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Abstract: Nonparametric two-sample or homogeneity testing is a decision theoretic problem
that involves identifying differences between two random variables without making parametric
assumptions about their underlying distributions. The literature is old and rich, with a wide variety
of statistics having being designed and analyzed, both for the unidimensional and the multivariate
setting. In this short survey, we focus on test statistics that involve the Wasserstein distance. Using an
entropic smoothing of the Wasserstein distance, we connect these to very different tests including
multivariate methods involving energy statistics and kernel based maximum mean discrepancy and
univariate methods like the Kolmogorov–Smirnov test, probability or quantile (PP/QQ) plots and
receiver operating characteristic or ordinal dominance (ROC/ODC) curves. Some observations are
implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric
two-sample testing’s classical and continued importance, we aim to provide useful connections for
theorists and practitioners familiar with one subset of methods but not others.

Keywords: two-sample testing; wasserstein distance; entropic smoothing; energy distance;
maximum mean discrepancy; QQ and PP plots; ROC and ODC curves

1. Introduction

Nonparametric two-sample testing (or homogeneity testing) deals with detecting differences
between two d-dimensional distributions, given samples from both, without making any parametric
distributional assumptions. The popular tests for d = 1 are rather different from those for d > 1,
and our interest is in tying together different tests used in both settings. There is massive literature on
the two-sample problem, having been formally studied for nearly a century, and there is no way we
can cover the breadth of this huge and historic body of work. Our aim is much more restricted—we
wish to study this problem through the eyes of the versatile Wasserstein distance. We wish to form
connections between several seemingly distinct families of such tests, both intuitively and formally,
in the hope of informing both practitioners and theorists who may have familiarity with some sets
of tests, but not others. We will also only introduce related work that has a direct relationship with
this paper.

There are also a large number of tests for parametric two-sample testing (assuming a form
for underlying distributions, like Gaussianity), and others for testing only differences in mean of
distributions (like Hotelling’s t-test, Wilcoxon’s signed rank test, Mood’s median test). Our focus will
be different from these—in this paper, we will restrict our attention only to nonparametric tests for
testing differences in distributions, i.e., differences in any moment of distributions that may not have a
known parametric form.
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Our paper started as an attempt to understand testing with the Wasserstein distance (also called
earth-mover’s distance or transportation distance). The main prior work in this area involved
studying the “trimmed” comparison of distributions by [1,2] with applications to biostatistics,
specifically population bioequivalence, and later by [3,4]. Apart from two-sample testing, the study
of univariate goodness-of-fit testing (or one-sample testing) was undertaken in [5–7], and summarized
exhaustively in [8]. There are other semiparametric works specific to goodness-of-fit testing for
location-scale families that we do not mention here, since they diverge from our interest in fully
nonparametric two-sample testing for generic distributions.

1.1. Contributions

In this survey-style paper, we uncover an interesting relationship between the multivariate
Wasserstein test and the (Euclidean) Energy distance test, also called the Cramer test,
proposed independently by [9,10]. This proceeds through the construction of a smoothed Wasserstein
distance, by adding an entropic penalty/regularization—varying the weight of the regularization
interpolates between the Wasserstein distance at one extreme and the Energy distance at the other
extreme. Due to the relationship between distances and kernels, we will also establish connections to
the kernel-based multivariate test by [11] called the Maximum Mean Discrepancy (MMD).

We summarize connections between the univariate Wasserstein test and popular univariate data
analysis tools like quantile–quantile (QQ) plots and the Kolmogorov–Smirnov test. Finally, the desire
to design a univariate distribution-free Wasserstein test will lead us to the formal study of Receiver
Operating Characteristic (ROC) and Ordinal Dominance (ODC) curves, relating to work by [12].

While we connect a wide variety of popular and seemingly disparate families of tests, there are
still further classes of tests that we do not have space to discuss. Some examples of tests quite different
from the ones studied here include rank based tests as covered by the excellent book [13], and graphical
tests that include spanning tree methods by [14] (generalizing the runs test by [15]), nearest-neighbor
based tests by [16,17], and the cross-match tests by [18]. The book by [19] is also a useful reference.

1.2. Paper Outline

The rest of this paper proceeds as follows. In Section 2, we formally present the notation and
setup of nonparametric two-sample testing, as well as briefly introduce three different ways of
comparing distributions—using cumulative distribution functions (CDFs), quantile functions (QFs)
and characteristic functions (CFs). The main contribution of this paper is Section 3, where we introduce
the entropy-smoothed Wasserstein distance, and we form a novel connection between the multivariate
Wasserstein distance to the multivariate Energy Distance, and to the kernel MMD. In Section 4,
we discuss the relation between the univariate Wasserstein two-sample test to PP and QQ plots/tests,
including the popular Kolmogorov–Smirnov test. In Section 6, we run some simulations to compare
the different classes of tests discussed. Lastly, in Section 5, we will design a univariate Wasserstein test
statistic that is also “distribution-free” unlike its classical counterpart, providing a careful and rigorous
analysis of its limiting distribution by connecting it to ROC/ODC curves. In summary, Sections 3–5,
respectively, discuss the following connections:

Wasserstein
entropic smoothing−−−−−−−−−−→ Energy Distance (ED) kernels−−−−→MMD;

Wasserstein
univariate setting−−−−−−−−−→ QQ/PP plots

change of norm−−−−−−−−→ Kolmogorov–Smirnov;

Wasserstein distribution-free variant−−−−−−−−−−−−−→ ODC curve axis reversal−−−−−−→ ROC curve.

We view the similarities and differences between these above tests through two lenses.
The first is the population viewpoint of how different tests work with different representations of
distributions; most of these tests are based on differences between quantities that completely specify
a distribution—(a) CDFs; (b) QFs; and (c) CFs. The second viewpoint is the finite sample behavior of
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these statistics under the null hypothesis; most of these tests have null distributions based on norms of
Brownian bridges, alternatively viewed as infinite sums of weighted chi-squared distributions (due to
the Karhunen–Loeve expansion). We will return to these points as the paper proceeds.

2. Nonparametric Two-Sample Testing

More formally, given i.i.d. samples X1, ..., Xn∼P and Y1, ..., Ym∼Q, where P and Q are probability
measures on Rd, we denote by Pn and Qm the corresponding empirical measures. A test η is a function
from the data Dn,m := {X1, ...Xn, Y1, ..., Ym} ∈ Rd(n+m) to {0, 1} (or to [0, 1] if it is a randomized test),
where 0/1 indicates acceptance/rejection of the null hypothesis.

Most tests proceed by calculating a scalar test statistic Tn,m := T(Dn,m) ∈ R and deciding H0

or H1 depending on whether Tn,m, after suitable normalization, is smaller or larger than a threshold
tα. tα is calculated based on a prespecified false positive rate α, chosen so that EH0 η ≤ α, at least
asymptotically. Indeed, all tests considered in this paper are of the form

η(X1, ..., Xn, Y1, ..., Ym) = I (Tn,m > tα) .

We follow the Neyman–Pearson paradigm, where a test is judged by its power EH1 η which is
some function φ(m, n, d, P, Q, α). We say that a test η is consistent, in the classical sense, when

φ→ 1 as m, n→ ∞, α→ 0.

All the tests we consider in this paper will be consistent in the classical sense mentioned above.
Establishing general conditions under which these tests are consistent in the high-dimensional setting
is largely open. All the test statistics considered here are of the form that they are typically small
under H0 and large under H1 (usually with appropriate scaling, they converge to zero and to infinity,
respectively, with infinite samples). The aforementioned threshold tα will be determined by the
distribution of the test statistic being used under the null hypothesis (i.e., assuming the null was true,
we would like to know the typical variation of the statistic, and we reject the null if our observation is
far from what is typically expected under the null). This naturally leads us to study the null distribution
of our test statistic, i.e., the distribution of our statistic under the null hypothesis. Since these are crucial
to running and understanding the corresponding tests, we will pursue their description in detail in
this paper.

2.1. Three Ways to Compare Distributions

The literature broadly has three dominant ways of comparing distributions, both in one and in
multiple dimensions. These are based on three different ways of characterizing distributions—CDFs, CFs
and QFs. Many of the tests we will consider involve calculating differences between (empirical estimates
of) these quantities.

For example, it is well known that the Kolmogorov–Smirnov (KS) test by [20,21] involves
differences in empirical CDFs. We shall later see that in one dimension, the Wasserstein distance
calculates differences in QFs.

The KS test, the related Cramer von-Mises criterion by [22,23], and Anderson–Darling test by [24]
are very popular in one dimension, but their usage has been more restricted in higher dimensions.
This is mostly due to the curse of dimensionality involved with estimating multivariate empirical
CDFs. While there has been work on generalizing these popular one-dimensional to higher dimensions,
like [25], these are seemingly not the most common multivariate tests.

Kernel and distance based tests have recently gained in popularity. As we will recap in more
detail in later sections, it is known that the Gaussian kernel MMD implicitly calculates a (weighted)
difference in CFs and the Euclidean energy distance implicitly works with a difference in (projected) CDFs.
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3. Entropy Smoothed Wasserstein Distances

The family of p-Wasserstein distances is a by-product of optimal transport theory [26]. Optimal
transport can be used to compare probability measures in metric spaces; we consider here the classical
case where that metric space is Rd endowed with the usual Euclidean metric.

3.1. Wasserstein Distance

Given an exponent p ≥ 1, the definition of the p-Wasserstein distance reads:

Definition 1 (Wasserstein Distances). For p ∈ [1, ∞) and Borel probability measures P, Q on Rd with finite
p-moments, their p-Wasserstein distance ([26], Section 6) is

Wp(P, Q) =

(
inf

π∈Γ(P,Q)

∫
Rd×Rd

‖X−Y‖pdπ

)1/p
, (1)

where Γ(P, Q) is the set of all joint probability measures on Rd ×Rd whose marginals are P, Q, i.e., for all
subsets A ⊂ Rd, we have π(A×Rd) = P(A) and π(Rd × A) = Q(A).

A remarkable feature of Wasserstein distances is that Definition 1 applies to all measures regardless
of their absolute continuity with respect to the Lebesgue measure: The same definition works for both
empirical measures and for their densities if they exist.

Writing 1n for the n-dimensional vector of ones, when comparing two empirical measures with
uniform (the Wasserstein machinery works also for non-uniform weights. We do not mention this in
this paper because all of the measures we consider in the context of two-sample testing are uniform)
weight vectors 1n/n and 1m/m, the Wasserstein distance Wp(Pn, Qm) exponentiated to the power p
is the optimum of a network flow problem known as the transportation problem ([27], Section 7.2).
This problem has a linear objective and a polyhedral feasible set, defined, respectively, through the
matrix MXY of pairwise distances between elements of X and Y raised to the power p:

MXY := [‖Xi −Yj‖p]ij ∈ Rn×m, (2)

and the polytope Unm defined as the set of n×m nonnegative matrices such that their row and column
sums are equal to 1n/n and 1m/m, respectively:

Unm := {T ∈ Rn×m
+ : T1m = 1n/n, TT1n = 1m/m}. (3)

Let 〈A, B 〉 := trace(ATB) be the usual Frobenius dot-product of matrices. Combining Equations (2)
and (3), we have that Wp

p (Pn, Qm) is the optimum of a linear program S of n×m variables,

Wp
p (Pn, Qm) = min

T∈Unm
〈T, MXY 〉, (4)

of feasible set Unm and cost matrix MXY.
We finish this section by pointing out that the rate of convergence as n, m → ∞ of Wp(Pn, Qm)

towards Wp(P, Q) gets slower as the dimension d grows under mild assumptions. For simplicity of
exposition, consider m = n. For any p ∈ [1, ∞), it follows from [28] that for d ≥ 3, the difference
between Wp(Pn, Qn) and Wp(P, Q) scales as n−1/d. We also point out that when d = 2, the rate actually

scales as
√

ln(n)√
n (see [29]). Finally, we note that when considering p = ∞, the rates of convergence

are different to those when 1 ≤ p < ∞ . The work of [30–32] shows that the rate of convergence

of W∞(Pn, Qn) towards W∞(P, Q) is of the order
(

ln(n)
n

)1/d
when d ≥ 3 and (ln(n))3/4

n1/2 when d = 2.
Hence, the original Wasserstein distance by itself may not be a favorable choice for a multivariate
two-sample test.
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3.2. Entropic Smoothing

Aside from the slow convergence rate of the Wasserstein distance between samples from two
different measures to their distance in population, computing the optimum of Equation (4) is expensive.
This can be easily seen by noticing that the transportation problem boils down to an optimal assignment
problem when n = m. Since the resolution of the latter has a cubic cost in n, all known algorithms that
can solve the optimal transport problem scale at least super-cubicly in n. Using an idea that can be
traced back as far as Schrodinger [33], Cuturi [34] recently proposed to use an entropic regularization of
the optimal transport problem, in order to define the Sinkhorn divergence between P, Q parameterized
by λ ≥ 0 as

Sp
λ(P, Q) := min

T∈Unm
λ〈T, MXY 〉 − E(T), (5)

where E(T) is the entropy of T seen as a discrete joint probability distribution, namely
E(T): = −∑ij Tij log(Tij).

This approach has two benefits: (i) because E(T) is 1-strongly convex with respect to the `1 norm,
the regularized problem is itself strongly convex and admits a unique optimal solution, written Tλ,
as opposed to the initial OT problem, for which the minimizer may not be unique; (ii) this optimal
solution Tλ is a diagonal scaling of e−MXY , the element-wise exponential matrix of −MXY. One can
easily show using the Lagrange method of multipliers that there must exist two non-negative vectors
u ∈ Rn, v ∈ Rm such that Tλ: =Due−MXY Dv, where Du Dv are diagonal matrices with u and v on their
diagonal. The solution to this diagonal scaling problem can be found efficiently through Sinkhorn’s
algorithm [35], which has a linear convergence rate [36]. Sinkhorn’s algorithm can be implemented in
a few lines of code that only require matrix vector products and elementary operations, hence they are
easily parallelized on modern hardware.

3.3. Two Extremes of Smoothing: Wasserstein and Energy Distance

An interesting class of tests are distance-based “energy statistics” as introduced originally by [9],
and later by [10]. The statistic, called the Cramer statistic by the latter paper and Energy Distance by the
former, corresponds to the population quantity

ED := 2E‖X−Y‖ −E‖X−X′‖ −E‖Y−Y′‖,

where X, X′ ∼ P and Y, Y′ ∼ Q (all i.i.d.). The associated test statistic is

EDb :=
2

mn

n

∑
i=1

m

∑
j=1
‖Xi −Yj‖ −

1
n2

n

∑
i,j=1
‖Xi −Xj‖ −

1
m2

m

∑
i,j=1
‖Yi −Yj‖.

It was proved by the authors that ED(P, Q) = 0 iff P = Q. Hence, rejecting when EDb is larger than
an appropriate threshold leads to a test which is consistent against all fixed alternatives where P 6= Q
under mild conditions (like finiteness of E[X],E[Y]); see aforementioned references for details. Then,
the Sinkhorn divergence defined in Equation (5) can be linked to the the energy distance when the
parameter λ is set to λ = 0— namely when only entropy is considered in the resolution of Equation (5),
through the following formula:

EDb = 2S1
0(Pn, Qm)− S1

0(Pn, Pn)− S1
0(Qm, Qm). (6)
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Indeed, notice first that the solution to Equation (5) at λ = 0 is the maximum entropy table in Unm,
namely the outer product (1n1T

m)/nm of the marginals 1n/n and 1m/m. Hence, Equation (6) follows
from the observations that

S1
0(Pn, Qm) =

1
nm ∑

i,j
‖Xi −Yj‖,

S1
0(Pn, Pn) =

1
n2

n

∑
i,j=1
‖Xi −Xj‖,

S1
0(Qm, Qm) =

1
m2

m

∑
i,j=1
‖Yi −Yj‖.

It is also known that the population energy distance is related to the integrated difference in
CDFs, i.e.,

ED(P, Q) =
∫

(a,t)∈Sd−1×R

[FX(a, t)− FY(a, t)]2da dt,

where FX(a, t) = P(aTX ≤ t) (similarly FY(a, t)) is the population CDF of X when projected along
direction a and Sd−1 is the surface of the d-dimensional unit sphere; see [9] for a proof.

3.4. From Energy Distance to Kernel Maximum Mean Discrepancy

Another popular class of tests that has emerged over the last decade are kernel-based tests
introduced independently by [37,38], and expanded on in [11]. Without getting into technicalities that
are irrelevant for this paper, the Maximum Mean Discrepancy between P, Q is defined as

MMD(Hk, P, Q):= max
‖ f‖Hk

≤1
EP f (X)−EQ f (Y),

whereHk is a Reproducing Kernel Hilbert Space associated with Mercer kernel k(·, ·), and ‖ f‖Hk ≤ 1
is its unit norm ball.

While it is easy to see that MMD ≥ 0 always, and also that P = Q implies MMD = 0, Reference [37]
shows that if k is “characteristic”, the equality holds iff P = Q. The Gaussian kernel k(a, b) =

exp(−‖a− b‖2/γ2) is a popular example of a characteristic kernel, and in this case, MMD can be
interpreted as the integrated difference between characteristic functions. Indeed, by Bochner’s theorem
(see [39]), the population quantity MMD2 with the Gaussian kernel is precisely (up to constants)∫

Rd
|ϕX(t)− ϕY(t)|2e−γ2‖t‖2

dt,

where ϕX(t) = Ex∼P[e−itTx] is the characteristic function of X at frequency t (similarly ϕY(t)).
Using the Riesz representation theorem and the reproducing property of Hk, one can argue that
MMD(Hk, P, Q) = ‖EPk(X, .)−EQk(Y, .)‖Hk and conclude that

MMD2 = Ek(X, X′) +Ek(Y, Y′)− 2Ek(X, Y).

This gives rise to a natural associated test statistic, a plugin estimator of MMD2:

MMD2
u(k(·, ·)) :=

1
n2

n

∑
i,j=1

k(Xi, Xj) +
1

m2

m

∑
i,j=1

k(Yi, Yj)−
2

mn

n

∑
i=1

m

∑
j=1

k(Xi, Yj).

At first sight, the Energy Distance and the MMD look like fairly different tests. However,
there is a natural connection that proceeds in two steps. Firstly, there is no reason to stick to only
the Euclidean norm ‖ · ‖2 to measure distances for ED—the test can be extended to other norms,
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and in fact also other metrics; Reference [40] explains the details for the closely related independence
testing problem. Following that, Reference [41] discusses the relationship between distances and
kernels (again for independence testing, but the same arguments also hold in the two-sample testing
setting). Loosely speaking, for every kernel k, there exists a metric d (and also vice versa), given by
d(x, y) := (k(x, x)+ k(y, y))/2− k(x, y), such that MMD with kernel k equals ED with metric d. This is a
very strong connection between these two families of tests—the energy distance is a special case of the
kernel MMD, corresponding to a particular choice of kernel, and the kernel MMD itself corresponds to
an extremely smoothed Wasserstein distance, for a particular choice of distance.

4. Univariate Wasserstein Distance and PP/QQ Tests

For univariate random variables, a PP plot is a graphical way to view differences in empirical
CDFs, while QQ plots are analogous to comparing QFs. Instead of relying on graphs, we can also
make such tests more formal and rigorous as follows. We first present some results on the asymptotic
distribution of the difference between Pn and Qm when using the distance between the CDFs Fn and Gm

and then later when using the distance between the QFs F−1
n and G−1

m . For simplicity, we assume that
both distributions P and Q are supported on the interval [0, 1]; we remark that under mild assumptions
on P and Q, the results we present in this section still hold without such a boundedness assumption.
We assume for simplicity that the CDFs F and G have positive densities on [0, 1].

4.1. Comparing CDFs (PP)

We start by noting Fn may be interpreted as a random element taking values in the space D([0, 1])
of right continuous functions with left limits. It is well known that

√
n (Fn − F)→w B ◦ F, (7)

where B is a standard Brownian bridge in [0, 1] and where the weak convergence→w is understood as
convergence of probability measures in the space D([0, 1]); see Chapter 3 in [42] for details. From this
fact and the independence of the samples, it follows that under the null hypothesis H0 : P = Q,
as n, m→ ∞ √

mn
n + m

(Fn −Gm) =

√
mn

n + m
(Fn − F) +

√
mn

n + m
(G−Gm)→w B ◦ F. (8)

The previous fact and continuity of the function h ∈ D([0, 1]) 7→
∫ 1

0 (h(t))
2dt imply that as

n, m→ ∞, we have under the null,

mn
n + m

∫ 1

0
(Fn(t)−Gm(t))

2 dt→w

∫ 1

0
(B(F(t)))2dt. (9)

Observe that the above asymptotic null distribution depends on F, which is unknown in practice.
This is an obstacle when considering any Lp-distance, with 1 ≤ p < ∞, between the empirical cdfs Fn

and Gm. Luckily, a different situation occurs when one considers the L∞-distance between Fn and Gm.
Under the null, using Equation (7) again, we deduce that√

mn
n + m

‖Fn −Gm‖∞ →w ‖B ◦ F‖∞ = ‖B‖∞, (10)

where the equality in the previous expression follows from the fact that the continuity of F implies that
the interval [0, 1] is mapped onto the interval [0, 1]. This is known as the Kolmogorov–Smirnov test,
and is hence appropriate for two-sample problems. A related statistic, called the Anderson-Darling
test, will also be considered in the experiments.
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4.2. Comparing QFs (QQ)

We now turn our attention to QQ (quantile–quantile) plots and specifically the L2-distance
between F−1

n and G−1
m . It can be shown that if F has a differentiable density f which (for the sake of

simplicity) we assume is bounded away from zero, then

√
n(F−1

n − F−1)→w
B

f ◦ F−1 .

For a proof of the above statement, see Chapter 18 in [43]; for an alternative proof where the
weak convergence is considered in the space of probability measures on L2((0, 1)) (as opposed to the
space D([0, 1]) we have been considering thus far), see [8]. We note that from the previous result and
independence, it follows that under the null hypothesis H0 : P = Q,√

mn
n + m

(F−1
n −G−1

m )→w
B

f ◦ F−1 .

In particular, by continuity of the function h ∈ L2((0, 1)) 7→
∫ 1

0 (h(t))
2dt, we deduce that

mn
n + m

∫ 1

0
(F−1

n −G−1
m )2dt→w

∫ 1

0

(B(t))2

( f ◦ F−1(t))2 dt.

Hence, as was the case when we considered the difference of the cdfs Fn and Gm, the asymptotic
distribution of the L2-difference (or analogously any Lp-difference for finite p) of the empirical quantile
functions is also distribution dependent. Note, however, that there is an important difference between
QQ and PP plots when using the L∞ norm. We saw that the asymptotic distribution of the L∞ norm
of the difference of Fn and Gm is (under the null hypothesis) distribution free. Unfortunately, in the
quantile case, we obtain √

mn
n + m

‖F−1
n −G−1

n ‖∞ →w ‖
B

f ◦ F−1 ‖∞,

which, of course, is distribution dependent. Since one would have to resort to computer-intensive
Monte-Carlo techniques (like bootstrap or permutation testing) to control type-1 error, these tests are
sometimes overlooked (though with modern computing speeds, they merit further study).

4.3. Wasserstein Is a QQ Test

Recall that, for p ∈ [1, ∞), the p-Wasserstein distance between two probability measures P, Q on
R with finite p-moments is given by Equation (1).

Because the Wasserstein distance measures the cost of transporting mass from the original
distribution P into the target distribution Q, one can say that it measures “horizontal” discrepancies
between P and Q. Intuitively, two probability distributions P and Q that are different over “long”
(horizontal) regions will be far away from each other in the Wasserstein distance sense because, in that
case, mass has to travel long distances to go from the original distribution to the target distribution.
In the one-dimensional case (in contrast with what happens in dimension d > 1), the p-Wasserstein
distance has a simple interpretation in terms of the quantile functions F−1 and G−1 of P and Q,
respectively. The reason for this is that the optimal way to transport mass from P to Q has to satisfy a
certain monotonicity property that we describe in the proof of the following proposition. This is a well
known fact that can be found, for example, in [19].

Proposition 1. The p-Wasserstein distance between two probability measures P and Q on R with p-finite
moments can be written as

Wp
p (P, Q) =

∫ 1

0
|F−1(t)−G−1(t)|pdt,
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where F−1 and G−1 are the quantile functions of P and Q, respectively.

Having considered the p-Wasserstein distance Wp(P, Q) for p ∈ [1, ∞) in Proposition 1,
we conclude this section by considering the case p = ∞. Let P, Q be two probability measures on R
with bounded support. That is, assume that there exists a number N > 0 such that supp(P) ⊆ [−N, N]

and supp(Q) ⊆ [−N, N]. We define the ∞-Wasserstein distance between P and Q by

W∞(P, Q) := inf
π∈Γ(P,Q)

esssupπ|x− y|.

Proceeding as in the case p ∈ [1, ∞), it is possible to show that the ∞-Wasserstein distance between
P and Q with bounded supports can be written in terms of the difference of the corresponding quantile
functions as

W∞(P, Q) = ‖F−1−G−1‖∞.

The Wasserstein distance is called the Mallow’s distance in the statistical literature, where it has
been studied due to its ability to capture weak convergence precisely—Wp(Fn, F) converges to 0 if
and only if Fn converges in distribution to F and also the p-th moment of X under Fn converges to the
corresponding moment under F; see [44–46]. It is also related to the Kantorovich–Rubinstein metric
from optimal transport theory.

5. Distribution-Free Wasserstein Tests and ROC/ODC Curves

As we earlier saw, under H0 : P = Q, the statistic mn
n+m

∫ 1
0

(
F−1

n (t)−G−1
m (t)

)2 dt has an asymptotic
distribution that is not distribution free, i.e., it depends on F. We also saw that as opposed to what
happens with the asymptotic distribution of the L∞ distance between Fn and Gm, the asymptotic
distribution of ‖F−1

n −G−1
m ‖∞ does depend on the cdf F. In this section, we show how we can construct

a distribution-free Wasserstein test by connecting it to the theory of ROC and ODC curves.

5.1. Relating Wasserstein Distance to ROC and ODC Curves

Let P and Q be two distributions on R with cdfs F and G and quantile functions F−1 and G−1,
respectively. We define the ROC curve between F and G as the function.

ROC(t) := 1− F(G−1(1− t)), t ∈ [0, 1].

In addition, we define their ODC curve by

ODC(t) := G(F−1(t)), t ∈ [0, 1].

The following are properties of the ROC curve (see [12]):

1. The ROC curve is increasing and ROC(0) = 0, ROC(1) = 1.
2. If G(t) ≥ F(t) for all t, then ROC(t) ≥ t for all t.
3. If F, G have densities with monotone likelihood ratio, then the ROC curve is concave.
4. The area under the ROC curve is equal to P(Y < X), where Y∼Q and X∼P.

Intuitively speaking, the faster the ROC curve increases towards the value 1, the easier it is to
distinguish the distributions P and Q. Observe from their definitions that the ROC curve can be
obtained from the ODC curve after reversing the axes. Given this, we focus from this point on only
one of them, the ODC curve being more convenient.

The first observation about the ODC curve is that it can be regarded as the quantile function of
the distribution G]P (the push forward of P by G) on [0, 1], which is defined by

G]P([0, α)) := P
(

G−1 ([0, α))
)

, α ∈ [0, 1].
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Similarly, we can consider the measure Gm]Pn, that is, the push forward of Pn by Gm. We crucially
note that the empirical ODC curve Gm ◦ F−1

n is the quantile function of Gm]Pn. From Section 4,
we deduce that

Wp
p (Gm]Pn, G]P) =

∫ 1

0
|Gm ◦ F−1

n (t)−G ◦ F−1(t)|pdt

for every p ∈ [1, ∞) and also

W∞(Gm]Pn, G]P) = ||Gm ◦ F−1
n −G ◦ F−1||∞.

That is, the p-Wasserstein distance between the measures Gm]Pn and G]P can be computed by
considering the Lp distance of the ODC curve and its empirical version.

First, we argue that under the null hypothesis H0 : P = Q, the distribution of the empirical ODC
curve is actually independent of P. In particular, Wp

p (Gm]Pn, G]P) and W∞(Gm]Pn, G]P) are distribution
free under the null! This is the content of the next lemma, proved in the Appendix.

Lemma 1 (Reduction to uniform distribution). Let F, G be two continuous and strictly increasing CDFs
and let Fn and Gm be the empirical CDFs. Consider the (unknown) random variables, which are distributed
uniformly on [0, 1],

UX
k := F(Xk), UY

k := G(Yk).

Let FU
n be the empirical CDF associated with the (uniform) UXs and let GU

m be the empirical CDF associated
with the (uniform) UYs. Then, under the null H0 : F = G, we have

Gm(Xk) = GU
m(U

X
k ), ∀k ∈ {1, . . . , n} .

In particular, we have Gm ◦ F−1
n (t) = GU

m ◦ FU
n
−1
(t), ∀t ∈ [0, 1].

Proof. We denote by Y(1) ≤ · · · ≤ Y(m) the order statistic associated to the Ys. For k = 1, . . . , m− 1
and t ∈ (0, 1), we have Gm(t) = k

m if and only if t ∈ [Y(k), Y(k+1)), which holds if and only if
t ∈ [F−1(UY

(k)), F−1(UY
(k+1))), which, in turn, is equivalent to F(t) ∈ [UY

(k), UY
(k+1)). Thus, Gm(t) = k

m if

and only if GU
m(F(t)) =

k
m . From the previous observations, we conclude that Gm = GU

m ◦ F. Finally,
since Xk = F−1(UX

k ), we conclude that

Gm(Xk) = GU
m ◦ F ◦ F−1(UX

k ) = GU
m(U

X
k ).

This concludes the proof.

Note that since UX
k , UY

k are obviously instantiations of uniformly distributed random variables,
the right hand side of the last equation only involves uniform random variables, and hence the
distribution of Gm ◦ F−1

n is independent of F, G under the null. Now, we are almost done, and this
above lemma will imply that the Wasserstein distance between Gm ◦ F−1

n and the uniform distribution
U[0, 1] (since G ◦ F−1(t) = t = U−1(t) = U(t) for t ∈ [0, 1] when G = F) also does not depend on F, G.

More formally, one may establish a result on the asymptotic distribution of the statistic
Wp

p (Gm]Pn, G]P) and W∞(Gm]Pn, G]P). We do this by first considering the asymptotic distribution
of the difference between the empirical ODC curve and the population ODC curve regarding both of
them as elements in the space D([0, 1]). This is the content of the following Theorem which follows
directly from the work of [47] (see [12]).

Theorem 1. Suppose that F and G are two CDFs with densities f , g satisfying

g(F−1(t))
f (F−1(t))

≤ C,
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for all t ∈ [0, 1]. In addition, assume that n
m → λ ∈ [0, ∞) as n, m→ ∞. Then,√

mn
n + m

(
Gm(F−1

n (·))−G(F−1(·))
)
→w

√
λ

λ + 1
B1(G ◦ F−1(·)) +

√
1

λ + 1
g(F−1(·))
f (F−1(·))B2(·),

where B1 and B2 are two independent Brownian bridges and where the weak convergence must be interpreted as
weak convergence in the space of probability measures on the space D([0, 1]).

As a corollary, under the null hypothesis H0: P = Q, we obtain the following. Suppose that the
CDF F of P is continuous and strictly increasing. Then,

mn
n + m

W2
2 (Gm]Pn, G]P) =

mn
n + m

∫ 1

0
(Gm(F−1

n (t))− t)2dt→w

∫ 1

0
(B(t))2dt, (11)√

mn
n + m

W∞(Gm]Pn, G]P) =
√

mn
n + m

sup
t∈[0,1]

|Gm(F−1
n (t))− t| →w sup

t∈[0,1]
|B(t)|. (12)

To see this, note that by Lemma 1 that it suffices to consider F(t) = t in [0, 1]. In that case,
the assumptions of Theorem 1 are satisfied and the result follows directly. The latter test based on the
infinity norm is extremely similar to the Kolmogorov–Smirnov test in theory and practice—one may
also note the similarity of the above expressions with Equations (9) and (10).

The takeaway message of this section is that instead of considering the Wasserstein distance
between Fm and Gn, whose null distribution depends on unknown F, one can instead consider the
Wasserstein distance between Gm(F−1

n ) and the uniform distribution U[0, 1], since its null distribution
is independent of F.

6. Experiments

One cannot, in general, have results comparing the powers of different nonparametric tests.
Which test achieves a higher power depends on the class of alternatives being considered—some
tests are more sensitive to deviations near the median, others are more sensitive to differences in the
tails, and yet others are more sensitive to deviations that are not represented in the original space
but instead in an underlying Hilbert space embedding of distributions (MMD and ED are examples
of this). Hence, the statistical literature has very sparse results on theoretical comparisons between
distributions, and one must often resort to experiments to get a sense of their relative performance on
examples of interest.

In this section, we report results for two-sample tests run with the following example distributions
(the parameters for the k-th pair of distributions (for k = 1, 2, 3, 4) so that the distributions have their
first k-1 central moments as identical, but differ in their k-th central moments):

1. Beta(2,2) versus Beta(1.8,2.16);
2. Exponential(1), equivalently Gamma(1,1), versus Gamma(2,0.5);
3. Standard Normal versus Student’s t;
4. Generalized extreme value versus Generalized Pareto.

We use some common test statistics that have already been mentioned in this
paper—Kolmogorov–Smirnov, Anderson–Darling, Maximum Mean Discrepancy (MMD), ROC
(infinity norm) and the smoothed Wasserstein distance with four regularizations: 0 (corresponding to
Energy Distance), 10, 50 and infinity (corresponding to Wasserstein distance).

All of these statistics are nonparametric, in the sense that they do not assume a particular form
or have access to the true underlying PDFs. Nevertheless, all of the examples that we construct are
parametric, so we also include the “oracle” likelihood ratio test (we term it as an oracle since it uses
extra knowledge, namely the exact form of the PDFs, to which the other tests do not have access).
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One may note from Figure 1 that the precision-recall curve of nonparametric tests are often much
worse than the oracle likelihood ratio test, and this is indeed to be expected—the true utility of the
nonparametric tests would be observed in a real-world example where one wishes to abstain from
making any (possibly wrong, biased or misleading) parametric assumptions. As might be expected
from the discussion at the start of the section, the tests are rather difficult to compare. Among the tests
considered, the ordering of the curves changes over different experiments, and even within the class
of Wasserstein tests. While general comparisons are difficult, there is a need for theoretical analysis
comparing classes of tests in special cases of practical interest (for example, mean-separated Gaussians).
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Figure 1. The left panel contains the two PDFs used for the simulation, and the right panel contains
the resulting precision–recall curve for several tests. From top to bottom: distributions differing in
their first, second, third and fourth moments.
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The role of entropic smoothing parameter λ is also currently unclear, and whether there is a
data dependent way to pick it so as to maximize power. This could be an interesting direction of
future research.

7. Conclusions

In this paper, we connect a wide variety of univariate and multivariate test statistics, with the
central piece being the Wasserstein distance. The Wasserstein statistic is closely related to univariate
tests like the Kolmogorov–Smirnov test, graphical QQ plots, and a distribution-free variant of the
test is proposed by connecting it to ROC/ODC curves. Through entropic smoothing, the Wasserstein
test is also related to the multivariate tests of Energy Distance and hence transitively to the Kernel
Maximum Mean Discrepancy. We hope that this is a useful resource to connect the different families of
two-sample tests, many of which can be analyzed under the two umbrellas of our paper—whether they
differentiate between CDFs, QFs or CFs, and what their null distributions look like. Many questions
remain open—for example, the role of smoothing parameter λ.
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Appendix A. Proof of Proposition 1

Proof. We first observe that the infimum in the definition of Wp(P, Q) can be replaced by minimum,
namely, there exists a transportation plan π ∈ Γ(P, Q) that achieves the infimum in Equation (1).
This can be deduced in a straightforward way by noting that the expression

∫
R×R|x − y|pdπ(x, y)

is linear in π and that the set Γ(P, Q) is compact in the sense of weak convergence of probability
measures on R×R. Let us denote by π∗ an element in Γ(P, Q) realizing the minimum in Equation (1).
Let (x1, y1) ∈ supp(π∗) and (x2, y2) ∈ supp(π∗) (here supp(π∗) stands for the support of π) and
suppose that x1 < x2. We claim that the optimality of π∗ implies that y1 ≤ y2. To see this, suppose
for the sake of contradiction that this is not the case, that is, suppose that y2 < y1. We claim that in
that case

|x1 − y2|p + |x2 − y1|p < |x1 − y1|p + |x2 − y2|p. (A1)

Note that for p = 1, this follows in a straightforward way. For the case p > 1, first note that
x1 < x2 and y2 < y1 imply that there exists t ∈ (0, 1) such that tx1 + (1− t)y1 = tx2 + (1− t)y2. Now,
note that

|x1 − y2| = |x1 − (tx1 + (1− t)y1)|+ |(tx1 + (1− t)y1)− y2|

because the points x1, y2 and tx1 + (1− t)y1 all lie on the same line segment. However, then, using the
fact that tx1 + (1− t)y1 = tx2 + (1− t)y2, we can rewrite the previous expression as

|x1 − y2| = (1− t)|x1 − y1|+ t|y2 − x2|.

Using the strict convexity of the function t 7→ tp ( when p > 1), we deduce that

|x1 − y2|p < (1− t)|x1 − y1|p + t|x2 − y2|p.

In a similar fashion, we obtain

|x2 − y1|p < t|x1 − y1|p + (1− t)|x2 − y2|p.
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Adding the previous two inequalities we obtain Equation (A1). Note, however, that (A1)
contradicts the optimality of π∗ because it shows that π∗ is not cyclically monotone, which essentially
means that it is possible to rearrange the way mass is transported from P to Q by π∗ in order to reduce
the transportation cost (it would be cheaper to send mass from x1 to y2 and from x2 to y1 than to send
mass from x1 to y1 and from x2 to y2). Therefore, we conclude that if (x1, y1) ∈ supp(π∗), (x2, y2) ∈ π∗

and x1 < x2, then y1 ≤ y2.
Now, for x ∈ supp(P) and y ∈ supp(Q), we claim that (x, y) ∈ supp(π∗) if and only if

F(x) = G(y). To see this, note that from the monotonicity property just established, we deduce that
(x, y) ∈ supp(π∗) if and only if π∗(R, (−∞, y]) = π∗((−∞, x]), (−∞, y]) = π∗((−∞, x],R). In turn,
the fact that π∗ ∈ Γ(P, Q) implies that π∗((−∞, x],R) = F(x) and π∗(R, (−∞, y]) = G(y). From the
previous relation, we conclude that

∫
R×R
|x− y|pdπ∗(x, y) =

∫
supp(π∗)

|x− y|pdπ∗(x, y) =
∫ 1

0
|F−1(t)− G−1(t)|pdt,

as we wanted to show.
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