S of X.
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Proof. Let De (resp. D∗e ) be the supremum of D(S) over the entropy generating shapes S (resp. weak
entropy generating shapes S). Clearly, De ≤ D∗e . In ([14], Theorems 3.8 and 3.10), it was shown that
if X is a Z-subshift, then D(X) equals the supremum of D(S) over all entropy generating sequences
S for X. One may check that the proof is valid for Z2-subshifts with a little modification. For each
j-th step in ([14], Theorem 3.8), we can take Wj ⊂ [0, nj+1)

2 \ [0, nj]
2. Then, F =

⋃
Wj is an entropy

generating shape.
Thus, it remains to show that D∗e ≤ D(X). Suppose not. Then, there is a weak entropy generating

shape S with D(S) > D(X). Hence,

D(X) = lim sup
n→∞

log log |Bn(X)|
log n2 ≥ lim sup

n→∞

log log |B[0,n)2∩S(X)|
log n2

≥ lim inf
n→∞

log log |B[0,n)2∩S(X)|
log |[0, n)2 ∩ S| · lim sup

n→∞

log |[0, n)2 ∩ S|
log n2 = D(S) > D(X),

which is a contradiction. Therefore, D∗e ≤ D(X).

4. Inequalities for Entropy Dimension and Directional Entropy Dimension

In this section, we present simple inequalities between the entropy dimension of a Z2-action and
its directional entropy dimensions.

Theorem 2. Let X be a Z2-subshift and let v ∈ S1. Then, we have

D(v) ≤ 2D(X) ≤ D(v) + 1

and
D(v) ≤ 2D(X) ≤ D(v) + 1.

In particular, if X has entropy dimension, then we have

D(v) ≤ 2D(X) ≤ D(v) + 1.

Proof. First suppose that v = e1 = (1, 0). Then, it is clear that |Bnt,t(X)| ≤ |Bnt,nt(X)| for each n, t ∈ N.
Hence, we have

lim sup
n→∞

log log |Bnt,t(X)|
log nt

≤ lim sup
n→∞

log log |Bnt,nt(X)|
log nt

= 2D(X)

for each fixed t > 0. Hence, by letting t→ ∞, we have the first inequality D(v) ≤ 2D(X). On the other
hand, each pattern on the shape Rnt,nt is obtained by stacking n patterns on the shape Rnt,t. Hence, we
have |Bnt,nt(X)| ≤ |Bnt,t(X)|n. Then,

2D(X) = lim sup
n→∞

log log |Bnt,nt(X)|
log nt

≤ 1 + lim sup
n→∞

log log |Bnt,t(X)|
log nt

.

Hence, by taking supremum on t > 0, we have 2D(X) ≤ D(v) + 1.
Let v ∈ S1. Then, one can find constants α, β > 0 such that, for all s > 0,

a translate of [0, sα]2 ⊂ E(v, s, s) ⊂ a translate of [0, sβ]2.

Then, for each t > 0 and n ∈ N, we have

|BE(v,nt,t)(X)| ≤ |B[0,ntβ]2(X)|,
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from which we obtain D(v) ≤ 2D(X). On the other hand, since E(v, nt, nt) =
⋃n−1

k=0

(
E(v, nt, t) + ktv⊥

)
and for each k (

E(v, nt, t) + ktv⊥
)
∩Z2 ⊂ a translate of

(
E(v, nt + 2, t + 2)∩Z2

)
,

we have
|B[0,ntα]2(X)| ≤ |BE(v,nt,nt)(X)| ≤ |BE(v,nt+2,t+2)(X)|n,

from which we obtain 2D(X) ≤ D(v) + 1.
The inequalities for lower entropy dimension are similarly proved.

Remark 1. Let X be a Zk-subshift and G ⊂ Rk a hyperplane of codimension `. Then, one can define
k-dimensional entropy dimension D(k)(X) of X and (k − `)-dimensional entropy dimension D(k−`)(G) of
G as in Section 2. By the same argument as in the proof of the theorem, we see that

(k− 1)D(k−1)(G) ≤ kD(k)(X) ≤ (k− 1)D(k−1)(G) + 1,

for any subspace G of codimension 1, and, hence, for any subspace G of codimension `, inductively we have

(k− `)D(k−`)(G) ≤ kD(k)(X) ≤ (k− `)D(k−`)(G) + `.

We mentioned that the equality D(v) = 2D(X) is obtained if a direction v has the same complexity
as X has, and the equality 2D(X) = D(v) + 1 is obtained if there is a certain independence along the
direction v⊥.

We list simple examples of Z2-subshifts whose entropy dimension and directional entropy
dimension can be easily calculated. In the examples below, there is a direction v for which the
inequality 2D(X) ≤ D(v) + 1 is strict.

Example 1. Let X ⊂ {0, 1}Z2
be the three dot model (from §1). It is known that h(X) = 0 and h(v) > 0

for each v 6= 0. It follows that D(v) = 1 for all v ∈ S1. For each Rn, the pattern on the half of the
boundary (left and bottom of Rn) determines the whole pattern on Rn. It follows that D(X) = 1/2.

Example 2. Let (Z, T) be a Z-subshift of positive entropy, and let X be the Z2-subshift generated by
σe1 = T and σe2 = identity on Z. We know that the directional entropy is continuous [11]. Since
h(v) > 0, we have D(v) = 1 for all v not parallel to e2. It is clear that h(e2) = D(e2) = 0. Hence,
directional entropy dimension need not be upper-semicontinuous even when directional entropy is
continuous on S1.

Example 3. Let (Z, T) be a Z-subshift of positive entropy, and let X be the orbit closure of the set

{x ∈ AZ2
: (x(i,k))i∈N ∈ Z if k is a square number and (x(i,k))i∈N = 0∞ otherwise}.

Let Bn(Z) denote the set of blocks of length n occurring in Z. Since |Bn(Z)|b
√

nc ≤ |Bn,n(X)| ≤
n|Bn(Z)|

√
n, one finds that D(X) = 3/4. It can be checked that h(e1) = ∞, D(e1) = 1 and h(v) =

D(v) = 0 for all v not parallel to e1.

5. Constructions of Subshifts with Positive Entropy Dimension and Directional Entropy Dimension

In this section, we construct subshifts with positive topological entropy dimension with diverse
properties in their subgroup actions. We first provide a framework with notations for a general
construction of a family of subshifts. Then, we will modify the constructions depending on required
properties. All the examples in this sections are minimal. We remark that, without the minimality
requirement, the construction with similar properties can be carried out more easily.
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The basic idea of our construction is a successive concatenation of previous patterns with
well-chosen permuting positions as in [17,18]. In what follows, to simplify the notation, we omit the
floor function notation on the square roots and write

√
N instead of b

√
Nc.

Fix a large number l1 ∈ N. Let C1 ⊂ {0, 1}Rl1 denote a set of binary patterns on l1 × l1 square
Rl1 , and let N1 denote the cardinality of C1. For the induction step, suppose that a set Cj of patterns
on the lj × lj square Rlj

has been constructed and Nj = |Cj|. Give an ordering on Cj and write

Cj = {u
(j)
i : 1 ≤ i ≤

√
Nj

2}. We should note that this new Cj contains less elements than the old Cj
unless Nj is a square number. We may abuse the notation since the cardinalities of both sets have the
same asymptotic behavior, which only matters in what follows. Let lj+1 = lj ·

√
Nj and consider a new

pattern u(j+1)
1 on Rlj+1

formed by concatenating all the patterns in Cj in the following way:

u(j+1)
1 |Rlj

+lj ·(i1,i2) = u(j)
i2
√

Nj+i1+1
for each 0 ≤ i1, i2 <

√
Nj.

We choose a subset Pj ⊂ [0,
√

Nj)
2 ∩N2, which we call the set of permuted positions at the j-th step

and let Pj =
⋃qj

i=1 Pj,i be a partition of Pj. The collection Cj+1 consists of all patterns on the square Rlj+1

obtained by permuting Rlj
-subpatterns of u(j+1)

1 whose lower left corner is at the location lj · (i1, i2)
with (i1, i2) ∈ Pj,i for each 1 ≤ i ≤ qj. Then, we have iterative formulae for Nj and lj

lj+1 = lj ·
√

Nj and Nj+1 =

qj

∏
i=1
|Pj,i|!.

By the construction, u(j)
1 is a subpattern of u(j+1)

1 at the lower left corner for each j. If the
cardinality of Pj grows fast enough to satisfy limj→∞ lj = ∞, then, by compactness, there is a unique

point w ∈ {0, 1}N2
such that w|Rlj

= u(j)
1 for all j ∈ N. Let X+ be the N2-subshift defined as the

orbit closure of w and X the natural extension of X+. Equivalently, we may let X be the set of all
configurations x ∈ {0, 1}Z2

such that each subpattern of x occurs in some member of Cj for some j ∈ N.

Since each pattern u(j)
i , for i ≤

√
Nj

2, in Cj occurs in all patterns in Cj+1, it follows that X is minimal.
We are free to choosePj and its partition elementsPj,i. By choosing them carefully, we may construct

subshifts with prescribed entropy dimension and directional entropy dimensions. The following
notations are useful for calculations. For n, m ∈ N, let

B0
n,m(X) = {u|Rn,m : u ∈ Cj for some j ∈ N with lj ≥ n, m}

and, for n, m ∈ N and k ∈ N, let

Bk
n,m(X) = {u|(p,q)·lk+Rn,m : u ∈ Cj for some j > k

and p, q ∈ N with
(
(p, q) · lk + Rn,m

)
⊂ Rlj

}

= {w|(p,q)·lk+Rn,m : p, q ∈ N }.

That is, B0
n,m(X) is the collection of n×m patterns of X which can be obtained by restricting the

patterns in Cj to its lower left corner and Bk
n,m(X) is that of n×m subpatterns of Cj for some j > k

whose lower left corner is on the lattice lkZ2. We list several inequalities between the cardinality of the
sets aforementioned:

(a) Let n = lj. Then |B0
n,n(X)| = |Cj| = Nj and |Bn(X)| ≤ n2 · |B0

n,n(X)|4.

(b) Let n = k · lj for 0 ≤ k <
√

Nj. Then |Bn(X)| ≤ (lj)
2 · |B j

(k+1)lj,(k+1)lj
(X)|.

(c) For i, j ∈ N, we have |Bli,lj
(X)| ≤ lilj|B

min(i,j)
li,lj

(X)|4.
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We mention that in each of the examples in this section, P =
⋃

j∈N Pj is a weak entropy
generating shape.

Example 4. Let v0 ∈ S1 be a rational direction. Then, there is a Z2-subshift X with D(X) = 1/2,
D(v0) = 1 and D(v) = 0 for all v not parallel to v0.

We only give a construction for the case v0 = e1 since the construction is similar when v0 is an
arbitrary rational direction. Let Pj = {(i, 0) : 0 ≤ i <

√
Nj} with qj = 1 and Pj,1 = Pj. At the j-th step

for j ∈ N, a typical (j + 1)-st pattern is obtained by permuting the lj × lj subpatterns (elements of Cj) at

the bottom of u(j+1)
1 . The iterative formula for Nj is given by Nj+1 = (

√
Nj)!. Hence, we have

lim
j→∞

log log |Blj
(X)|

log (lj)2 = lim
j→∞

log log |B0
lj,lj

(X)|

log (lj)2 = lim
j→∞

log log Nj

log (lj)2

= lim
j→∞

log
(√

Nj−1 log
√

Nj−1
)

log (lj−1
√

Nj−1)2

= lim
j→∞

log
√

Nj−1

log
√

Nj−1
2 =

1
2

,

(1)

where the first two equalities follow from property (a) and the third equality follows from Stirling’s
formula.

To show that D(X) = 1/2, fix l ∈ N. Then, there is j ∈ N such that lj ≤ l < lj+1 = lj
√

Nj, and
we may assume that l = k · lj for 1 ≤ k <

√
Nj. The number of Cj-patterns at the permuted positions

which are contained in each l × l pattern u ∈ B0
l,l(X) is k, and that of Cj-patterns at the permuted

positions which are contained in each u ∈ B j
l,l(X) is at most k. Hence, we have

P(
√

Nj, k) = |B0
l,l(X)| ≤ |Bl(X)| ≤ (lj)

2|B j
(k+1)lj,(k+1)lj

(X)|

≤ (lj)
2(
√

Nj)
2P(
√

Nj, k + 1),

where P(n, k) denotes the number of k-permutations of n. For all sufficiently large n and any k with
1 ≤ k ≤ n, we have k log n− k < log P(n, k) ≤ log nk = k log n. Hence, for large j and any k <

√
Nj,

we have

log k + log log(
√

Nj − 1)
2 log k + log(lj)2 ≤ log log |Bl(X)|

log l2

≤
log
(
log(lj)

2 + log(
√

Nj)
2 + (k + 1) log

√
Nj
)

2 log k + log(lj)2

≤
log(k + 4) + log log

√
Nj

2 log k + log(lj)2 ,

from which this equation and (1), it follows that

lim
l→∞

log log |Bl(X)|
log l2 = lim

j→∞

log log Nj

log (lj)2 =
1
2

.

A similar calculation for Z-subshifts can be found in ([18], Section 2).
Now, we calculate the directional entropy dimension. From the construction of Ci+1 from Ci,

a pattern u in B0
li+1,li

(X) can be uniquely extended to a pattern in Ci+1 whose bottom equals u. By
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induction, for all i > j, each pattern B0
li,lj

(X) can be uniquely extended to a pattern in Ci. Hence, we

have |Bli,lj
(X)| ≥ |B0

li,lj
(X)| = Ni. Hence, for each j

lim
i→∞

log log |Bli,lj
(X)|

log li
≥ lim

i→∞

log log Ni
log li

= 1.

We can show that in general liml
log log |Bl,lj

(X)|
log l ≥ 1 for any j by assuming l = k · li with 0 ≤ k <

√
Ni and arguing as in the above. Hence, we have D(e1) = 1.

Now, we show D(e2) = 0. As there are (
√

Nj−1)
2 different lj−1 × lj subpatterns of members of Cj

whose lower left corner is at (k · lj−1, 0) for 0 ≤ k <
√

Nj−1, it follows that |B j−1
lj−1,lj

(X)| ≤ (
√

Nj−1)
4. By

this and property (c), we have |Bli,lj
(X)| ≤ |Blj−1,lj

(X)| ≤ lj−1lj|B
j−1
lj−1,lj

(X)|4 ≤ lj−1lj(
√

Nj−1)
16. This

yields

lim
j→∞

log log |Bli,lj
(X)|

log lj
= 0

for each i; hence, D(e2) = 0.
Finally, let v ∈ S1 be not parallel to e1 and let θ be the angle between v ∈ S1 and the x-axis. It is

enough to show the case when v is in the first quadrant. For each i and j with j > i, denote by Qi,j the

parallelogram generated by the line segment from 0 to (li, 0) and that from 0 to
lj

sin θ v. Then, Qi,j has
base li and height lj. Let Qi,j = BQi,j(X).

Note that Qi,j can intersect only finitely many li × li squares, say q (depending only on i), whose
lower left corner is at liZ× {0}. Put

Q∗i,j = {u|(Qi,j∩Z2)+łi(a,0) : u ∈ Ck for some k > j and a ∈ N}.

The number of different upper subpatterns with height lj − li of members in Q∗i,j is
√

Nj−1, since
all the upper subpatterns with height lj − li of members in Cj are the same. On the other hand, the
number of different lower subpatterns with height li of members in Q∗i,j is at most |Ci|q.

As any pattern on Qi,j occurs as a subpattern on Q2i,2j, we have

|Qi,j| ≤ (lj)
2|Q∗i,j|4 ≤ (lj)

2(
√

Nj−1 · |Ci|q)4.

By this, we obtain

lim
j→∞

log log |Qi,j|
log lj

= 0

for each i—thus, D(v) = 0, by taking the supremum over all i.

Remark 2. At the j-th step of Example 4, instead of permuting the j-th patterns at the bottom row of u(j+1)
1 ,

we permute all the columns of u(j+1)
1 and denote the collection by Cj+1. By a column, we mean a tower of√

Nj-many j-th patterns in u(j+1)
1 whose lower left corner is at (k · lj, 0) for 0 ≤ k <

√
Nj.

The iterative formula for Nj is given by Nj+1 = (
√

Nj)!. Note that the cardinalities of the sets Cj, B0
lj,lj

and

B0
li,lj

for each i, j are the same as those obtained in Example 4. The constructed system has entropy dimension 1/2.

We expect that D(e2) = 0 and D(v) = 1 for all v not parallel to e1.

The following example shows that Z2-complexity may be spread out in all directions, in the sense
that the inequality 2D(X) ≤ D(v) + 1 in Theorem 2 can be an equality for all directions.
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Example 5. Let 1
2 < α ≤ 1. Then, there is a Z2-subshift X with

D(X) = α and D(v) = 2α− 1 for all v ∈ S1.

Let r = 1
2α−1 ≥ 1. Given j and 1 ≤ i < (Nj)

1
2r , we let

Pj,i = {(a, b) ∈ Z2 : a2 + b2 ≤ i2 < (a + 1)2 + (b + 1)2

with 0 ≤ a, b <
√

Nj},

and Pj =
⋃

i Pj,i. Note that each Pj,i is the set of coordinates near the circle of radius i. We will only
give an argument for r = 2 (i.e., α = 3/4) for notational simplicity.

Each Nj satisfies

∏
k2≤
√

Nj

(
k2
)

! ≤ Nj+1 ≤ ∏
k2≤
√

Nj

(
2 · k2

)
!,

and so

log Nj+1 ∼ ∑
k2≤
√

Nj

k2 log(k2) ∼ (Nj)
3/4 log

√
Nj

for all large j, where we write a(n) ∼ b(n) if the ratio a(n)/b(n) goes to some positive constant as
n→ ∞. Hence we have

lim
j→∞

log log Nj+1

log(lj+1)2 = lim
j→∞

log N3/4
j + log log Nj

log(lj)2 + log
√

Nj
2 =

3
4

.

Hence, we have D(X) = 3/4. For general r, similar calculation gives log Nj+1 ∼ N
r+1
2r

j log Nj;

hence, D(X) = r+1
2r = α.

Now, we calculate directional entropy dimension. By the symmetry of permuted positions, it
suffices to consider v = e1. First, by Theorem 2, we have D(v) ≥ 1/2.

For each j, the number of Cj patterns at the permuted positions that are contained in each lj+1 × lj

subpattern of members of Blj+1,lj+1
(X) whose lower left corner is at {0}× ljZ is at most

√
Nj

1/2. Hence,
we have, for a fixed j and all i > j + 1,

|B0
li+1,lj

(X)| ≤ |B0
li+1,li

(X)| = Ni

√
Ni

1/2
.

The number of li+1 × li subpatterns of w whose lower left corner is at {0} × ljZ is at most
√

Ni · Ni
√

Ni
1/2

. As in (c),

|Bli+1,lj
(X)| ≤ lili+1

(√
Ni · Ni

√
Ni

1/2
)4

.

Hence,

lim sup
i→∞

log logBli+1,lj
(X)

log li+1
≤ lim

i→∞

log
(√

Ni
1/2 log Ni

)
log li+1

=
1
2

,

for each j, from which we have D(v) ≤ 1/2, as desired.

It is possible to construct a Z2-subshift with arbitrary entropy dimension. However, we are not
able to compute its directional entropy dimension.
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Example 6. There exists a Z2-subshift X with D(X) = α for any 0 < α ≤ 1.
Let r, s ≥ 1. Given j and 1 ≤ i < (Nj)

1
2r , we let

Pj,i = {(birc, bmsc) : ms ≤ ir}

and Pj =
⋃

i Pj,i. As Nj+1 ∼ ∏i≤N1/2r
j

(ib
r
s c)!, by a similar argument to the one in Example 5, one can

check that
D(X) =

r + s
2rs

.

The result follows from the fact that any α ∈ (0, 1] can be written as α = r+s
2rs for some r, s ≥ 1.

If X is a zero entropy Z2-subshift with D(X) = 1, then D(v) = 1 for all v by Theorem 2. In the
following, we construct such a Z2-subshift such that the directional entropy h(v) = 0 for every v.

Example 7. There is a Z2-subshift X with

D(X) = 1 and h(v) = 0 for all v.

For each n ∈ N, let p(n) be the n-th prime number, and π(n) the number of prime numbers less
than n. Given j and 1 ≤ i < π(

√
Nj), we let

Pj,i = {(a, b) ∈ Z2 : a2 + b2 ≤ p(i)2 < (a + 1)2 + (b + 1)2

with 0 ≤ a, b <
√

Nj},

and Pj =
⋃

i Pj,i. Then, the iterative formula is

Nj+1 ∼ ∏
p≤N1/2

j
p:prime

p!.

Hence, we have

log Nj+1 ∼ ∑
p≤N1/2

j
p:prime

p log p ∼ Nj

for all large j. This yields D(X) = 1.
For the calculation of directional entropy, by symmetry, it suffices to consider when v = e1. For

each j, the number of Cj patterns at the permuted positions that are contained in each pattern in
B0

j+1,j(X) is π(
√

Nj). Hence, by a simple induction, we have, for all i and k,

|B0
ii+k,li

(X)| ≤ |B0
li,li

(X)|∏
i+k−1
j=i π(

√
Nj).

It is well known that there exists a constant c such that π(x) ≤ cx/ log x for all x:

log |B0
ii+k,li

(X)| ≤ log |B0
li,li

(X)|
i+k−1

∏
j=i

π(
√

Nj)

≤ log |B0
li,li

(X)|ck
i+k−1

∏
j=i

√
Nj

log
√

Nj
.
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As li+k = li ·∏i+k−1
j=i

√
Nj, we have

log |B0
ii+k,li

(X)|
li+k

≤ 1
li

log |B0
li,li

(X)|ck
i+k−1

∏
j=i

(
1

log
√

Nj

)
→ 0

for k→ ∞. As in Example 5, we also have

log |Bii+k,li(X)|
li+k

→ 0 for k→ ∞.

Since this holds for all i, it follows that h(e1) = 0.

Example 5 gives a family of subshifts with 2D(X) = 2α = D(v) + 1 for all directions for each
α > 1/2. In the following, we show that there is an example with the same property for 0 < α ≤ 1/2.
Recall that three dot example satisfies D(X) = 1/2 and D(v) = 1 for all directions. Our example
shows that Z2-complexity may be spread out in all directions.

Example 8. Let 0 < α ≤ 1/2. Then, there is a Z2-subshift X with

D(X) = α and D(v) = 0 for all v ∈ S1.

Let r = 1/2α ≥ 1 and let Pj = {(ir, bir/jc) : 0 ≤ i ≤ (Nj)
1/2r} with qj = 1 and Pj = Pj,1. At the

j-th step, we permute the Cj patterns on the line y = 1
j x.

Then, the iterative formula for Nj is given by Nj+1 = ((Nj)
1/2r)!, from which it follows that

D(X) = 1/2r = α. As the number of Cj patterns at the permuted positions that are contained in each
pattern in B0

lj+1,lj
(X) is j1/r ≤ j, we have

|B0
lj+1,lj

(X)| ≤ |Cj|j = (Nj)
j,

from which we have |Blj+1,lj
(X)| ≤ ljlj+1(

√
Nj|B0

lj+1,lj
(X)|j)4 ≤ ljlj+1((Nj)

j+1/2)4. Hence, D(e1) = 0.
When v is not parallel to e1, then its directional entropy dimension can be calculated similarly to
Example 4.

The following table 1 summarizes the examples in this paper.

Table 1. Entropy dimension and directional entropy dimension.

Examples D(X) D(v) h(v) when D(v) = 1

1 1/2 D(v) = 1 for all v positive
2 1/2 D(v) = 1 for all v ∦ e2 positive

D(e2) = 0
3 3/4 D(e1) = 1 h(e1) = ∞

D(v) = 0 for all v ∦ e1
4 1/2 D(v0) = 1 h(v0) = 0

D(v) = 0 for all v ∦ v0
5 1

2 < α ≤ 1 D(v) = 2α− 1 for all v (∗)

7 1 D(v) = 1 for all v h(v) = 0
8 0 < α ≤ 1

2 D(v) = 0 for all v

(*) For α = 1, it seems that directional entropy depends on the arrangement of u(j)
i blocks in u(j+1)

1 .
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