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Abstract: Machine learning plays a vital role in several modern economic and industrial fields,
and selecting an optimized machine learning method to improve time series’ forecasting accuracy
is challenging. Advanced machine learning methods, e.g., the support vector regression (SVR)
model, are widely employed in forecasting fields, but the individual SVR pays no attention to the
significance of data selection, signal processing and optimization, which cannot always satisfy the
requirements of time series forecasting. By preprocessing and analyzing the original time series, in
this paper, a hybrid SVR model is developed, considering periodicity, trend and randomness, and
combined with data selection, signal processing and an optimization algorithm for short-term load
forecasting. Case studies of electricity power data from New South Wales and Singapore are regarded
as exemplifications to estimate the performance of the developed novel model. The experimental
results demonstrate that the proposed hybrid method is not only robust but also capable of achieving
significant improvement compared with the traditional single models and can be an effective and
efficient tool for power load forecasting.

Keywords: short-term load forecasting; data selection; support vector regression; signal processing;
optimization algorithm

1. Introduction

Accurate short-term load forecasting (STLF) plays a vital part in power system operation. A highly
accurate forecasting method is one of the most important approaches used in improving power system
management, especially in the power market [1]. Effective forecasting helps to establish electrical
power scheduling and reduce management risk, which is an absolutely necessary component of power
system risk management [2,3]. If the performance of the electric load forecasting model could be
effectively boosted, considerable influence would be produced. Taking China as an example, the State
Grid Corporation of China has rules stating that the spinning reserve capacity must be 3%–5% of the
installed capacity. If the forecasting accuracy could be improved by 1%, a considerable economic benefit
would be generated, i.e., approximately 161,042.688 MW h energy in one day and 58,780,581.12 MW h
in one year could be saved [4].

In contrast, inaccurate forecast results lead to considerable electrical power system losses.
Overestimated forecasts will produce unnecessary electricity; alternately, underestimated forecasts
will cause trouble in providing enough electrical power, and that means high losses for the power
market [5]. Meanwhile, inaccurate forecasts will lead to a direct increase of operating costs, and the
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operation of the power system is very sensitive to load forecasting errors. Hobbs et al. [6] concluded
that a decrease in power load forecasting error in terms of a mean absolute percentage error of 1%
reduces the variable generation cost between $0.6 and $1.6 million annually for a 10,000 MW utility
with an MAPE of approximately 4%. Many severe blackout disasters that seriously affected the normal
production and lives of people have been documented. Examples include the U.S.–Canada blackout in
2003, the southern part of Moscow blackout in 2005, the New York blackout in 2006 and the Indian
power grid collapse in 2012 [7,8]. Obviously, if we could generate an early warning before these
events, based on a robust forecasting model, effective measures could be taken to avoid these types of
accidents. However, electric power systems are influenced by many factors, including holidays, policy,
the social and natural environment, etc. [9]. Therefore, developing a novel and robust load forecasting
algorithm and improving the forecasting performance are highly desirable for power load forecasts.

Some researchers began to focus on the short-term load forecasting several years ago; hence, a
variety of models have been developed and proposed for STLF. These forecasting algorithms can
be classified into two types: conventional statistical algorithms and artificial intelligence algorithms.
The conventional statistical algorithms, which are regarded as stochastic time series models, only
employ historical data. These algorithms are simple to apply and easy to implement. Therefore, a
variety of time series models are commonly employed in load prediction, including the autoregressive
model [10], autoregressive moving average model [11,12], autoregressive integrated moving average
model [13], regression model [14], multiple linear regression [15], general exponential smoothing [16],
Kalman filtering method [17], etc. However, the relevant literature suggests that traditional methods
have unavoidable defects, i.e., they cannot effectively interpret the complicated relationship between
electric power load data and stochastic factors such as social events and time periodicity; thus, the
defects can lead to highly unpredictable variations in power demand [18].

The artificial intelligence models have been widely used in several areas, mainly because of their
flexibility, symbolic reasoning and explanation capabilities [19]. Moreover, the artificial intelligence
algorithms are recognized as powerful forecasting tools with strong robustness and fault tolerance
to solve the STLF problem, influenced by several factors to achieve better performance [20]. Thus,
there has been much research work focusing on using the artificial intelligence and new models to
improve forecasting accuracy and stability. A hybrid model based on the modified differential evolution
algorithm and the wavelet neural network model was employed for electrical load forecasting [21].
Zhao and Guo [22] proposed a novel hybrid optimized gray model to forecast annual power load series.
Kelo et al. [18] presented a novel neural network, a combination of the wavelet and Elman network,
to predict one-day-ahead power load under the influence of temperature. Hu et al. [23] proposed a
hybrid filter–wrapper feature selection method for short-term load forecasting. Xiao et al. developed a
combined model based on multiple seasonal patterns and the modified firefly algorithm in [4] and
an integrated model based on the multi-objective optimization algorithm in [24] for electrical load
forecasting. A novel hybrid model was developed by Niu et al. [25] for short-term load forecasting,
which combined singular spectrum analysis, the nonlinear multi-layer perceptron network and the
integrated intelligent optimization algorithm.

The SVR model has superiority in fitting high dimensional nonlinear data and has been applied
in many areas, such as agricultural commodity future prices forecasting [26], stock price index
forecasting [27], air passenger traffic forecasting [28], holiday daily tourist flow forecasting [29],
air quality early-warning systems [30], etc. Moreover, in the electricity power forecasting fields,
Hong et al. [31–34] proposed various SVR-based load forecasting models, which included the artificial
intelligence algorithm to optimize its parameters, to achieve more accurate forecasting performance.
Moreover, Huang [35] developed an SVR-based model that combined the chaotic mapping function and
quantum particle swarm optimization algorithm to improve the forecasting accuracy. Lee and Lin [36]
proposed an SVR-based model that combines quantum behaviors and the tabu search algorithm with
the SVR model for electricity load forecasting. Moreover, De Giorgi et al. [37,38] proposed a series of
hybrid photovoltaic power forecasting models, which were based on the least square support vector
machine models, to improve the performance of the forecast.
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The previous literature review illustrates that the hybrid forecasting model has become a trend.
Some drawbacks of the models discussed above can be summarized [39,40]: (1) the traditional
statistical models have a high dependence on data, a poor extrapolation effect and narrow forecasting
scale, being more suitable for data featured by linear trends and unable to capture data with high
fluctuation and noise. More importantly, the data of an electrical power system always features high
volatility, irregularity or other tendencies due to the influence of several factors. If the environmental
or sociological factors change suddenly, the forecasting errors will increase greatly, which is the worst
drawback of statistical models [41]; (2) Artificial neural networks (ANNs) are unstable and have a
relative dependence on data, making it difficult to scientifically determine the network structure;
furthermore, they can easily fall into a local minimum. Therefore, the SVR model and optimization
algorithms are employed to overcome the drawbacks of ANNs; (3) The single models never pay
attention to the significance of data selection, signal processing and optimization, and hence cannot
always satisfy the requirements of time series forecasting; (4) The one-step forecasting accuracy is
higher, while the multi-step forecasting always has a lower accuracy or unreliable results. Therefore,
based on the limitations discussed above, and with the current tendency of the hybrid model being
considered as the mainstream, a hybrid SVR-based forecasting model is developed; it successfully
overcomes these drawbacks, considering periodicity, trend and randomness for electrical load time
series. More specifically, the SVR model, acknowledged as one of the top ten models in data mining, is
adopted as the basic forecasting model to develop a robust model for short-term load forecasting in
this paper. To further improve the forecasting performance, an innovative hybrid forecasting model
is developed, which combines data selection, signal processing, support vector regression (SVR), the
artificial intelligence optimization algorithm and the multi-step forecasting strategy. Specifically,
to improve the forecasting performance of the SVR model, the original power load time series
are spite into some subsets by means of data selection, which ensures that the datasets have the
same characteristics to obtain excellent results, while the original time series are decomposed and
reconstructed into the filter time series, which ensures that the high frequency noisy information of
the original series is removed effectively. Meanwhile, the parameters (c and g) of the SVR model are
optimized using the optimization algorithm to realize the optimal forecasting performance. Finally,
the integrated model, combined with the multi-step forecasting strategy [42], is employed to perform
the multi-step forecasting. As far as we know, the meritorious hybridization capitalizes on each
component’s advantages and ultimately results in final success, being initially employed to effectively
forecast future changes in the electric power load series. The main contributions of this paper are
as follows:

(1) A novel hybrid model is successfully developed for multi-step short-term load forecasting; it
comprises data selection, signal processing, SVR, the advanced optimization algorithm and the
multi-step forecasting strategy. Its effectiveness is validated in New South Wales and Singapore.

(2) A new intelligent optimization algorithm is initially utilized to obtain the optimal parameters
of the SVR model, while the signal processing approach effectively identifies and extracts
the main feature of power load series, and it is proven that these methods can improve the
forecasting performance.

(3) The data structure of the forecasting model is effectively constructed by the data selection, which
ensures that the datasets have the same properties to achieve abundant forecasting performance.

(4) A more comprehensive evaluation of the proposed model is conducted in this paper. Two testing
methods, i.e., the Diebold–Mariano (DM) test and forecasting effectiveness, are employed to
evaluate the proposed hybrid model, in addition to four common metric rules, i.e., the mean
absolute error (MAE), root mean square of error (RMSE), normalized mean square of error
(NMSE) and mean absolute percentage error (MAPE).

In the present work, this innovative integrated model is evaluated using the half-hourly power
load series of two sites, including New South Wales and Singapore, to develop a robust model to
forecast the future changes in power load series. The remainder of this paper is organized as follows: a
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general description of the required individual tools is presented in Section 2. Section 3 describes the
developed hybrid forecasting model. We present and discuss the experimental results in Section 4.
Section 5 presents an insightful discussion of the experiments. Finally, Section 6 concludes the paper.

2. Methodology

In this section, a general description of the required individual tools of the novel method is
presented in detail.

2.1. The Decomposition Approach for Signal Processing

The complete ensemble empirical mode decomposition (CEEMD) with adaptive noise, as a
suitable signal processing approach for signal processing, is performed to decompose the original
series. Compared with the traditional signal processing methods, the empirical mode decomposition
(EMD) family is empirical, intuitive, direct and self-adaptive, being developed for signals featured
by nonlinearity and non-stationary. In fact, most traditional signal processing algorithms perform
well only under the condition that the signal satisfy certain characteristics. For example, the Fourier
decomposition method is mainly employed to handle the data featuring smooth and cyclic data, while
the wavelet decomposition algorithm requires non-stationary but linear data. The CEEMD technique
was proposed by Torres et al. [43] to improve the decomposition methods of the EMD family. EMD was
proposed by Huang et al. [44] and is used to decompose raw series into several intrinsic mode functions
(IMFs) via a sifting process, which means a single mode can contain oscillations with large differences
or similar oscillations can decompose between different modes [45]. To solve the disadvantage of mode
mixing, ensemble empirical mode decomposition (EEMD) was developed by Wu and Huang [46]. Even
if EEMD yields a substantial improvement and can improve stability significantly, it also causes a new
problem: it is difficult to entirely neutralize the added noise. Therefore, Torres et al. [43] developed the
CEEMD with adaptive noise to handle the defects exiting in EMD and EEMD, achieving a negligible
reconstruction error and a great improvement of EEMD. With the nonlinear dynamical pattern of the
power load data considered, in this work, the advanced CEEMD algorithm is adopted as the signal
processing method due to its superiority to other methods. A more detailed description of this signal
processing approach can be found in the literature [43].

2.2. Support Vector Regression (SVR)

The SVM, proposed by Vapnik and his co-workers, is based on structural risk minimization
(SRM), which is derived from a statistical learning theory (SLT) called the Vapnik–Chervonenkis
(VC) dimension theory [47]. SVM has been widely employed in various fields, such as classification,
regression and non-linear function approximation. Support vector regression (SVR) is an application of
SVM; the idea of SVR is to map the data into a high dimensional feature space via nonlinear mapping
and to perform a linear regression in the space [48]. Moreover, it is one of the top ten models in data
mining and is recommended as one of the most precise and robust algorithms among the reputable
data mining algorithms [49]. It performs excellently and can be widely used in the forecasting field
due to its capability to solve non-linear problems. The regression formula is defined as:

f (x) =
D

∑
i=1

wiφi(x) + b (1)

where {φi(x)}D
i=1 denotes the features, b is the bias term and {wi}D

i=1 denotes estimated weight vectors,
which can be calculated by optimizing the quadratic programming problem:

min
w,b,ζ

1
2‖w‖

2 + C
n
∑

i=1
(ζi + ζ

∗
i )

s.t.|yi− < w ·Φ(x) > −b| ≤ ε+ ζi,
i = 1, 2, ..., n, ζ ≥ 0, ζ∗i ≥ 0

(2)
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We can convert nonlinear regression cases into linear regression cases using a kernel function k
(xi, x). The nonlinear mapping can be obtained by:

f (x,α,α∗) =
N

∑
i=1

(αi − α∗i )k(xi, x) + b (3)

Several typical kernel functions have been adopted in practical application; in this paper, the RBF
kernel function is selected, which can be expressed by:

k(xi, x) = exp
{
−‖x− xi‖/2σ2

}
(4)

2.3. Brief Overview of Moth-Flame Optimization Algorithm

The novel natured-inspired meta-heuristic algorithm of the moth-flame optimization algorithm,
which was developed by Mirjalili [50], was illuminated by the navigation approach of moths in nature,
named transverse orientation. Figure 1A [50] can help us to better comprehend the mechanism of
transverse orientation. As shown, the moth flies while keeping a fixed angle with respect to the moon
so that it can easily achieve effective travel in a straight line, especially for a long distance from the
light. In contrast, the moth will eventually converge to the light due to maintaining a similar angle
when the light source is very close, as indicated in Figure 1B [50]. A general description is presented in
detail [50,51], and the main steps are described as follows:
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Figure 1. Two behaviors of the moth-flame optimization algorithm. (A) Transverse orientation for
navigation; (B) The spiral flying path around close light sources.

Step 1: Set parameters

The main parameters of the moth-flame optimization algorithm include the number of moths
and flames, the maximum iteration number, the number of variables and the lower/upper bound of
each variable.

Step 2: Initialize position

The moths’ and flames’ positions are obtained by:
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M =


m1,1 m1,2 · · · m1,d
m2,1 m2,2 · · · m2,d

...
...

...
...

mn,1 mn,2 · · · mn,d

 (5)

F =


F1,1 F1,2 · · · F1,d
F2,1 F2,2 · · · F2,d

...
...

...
...

Fn,1 Fn,2 · · · Fn,d

 (6)

where M denotes the moths’ positions, and F denotes the flames’ positions; moreover, the number of
moths is n, while the number of variables is d. The initialized positions of F and M can be defined as:

m∗,j or F∗,j =
(
ubj − lbj

)
× rand( ) + lbj (7)

where m∗,j and F∗,j are the corresponding values of M and F and the lower/upper bounds of variables
are denoted as lb and ub, respectively; moreover, rand is a random number between 0 and 1.

Step 3: Select fitness values

The fitness values of each flame can be calculated by inputting the corresponding position, which
can be used to evaluate each flame. Then, the corresponding fitness values can be calculated by solving
Equation (8) and are denoted as OF, which always includes n recent best solutions obtained up to now:

OF =


OF1

OF2
...

OFn

 (8)

The moth would never miss the best solution in each iteration due to selecting and saving the
fitness values. The final optimal solutions obtained so far are regarded as the flames, and increase the
probability of finding better solutions.

Step 4: Iteration and optimization

The logarithmic spiral is defined to mimic the moth’s spiral flying pattern with respect to a
flame, which is used to illustrate how the moths renew their positions around a flame, and can be
illustrated by:

Mi = S
(

Mi, Fj
)
= Di · ebt · cos(2πt) + Fj (9)

Di =
∣∣Fj −Mi

∣∣ (10)

where Mi and Fj are the i-th moth and j-th flame, respectively; Di is the distance between the moth
and flame; S is the spiral function. Moreover, a constant is denoted as b, which is used to define the
shape of the logarithmic spiral, and t is a random number between −1 and 1, which illustrates how
close the next position should be to the flame. Specifically, t = 1 implies the farthest position from the
flame, while t = −1 means the closest. However, the position updating method defined by Equation (9)
will lead to convergence in local optima due to it only requiring the moths to move around a flame.
To avoid dropping into a local optimum, each moth must renew its position according to only one of
the flames in Equation (9). The flames will be sorted by their fitness in the iteration and after updating.
Then, the moths update their positions with respect to the corresponding flames, but the updating
with respect to n different positions will weaken the ability of exploiting the best solution. Therefore,
an adaptive mechanism for the number of flames is employed to solve this problem. The number of
flames is decreased adaptively during iterations, which is defined as:
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f lame no = round(N − l ∗ (N − 1)/T) (11)

where N is the maximum number of flames, l is the current iteration number, and T is the maximum
iteration number.

Step 5: Select optimal solutions

The flame will update its position if no one is any better than the best flame of the previous
iteration; the best flame is then re-determined. Finally, the moth-flame optimization algorithm is
stopped when it satisfies the termination criterion and then returns the best solution after global
searching, which is considered as the optimal approximation of the optimum. The pseudo code is
described as follows:
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The developed hybrid model will be expounded upon in this section; the flowchart is depicted 
in Figure 2. In the previous section, the methodology of the components of the model was described 
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3. The Innovative Hybrid Model for Short-Term Load Forecasting

The developed hybrid model will be expounded upon in this section; the flowchart is depicted in
Figure 2. In the previous section, the methodology of the components of the model was described in
detail. For the forecasting problem, the individual model pays no attention to the significance of data
selection, signal processing and optimizing the model parameter; thus, the single algorithms cannot
always satisfy the time series forecasting.
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With these above-mentioned ignored factors considered, to enhance forecasting accuracy and
stability, in this section, a novel and robust hybrid forecasting model is proposed; it combines
data selection, signal processing, support vector regression (SVR) and the latest natured-inspired
meta-heuristic algorithm, i.e., the moth-flame optimization algorithm. The hybrid forecasting model
comprises three steps: first, the data selection method is employed to classify the original time series
into some subsets, which indicates that the forecasting performance can be improved due to the dataset
featuring the same properties; second, the filter time series are reconstructed by using the signal
processing technique, which guarantees that the main feature (i.e., trend and seasonality) of electric
power load series can be effectively identified and extracted (the procedure of the signal processing is
illustrated in Figure 2B); finally, the SVR algorithm, which is optimized by the advanced optimization
algorithm, is used to deal with the power load featuring irregularity and volatility. Note that, at this
point, the established model can be used to realize one-step forecasting of a time series based on
historical data; however, multi-step forecasting is also an increasingly critical issue in power system
operation. Therefore, the integrated model, which includes the multi-step forecasting strategy, is
employed to perform the multi-step forecasting, which is employed to evaluate the effectiveness of the
proposed model further. In the multi-step forecasting process, the previous forecasting results will
also be used to forecast the future-step results. The procedure of multi-step forecasting is illustrated in
Figure 2D, which can help us to understand the realization process of multi-step forecasting well.



Entropy 2017, 19, 52 9 of 27

4. Materials and Methods

In general, except the forecasting accuracy, the stability and universality of the model to handle
the short-term load forecasting issue for different datasets should also be assessed. Therefore, two
different power load series of New South Wales of Australia and Singapore, which are half-hourly
power load data of March and October, respectively, from 2011 to 2014, as shown is Table 1, are
considered as illustrative examples in this paper.

Table 1. Statistical values of data used in this paper.

Week Region Mean Value
(MW)

Std. Dev.
(MW)

Maximum
Value (MW)

Minimum
Value (MW)

Median
Value (MW)

MON.
New South Wales 8270.0208 1220.6354 10,621.8300 5692.5600 8571.6300

Singapore 5407.2164 742.9222 6553.9290 3850.9450 5611.6020

TUE.
New South Wales 8469.4371 1217.0708 11,313.9900 5797.8500 8716.4100

Singapore 5469.3661 703.0311 6594.3200 4067.8360 5602.9195

WED.
New South Wales 8461.4985 1181.7534 10,724.8600 5890.3100 8775.5750

Singapore 5458.0263 725.8797 6615.5320 3951.9800 5558.4580

THU.
New South Wales 8472.2550 1169.9212 10,620.7600 5993.0700 8858.1650

Singapore 5503.4093 720.7056 6605.4680 3893.7420 5683.4410

FRI.
New South Wales 8236.6968 1144.1726 10,584.6400 5728.4000 8486.0100

Singapore 5462.0146 713.9701 6559.1230 3959.9520 5575.0105

SAT.
New South Wales 7502.7387 829.6106 9528.0100 5449.5900 7658.9200

Singapore 5057.6897 463.4318 5972.7020 3961.5620 5105.3080

SUN.
New South Wales 7323.2883 919.6963 9960.3000 5455.5700 7444.1350

Singapore 4816.5295 415.4188 5612.7050 3763.7360 4832.8800

The simple map of the study area is shown in Figure 2B. Then, to determine the best experimental
parameters, the trial and error method is adopted to address this problem [52]; the experimental
parameters are shown in Table 2. All experiments were carried out in MATLAB R2014a on Windows 7
with a 3.30 GHz Intel Core i5 4590, 64 bit computer equipped with 8 GB RAM.

Table 2. Experimental parameter values.

Model Experimental Parameter Default Value

CEEMD

Noise standard deviation 0.2
The number of realizations 200

The removed intrinsic mode functions IMF1
Maximum number of sifting iterations 5000

MFO

The number of search agents 30
Maximum number of iterations 300
The lower bounds of variables 0.01
The upper bounds of variables 100

The number of variables 2
The convergence constant r −1 to −2

SVR

The number of the input layer 4
The number of the output layer 1

The kernel function’s name RBF
The cost c of original the SVR 1

The gamma g of original the SVR 0.25

4.1. Data Selection

Data selection plays a key role in the forecasting issue. There are many factors that randomly
influence the power data, which leads the data to present different characteristics. Hence, we should
divide the raw data series into different datasets according to a certain suitable method and separately
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build the forecasting model for the power data. To enhance forecasting performance and guarantee
the adaptability of the novel hybrid model applied in STLF, longitudinal data selection is employed in
this paper. In detail, we first classify the original data according to the month; then, the datasets are
divided into seven subsets according to a particular day of one week, which ensures that each subset
has the same inner characteristics and thus improves the forecasting performance. The longitudinal
data selection process for power load series is shown in Figure 3A. For example, there are 18 Sundays
of March in total (48 data points per day) from 2011 to 2014, which are treated as one subset; the
other subset is similarly constructed. For each subset, the last 2 days are the testing sample, while the
remainder is the training sample.Entropy 2017, 19, 52  10 of 27 
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4.2. The Performance Metric

To evaluate the forecasting performance and comprehensively learn the model traits better, four
performance metric rules, which are presented in Table 3, are employed in this paper: N is the length
of data to evaluate; F is the forecasted value; A represents the observed value. Smaller index values
represent better forecasting performance.

Table 3. Four performance metric rules.

Metric Definition Equation

MAE The mean absolute error of N forecasting results MAE = 1
N

N
∑

i=1
|Fi − Ai|

RMSE The square root of average of the error squares RMSE =

√
1
N ×

N
∑

i=1
(Fi − Ai)

2

NMSE The normalized average of the squares of the errors NMSE = 1
N

N
∑

i=1

(Fi−Ai)
2

Fi Ai

MAPE The average of N absolute percentage error MAPE = 1
N

N
∑

i=1

∣∣∣ Ai−Fi
Ai

∣∣∣× 100%

4.3. Testing Method

The model performance evaluation metrics presented in Section 4.2 have great significance in
comparing the different forecasting models. However, to verify the outstanding performance, testing
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needs to be done from the statistical perspective. Therefore, the Diebold–Mariano (DM) test and
forecasting effectiveness are conducted in this paper as two testing methods for further performance
comparison studies.

4.3.1. DM Test

The Diebold-Mariano (DM) test [53] was used to compare and evaluate the significance of the
outperformance of the proposed model with other comparable models. Assume that two forecasting
models are compared and evaluated: model A and model B.

Actual values:
{yn; n = 1, . . . , t + k} (12)

Forecast values: {
ŷ(A)

n ; n = 1, . . . , t + k
}

,
{

ŷ(B)
n ; n = 1, . . . , t + k

}
(13)

Forecast errors:
ε
(A)
t+h = yt+h − ŷ(A)

t+h, h = 1, 2, . . . , k. (14)

ε
(B)
t+h = yt+h − ŷ(B)

t+h, h = 1, 2, . . . , k (15)

The loss function L(εt+h) is employed to measure the forecasting accuracy of different models.
Two popular versions of the loss function are presented below:

Absolute deviation loss:
L(εt+h) = |εt+h| (16)

Square error loss:
L(εt+h) = (εt+h)

2 (17)

The DM test statistic values can be calculated by:

DM =

k
∑

h=1

(
L
(
ε
(A)
t+h

)
− L

(
ε
(B)
t+h

))
/k

√
S2/k

s2 (18)

where S2 is an estimation of the variance of dh = L
(
ε
(A)
t+h

)
− L

(
ε
(B)
t+h

)
. The hypothesis test is:

H0 : E(dh) = 0, ∀n (19)

H1 : E(dh) 6= 0, ∃n (20)

The test statistic DM is convergent in distribution in the standard normal distribution N (0, 1).
The null hypothesis will be rejected if:

|DM| > zα/2 (21)

where zα/2 denotes the critical z-value of the standard normal distribution and α is the significance level.

4.3.2. Forecasting Effectiveness

The forecasting effectiveness was employed to verify the forecasting accuracy of the developed
hybrid model and other compared models. It is often the case that 1st-order and 2nd-order forecasting
effectiveness are available for forecasting evaluation in empirical applications. A general description
of forecasting effectiveness is presented in detail [54]:

Actual values:
{yn; n = 1, . . . , N} (22)

Forecast values:
{ŷn; n = 1, . . . , N} (23)
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Forecast errors:
εn = yn − ŷn (24)

Forecast accuracy:

An =

 1−
∣∣∣εn

yn

∣∣∣, 0 ≤
∣∣∣εn

yn

∣∣∣ ≤ 1

0,
∣∣∣εn

yn

∣∣∣ > 1
(25)

The k-th-order forecasting effectiveness unit is calculated by:

mk =
N

∑
n=1

Qn A k
n (26)

where k is a positive integer and Qn, which indicates the discrete probability distribution at time n, is a

positive number;
N
∑

n=1
Qn = 1. If the priori information of the discrete probability distribution cannot be

known, Qn is defined as a constant equals to 1/N. The kth-order forecasting effectiveness is defined as:

H
(

m1, m2, · · · , mk
)

(27)

where H is a continuous function of a certain k unit. Especially if H(x) = x is a continuous function with
one variable, the 1st-order forecasting effectiveness is the expectation forecasting accuracy sequence,
defined as H

(
m1) = m1; meanwhile, H(x, y) = x

(
1−

√
y− x2

)
is a continuous function with two

variables. The 2nd-order forecasting effectiveness is the difference between the expectation and

standard deviation, presented as H
(
m1, m2) = m1

(
1−

√
m2 − (m1)

2
)

.

4.4. Experiment I: The Case of New South Wales

This half-hourly power load series was collected in March from 2011 to 2014 in New South
Wales. As mentioned above, longitudinal data selection is employed to split the original dataset into
seven subsets to guarantee that each subset has the same characteristics, which can yield forecasting
performance improvements. Each subset is divided into two parts, as shown in Figure 3A; the last
2 days are the testing sample and the remainder is the training sample. For example, there are
17 Mondays of March in total from 2011 to 2014; the former 15 days are the training set while
the last 2 days are the testing set; the other subset is similarly constructed. To verify the forecasting
performance, four performance metrics (i.e., MAE, NMSE, RMSE, MAPE) for each subset are calculated
and presented in Table 4 for comparative performance studies. Furthermore, Figure 4A shows the
one-step forecasting error of all models from Monday to Sunday in New South Wales. It is visible
that the forecasting error line of the proposed model is clearly closest to the zero line with the lowest
volatility among all the models. Moreover, Figure 5 illustrates the average values of MAE, RMSE
and MAPE in New South Wales, which can be regarded as the overall forecasting potential. To gather
more detailed comparison information, the one-step and six-step forecasting results of three randomly
selected days (i.e., Monday, Wednesday, Friday) are depicted in Figures 6 and 7, respectively; they
reveal that the forecasting line of the proposed model is closer to the actual line than that of the
benchmark model. Accordingly, we can conclude that the proposed hybrid model achieves the best
values of all criteria in the comparative performance studies, which indicates that the proposed
integrated model is superior to the traditional time series model ARMA, single artificial intelligence
forecasting model SVR and two-component models CEEMD-SVR and MFO-SVR in all horizons for
short-term load forecasting. More detailed comparative studies are conducted from two aspects:
one-step forecasting and multi-step forecasting.
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Table 4. The results of the proposed model and the results of the other models (Experiment I).

Week Metric
ARMA SVR CEEMD-SVR MFO-SVR CEEMD-MFO-SVR

1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step

MON.

MAE 149.3168 264.3664 414.2613 72.0154 136.3824 268.4663 45.8432 101.7635 211.1696 64.7532 109.1297 252.7814 42.0844 78.7812 150.1316
RMSE 189.2493 361.0766 555.7324 109.0032 206.5667 380.2364 65.6234 136.8509 275.2133 97.5332 180.4214 401.6520 56.8869 108.8300 227.2187
NMSE 0.0301 0.1097 0.2599 0.0100 0.0359 0.1217 0.0036 0.0158 0.0637 0.0080 0.0274 0.1358 0.0027 0.0100 0.0434
MAPE 1.9765 3.4818 5.5275 0.9450 1.8508 3.7417 0.6085 1.3670 2.8341 0.8479 1.4915 3.6348 0.5395 1.0160 1.9835

TUE.

MAE 155.7903 273.7074 416.3040 82.4250 168.1516 345.1775 62.6412 154.0930 310.9179 74.8796 128.7659 211.1475 45.2562 97.7580 153.5884
RMSE 197.0058 366.0849 578.0620 109.7363 234.6780 439.8573 82.8290 213.9505 424.9461 101.7121 184.8466 293.0550 62.0565 136.4468 222.9660
NMSE 0.0364 0.1257 0.3135 0.0113 0.0517 0.1815 0.0064 0.0429 0.1694 0.0097 0.0321 0.0806 0.0036 0.0175 0.0466
MAPE 2.0502 3.6205 5.5876 1.0651 2.2069 4.6264 0.8354 2.0455 4.1823 0.9940 1.7304 2.8821 0.5975 1.2716 2.1002

WED.

MAE 164.0952 299.0298 464.1855 68.9116 123.8473 249.4280 44.4607 97.5785 193.3782 55.3373 82.1219 157.8759 36.5947 76.2369 129.8791
RMSE 201.2296 382.5640 592.0291 88.4652 162.6603 319.5566 57.1206 131.0734 256.0120 72.4172 114.9260 216.5579 49.0040 107.0317 194.0142
NMSE 0.0342 0.1235 0.2957 0.0066 0.0223 0.0862 0.0028 0.0145 0.0553 0.0044 0.0111 0.0396 0.0020 0.0097 0.0318
MAPE 2.0936 3.7744 5.8298 0.8628 1.5552 3.2686 0.5619 1.2362 2.5270 0.6848 1.0060 1.9699 0.4598 0.9527 1.6581

THU.

MAE 167.7732 288.0813 406.8082 69.7697 121.9849 227.0328 46.5032 90.8335 175.0757 61.7127 75.8345 170.5123 38.2440 79.3382 150.2177
RMSE 207.8787 385.7540 539.3338 90.6257 169.2368 312.8293 68.0893 121.3090 274.4343 79.6795 108.7897 264.7262 47.4928 114.1213 247.6543
NMSE 0.0373 0.1283 0.2508 0.0071 0.0247 0.0844 0.0089 0.0282 0.1442 0.0055 0.0102 0.0604 0.0019 0.0112 0.0529
MAPE 2.1296 3.6411 5.1752 0.8621 1.5499 3.0098 0.6555 1.2672 2.5200 0.7390 0.9029 2.0826 0.4680 0.9604 1.8132

FRI.

MAE 151.8488 265.2930 370.4275 65.8305 99.9089 174.9614 40.6910 90.9959 163.8359 56.5212 84.0547 176.1757 39.7423 65.0562 132.6612
RMSE 181.5484 362.8613 525.1881 90.2945 148.2388 250.2056 53.0908 122.9946 221.1164 78.4528 131.1631 255.4916 52.8244 86.6114 173.2087
NMSE 0.0338 0.1352 0.2833 0.0084 0.0226 0.0643 0.0029 0.0155 0.0502 0.0063 0.0177 0.0670 0.0029 0.0077 0.0308
MAPE 1.9485 3.4052 4.7655 0.8377 1.2605 2.2791 0.5203 1.1610 2.1590 0.7121 1.0669 2.2727 0.5100 0.8091 1.7047

SAT.

MAE 125.8284 219.3056 248.4333 78.5700 116.2084 147.3141 41.5799 84.2632 163.6957 51.6702 76.7323 137.7728 36.3863 71.8198 132.2958
RMSE 160.6073 290.5429 353.8855 123.6085 159.9216 210.5417 65.4166 112.5968 271.2540 81.5617 113.0028 213.9510 52.1449 97.1539 202.4365
NMSE 0.0494 0.1616 0.2398 0.0293 0.0490 0.0849 0.0082 0.0243 0.1409 0.0127 0.0244 0.0876 0.0052 0.0181 0.0785
MAPE 1.7764 3.1003 3.4207 1.0970 1.5979 2.0595 0.5844 1.1630 2.3551 0.7032 1.0436 1.9500 0.5030 0.9768 1.8558

SUN.

MAE 116.2149 214.7425 285.9453 64.3232 97.9753 178.3560 40.7161 87.7273 179.1373 56.4753 72.0519 146.0067 33.2267 69.1963 146.1253
RMSE 141.1563 272.2281 368.7920 89.1827 129.8764 241.5235 55.8503 121.1988 265.7823 80.2555 102.0070 213.8716 45.7782 102.7112 251.3388
NMSE 0.0305 0.1135 0.2083 0.0122 0.0258 0.0893 0.0048 0.0225 0.1082 0.0099 0.0159 0.0701 0.0032 0.0162 0.0968
MAPE 1.6447 3.0340 4.0101 0.9087 1.3551 2.5063 0.5767 1.2119 2.5345 0.7959 0.9927 2.0366 0.4703 0.9570 2.0863



Entropy 2017, 19, 52 14 of 27

Entropy 2017, 19, 52  14 of 27 

 
Figure 4. The forecasting error of five models in New South Wales and Singapore. (A) The one-step forecasting error of all models from Monday to Sunday in New 
South Wales; (B) The one-step forecasting error of all models from Monday to Sunday in Singapore. 

Figure 4. The forecasting error of five models in New South Wales and Singapore. (A) The one-step forecasting error of all models from Monday to Sunday in
New South Wales; (B) The one-step forecasting error of all models from Monday to Sunday in Singapore.



Entropy 2017, 19, 52 15 of 27

Entropy 2016, 18, x FOR PEER REVIEW 15 of 27 

 

 
Figure 5. MAE, RMSE, NMSE and MAPE of five models in New South Wales. (A) Mean absolute 
error; (B) Root mean square of error; (C) Normalized mean square of error; (D) Mean absolute 
percentage error. 

 
Figure 6. One-step forecasting graphic of five models in New South Wales. The result on Monday; 
The result on Wednesday; The result on Friday. 

 
Figure 7. Six-step forecasting graphic of five models in New South Wales. The result on Monday; The 
result on Wednesday; The result on Friday. 

Figure 5. MAE, RMSE, NMSE and MAPE of five models in New South Wales. (A) Mean absolute
error; (B) Root mean square of error; (C) Normalized mean square of error; (D) Mean absolute
percentage error.

Entropy 2016, 18, x FOR PEER REVIEW 15 of 27 

 

 
Figure 5. MAE, RMSE, NMSE and MAPE of five models in New South Wales. (A) Mean absolute 
error; (B) Root mean square of error; (C) Normalized mean square of error; (D) Mean absolute 
percentage error. 

 
Figure 6. One-step forecasting graphic of five models in New South Wales. The result on Monday; 
The result on Wednesday; The result on Friday. 

 
Figure 7. Six-step forecasting graphic of five models in New South Wales. The result on Monday; The 
result on Wednesday; The result on Friday. 

Figure 6. One-step forecasting graphic of five models in New South Wales. The result on Monday;
The result on Wednesday; The result on Friday.

Entropy 2016, 18, x FOR PEER REVIEW 15 of 27 

 

 
Figure 5. MAE, RMSE, NMSE and MAPE of five models in New South Wales. (A) Mean absolute 
error; (B) Root mean square of error; (C) Normalized mean square of error; (D) Mean absolute 
percentage error. 

 
Figure 6. One-step forecasting graphic of five models in New South Wales. The result on Monday; 
The result on Wednesday; The result on Friday. 

 
Figure 7. Six-step forecasting graphic of five models in New South Wales. The result on Monday; The 
result on Wednesday; The result on Friday. 

Figure 7. Six-step forecasting graphic of five models in New South Wales. The result on Monday;
The result on Wednesday; The result on Friday.



Entropy 2017, 19, 52 16 of 27

4.4.1. Analysis for One-Step Forecasting

The one-step forecasting results of each model are presented in Table 4 and Figures 4–6.
The experimental results indicate that this proposed hybrid model outperforms other benchmark
models based on comparison of the MAE, NMSE, RMSE and MAPE. For more detailed analysis, take
the forecasting result of Mondays as an example:

(a) When comparing the traditional time series model ARMA with the individual artificial
intelligence model SVR, regarding the MAE, NMSE, RMSE and MAPE, the SVR model is superior
to the ARMA model. The results indicate that the artificial intelligent algorithms are powerful
forecasting tools with strong robustness and fault tolerance to solve the STLF problem influenced
by several factors, being able to achieve better performance compared with the traditional time
series model.

(b) Statistics of single SVR and our proposed model show that the integrated method leads to
reductions of 29.9310 in MAE, 52.1163 in RMSE, 0.0073 in NMSE, and 0.4055% in MAPE. Moreover,
the results between the individual SVR and CEEMD-SVR model reveal that the technique
contributes to performance improvements of 26.1722 in MAE, 43.3798 in RMSE, 0.0064 in NMSE,
and 0.3365% in MAPE. Furthermore, the results between the single SVR and MFO-SVR models
demonstrate that the moth-flame optimization algorithm leads to reductions of 7.2622 in MAE,
11.4700 in RMSE, 0.0020 in NMSE, and 0.0971% in MAPE.

(c) Statistics of different models show that the proposed model has a lower MAPE value of 0.5395%
compared to the MAPEs of 1.9765%, 0.9450%, 0.6085% and 0.8479% for the ARMA, SVR,
CEEMD-SVR and MFO-SVR models, respectively, which show that the integrated method leads
to reductions of 1.4370%, 0.4055%, 0.0690% and 0.3084% in MAPE when compared with the
ARMA, SVR, CEEMD-SVR and MFO-SVR model, respectively.

(d) The comparison between the SVR, CEEMD-SVR, MFO-SVR and the proposed model proves that
the single SVR model is inferior to the benchmark models, which proves that the signal processing
and moth-flame optimization algorithm are effective in improving the forecasting accuracy.
Therefore, to solve the short-term load forecasting problem, an increasing number of studies have
proposed the signal processing technique and artificial intelligence optimization algorithm.

4.4.2. Analysis for Multi-Step Forecasting

Multi-step forecasting plays a vital role in the power system operation. Therefore, the hybrid
model, combined with the multi-step forecasting strategy, is employed to perform the multi-step
forecasting in this paper, which is employed to evaluate the effectiveness of the developed hybrid
model further. The three-step and six-step forecasting results of different models are shown in Table 4
and Figures 5 and 7. The results reveal that the proposed model also performs better than other
benchmark models. More comparison research is illustrated below.

(a) The comparison results between the ARMA model and single SVR model indicate that the
SVR model can achieve better performance compared with the traditional time series model.
For instance, the decreased error of MAPE for three-step forecasting is 1.6310%, 1.4136%,
2.2192%, 2.0912%, 2.1447%, 1.5024% and 1.6789%, corresponding to reductions for six-step
forecasting of 1.7858%, 0.9612%, 2.5612%, 2.1654%, 2.4864%, 1.3612% and 1.5038% from Monday
to Sunday, respectively.

(b) Taking Monday as an example, the MAPE of the individual SVR model is 1.8508% in three-step
forecasting and 3.7417% in six-step forecasting, while the corresponding MAPE of the proposed
hybrid model is 1.0160% and 1.9835%. Moreover, compared with the CEEMD-SVR model and
MFO-SVR model, the proposed model leads to reductions of 0.3510% and 0.4755% in MAPE for
three-step forecasting and reductions of 0.8506% and 1.6513% for six-step forecasting, respectively,
which proves that these two methods can improve the multi-step forecasting accuracy of
short-term load forecasting.
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(c) When comparing the different forecasting horizons, we can conclude that the forecasting error
will increase with increasing number of rolling processes. Nevertheless, the negative influence of
accumulated error can be reduced due to the SVR model’s excellent performance for one-step
forecasting; thus, the proposed integrated model obtains the optimal results.

(d) Taking Wednesday as an example, for the three-step forecasting, the proposed model has a lower
MAPE value of 0.9527% compared to the MAPEs of 3.7744%, 1.5552%, 1.2362% and 1.0060% for
the ARMA, SVR, CEEMD-SVR and MFO-SVR models, respectively, while also having a lower
MAPE value of 1.6581% compared to the MAPEs of 5.8298%, 3.2686%, 2.5270% and 1.9699%
for the ARMA, SVR, CEEMD-SVR and MFO-SVR models for six-step forecasting, respectively.
The corresponding difference between three-step and six step forecasting is 0.7054%, 2.0554%,
1.7134%, 1.2908% and 0.9639%, which indicates that the proposed hybrid model is superior to
other benchmark models for multi-step forecasting.

Remark 1. Through the above case study, we compare the MAE, RMSE, NMSE and MAPE; whether for
one-step forecasting or multi-step forecasting, the proposed integrated model performs better with respect to
almost all. Therefore, the proposed hybrid model has better accuracy than the other models. Moreover, the
signal processing algorithm, which successfully extracts the trend and volatility in the original power load
series, has higher contributions than the moth-flame optimization algorithm employed to obtain the optimal
parameters of SVR. Furthermore, the SVR model can effectively improve forecasting accuracy due to the dataset
structures being optimal by using the longitudinal data selection method. In summary, the combination of
meritorious components capitalizes on each component’s advantages, which is an effective method for STLF and
can effectively forecast the power load in the future.

4.5. Experiment II: The Case of Singapore

To further verify the effectiveness of the proposed hybrid model, half-hourly load data collected
in October from 2011 to 2014 in Singapore are used as another case in this section. It is well known that
these two sites have a remarkably different nature and social environment; thus, we can conclude that
the hybrid model has universal applicability under the condition that the hybrid model performs better
at both sites. The process of the dataset structure is the same as for New South Wales. The experiment
results comparing the models’ performances are presented in Table 5, Figures 4B and 8, Figures 9
and 10. The one-step forecasting errors of different models from Monday to Sunday are presented in
Figure 4B. It is obvious that the forecasting result is very approximate to the target, while the forecasting
error line of the proposed model is clearly closest to the zero lines, with the lowest volatility among all
the models. Figure 8 shows the average value of MAE, RMSE and MAPE in Singapore, which also
represents the overall ability for power load forecasting. Furthermore, to analyze the forecasting result
in detail, Figures 7 and 8 depict the results of three randomly selected days (i.e., Tuesday, Thursday,
Saturday) for one-step and six-step forecasting, revealing that the developed model fits the actual data
well compared with other models. The experimental results also account for the conclusion obtained
from Experiment I. Furthermore, another evaluation criterion, MPE, is also employed in this paper,
which is defined as:

MPE(t) =
(At − Ft)

At
× 100% (28)

According to the definition, a negative MPE value denotes over-forecasting, while a positive
one indicates under-forecasting. Figure 11 shows the comparison of different models based on the
error (MPE) distributions, which present a visual assessment of the model performances. The last
figure in Figure 11 is the histogram for each model. The vertical axis displays the number of instances
for each error value, while the horizontal axis shows the value of MPE. It is obvious that the error
distribution for the proposed hybrid model possesses sharper peaks and narrower widths compared
to the other four error distributions. A sharper distribution of the errors indicates more stable and
lower level of uncertainty in forecasting capability. In conclusion, the histogram is another indication
of the robustness of the proposed model.
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Table 5. The results of the proposed model and the results of the other models (Experiment II).

Week Metric
ARMA SVR CEEMD-SVR MFO-SVR CEEMD-MFO-SVR

1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step 1-Step 3-Step 6-Step

MON.

MAE 90.8506 177.8643 298.7605 36.1058 70.3113 114.0703 29.8413 59.6216 113.5754 25.5246 50.6785 81.4193 25.0462 46.6848 88.0659
RMSE 116.6122 235.4940 382.2163 51.6419 100.9278 157.6169 37.9260 80.3783 154.3141 40.8566 75.3779 117.7296 31.5145 66.2984 129.6388
NMSE 0.0274 0.1118 0.2944 0.0054 0.0205 0.0501 0.0029 0.0130 0.0480 0.0034 0.0115 0.0279 0.0020 0.0089 0.0339
MAPE 1.6244 3.1825 5.4467 0.6575 1.2677 2.0517 0.5328 1.0736 2.0887 0.4747 0.9354 1.4828 0.4499 0.8310 1.5995

TUE.

MAE 90.0534 156.0882 230.2655 31.5554 62.3240 105.6896 28.0266 50.5870 93.9458 23.9893 51.9725 90.2592 23.7795 43.9501 76.1427
RMSE 116.9971 214.4720 304.2786 44.2051 99.3649 149.7291 34.8524 71.0920 126.3075 35.0084 81.0353 119.6260 28.3290 60.9403 101.6079
NMSE 0.0309 0.1039 0.2092 0.0044 0.0223 0.0507 0.0027 0.0114 0.0360 0.0028 0.0148 0.0323 0.0018 0.0084 0.0233
MAPE 1.6081 2.7657 4.1177 0.5647 1.1037 1.8564 0.4973 0.8970 1.6590 0.4341 0.9204 1.5912 0.4227 0.7722 1.3345

WED.

MAE 75.8072 146.4575 243.4885 31.2881 65.5748 118.0987 26.5597 53.9255 122.3793 30.0861 74.0752 130.3961 24.2925 54.2744 106.6510
RMSE 100.4353 201.8140 317.6453 45.7135 103.8682 165.4857 32.9656 79.8731 172.3282 43.2920 111.8104 200.0023 30.8272 76.5508 153.3729
NMSE 0.0249 0.1006 0.2492 0.0052 0.0266 0.0676 0.0027 0.0158 0.0733 0.0046 0.0309 0.0988 0.0023 0.0145 0.0581
MAPE 1.3857 2.6743 4.4604 0.5831 1.2086 2.1834 0.4933 0.9957 2.2921 0.5726 1.3896 2.4450 0.4598 1.0141 1.9760

THU.

MAE 84.2323 162.8808 260.7049 36.7486 69.1145 124.4287 30.2405 55.6085 101.6196 30.3294 62.2568 116.7772 26.0944 51.1396 99.2455
RMSE 112.8961 231.7337 337.2167 52.1014 107.0442 168.4231 38.3211 79.1465 143.0002 43.6659 83.9015 148.8143 34.1613 72.2945 129.8003
NMSE 0.0257 0.1084 0.2296 0.0055 0.0231 0.0573 0.0030 0.0126 0.0413 0.0038 0.0142 0.0447 0.0024 0.0106 0.0340
MAPE 1.5349 2.9529 4.7696 0.6787 1.2629 2.2944 0.5469 1.0128 1.8428 0.5679 1.1415 2.1601 0.4775 0.9220 1.7725

FRI.

MAE 93.7558 164.1123 242.0319 35.6067 62.9099 90.4895 29.4234 55.0429 98.3395 24.0077 57.6159 82.4145 26.2520 50.4998 82.5722
RMSE 122.2762 237.3645 324.8348 51.5711 100.0427 130.1977 38.4653 77.4244 141.6382 39.1546 85.0135 111.3450 33.1148 67.0101 112.8754
NMSE 0.0298 0.1123 0.2103 0.0053 0.0200 0.0338 0.0029 0.0119 0.0400 0.0031 0.0144 0.0247 0.0022 0.0090 0.0254
MAPE 1.6684 2.9542 4.4239 0.6466 1.1238 1.6105 0.5288 0.9795 1.7646 0.4336 1.0281 1.4682 0.4682 0.8971 1.4722

SAT.

MAE 54.4423 97.7853 166.7009 24.9204 63.0766 105.8425 17.9275 46.5558 86.8615 19.8955 51.1122 103.2263 16.0642 39.9372 68.3689
RMSE 71.2142 138.6945 215.8981 39.9705 106.8964 151.3951 25.0724 75.3149 125.1431 32.4203 83.4907 140.1891 20.7835 61.6914 98.5601
NMSE 0.0322 0.1223 0.2964 0.0102 0.0727 0.1457 0.0040 0.0361 0.0996 0.0067 0.0443 0.1250 0.0027 0.0242 0.0618
MAPE 1.0471 1.8696 3.1879 0.4783 1.2007 1.9987 0.3425 0.8869 1.6487 0.3877 1.0019 2.0288 0.3087 0.7771 1.3341

SUN.

MAE 50.3933 100.1250 164.2336 24.4459 55.8543 102.6142 19.4632 42.9000 78.5588 18.7082 52.5313 86.0579 15.4955 34.6784 80.5646
RMSE 65.8844 135.3373 218.6276 40.3635 91.5260 146.4708 26.4746 66.6591 108.4774 34.7743 83.9519 119.1154 21.7158 52.4386 105.9001
NMSE 0.0362 0.1529 0.3991 0.0136 0.0699 0.1791 0.0059 0.0371 0.0982 0.0101 0.0588 0.1185 0.0039 0.0230 0.0936
MAPE 0.9997 1.9792 3.1899 0.4850 1.1087 2.0045 0.3860 0.8489 1.5255 0.3740 1.0447 1.6950 0.3088 0.6925 1.5907
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For instance, as shown in Table 5, on Mondays, the proposed model obtains the best forecasting
accuracy and higher reliability compared with other benchmark models for all horizons. For the
one-step forecasting, the proposed model has a lower MAPE value of 0.4499% compared to the
MAPEs of 1.6244%, 0.6575%, 0.5328% and 0.4747% for the ARMA, SVR, CEEMD-SVR and MFO-SVR
models, respectively, while also having a lower MAPE value of 0.8310% compared to the MAPEs of
3.1825%, 1.2677%, 1.0736% and 0.9354% for the ARMA, SVR, CEEMD-SVR and MFO-SVR models for
three-step forecasting, respectively. Furthermore, the MAPE of the proposed hybrid model for one-step
forecasting is 0.4499%, 0.4227%, 0.4598%, 0.4775%, 0.4682%, 0.3087% and 0.3088% corresponding
to the MAPE of six-step forecasting of 1.5995%, 1.3345%, 1.9760%, 1.7725%, 1.4622%, 1.3341% and
1.5907% from Monday to Sunday, respectively; thus, it can be found that the average MAPE value is
0.4137%, 0.8437% and 1.5828% for one-step, three-step and six-step forecasting, respectively, which
are superior values compared with other compared models, and even the worst MAPE is also within
the acceptance accuracy in practical application. It is also demonstrated that the proposed model
can effectively forecast the future changes in the power load series. The short-term load forecasting
displays the same trend in other subsets, which further proves the universality and effectiveness of the
hybrid model. Moreover, the forecasting accuracy of the single SVR model is obviously better than
that of the ARMA model, while worse than that of the two component models (i.e., CEEMD-SVR and
MFO-SVR), which indicates that the SVR or SVR-based model are more applicable than traditional
methods to forecasting data with high fluctuation and noise, meanwhile, it also reveals that the signal
processing tool is capable of improving the forecasting performance and the optimization algorithm is
effective for increasing the forecasting accuracy of SVR. According to these comparison results, we can
testify regarding the effectiveness of data processing and optimization in the hybrid model and further
evaluate the contribution of each part for the achieved high accuracy of the hybrid model. However,
the performances of the two component models are inferior to those of the three component models.
Similarly, based on the analysis between two component models and the three component models, we
can also verify the effectiveness of each part. Moreover, the forecasted error increases as the forecasting
horizon increases, which is not only an inevitable trend under the influence of accumulated error but
also in the consenting range. In conclusion, the developed hybrid forecasting paradigm can be adopted
as an effective method for complex data series forecasting, especially for data (e.g., electrical power
load data, wind speed) featuring high volatility, noise and irregularity.

Remark 2. Through the above two case studies, for the MAE, NMSE, RMSE and MAPE, the proposed hybrid
model is determined to be best. Furthermore, we can conclude that the hybrid model has universal applicability,
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considering the difference in nature and social environment between these two study sites. Moreover, we can
reasonably conclude that these three methods can effectively improve the forecasting performance of the basic
forecasting model SVR. Therefore, these techniques, combined with other basic models, can be employed in other
fields. The hybrid model, with its outstanding performance, will generate a considerable economic benefit and
will be widely applied for forecasting in the future.

4.6. Experiment III: Testing Based on DM Test and Forecasting Effectiveness

The DM test is employed to test under what circumstance a trial will enable us to reject the
null hypothesis given a preset level of significance. Table 6 shows the DM statistic values according
to the square error loss function and reveals that (a) the DM statistical values of the ARMA, SVR,
CEEMD-SVR and MFO-SVR models are greater than the upper limits at the 1% significance level;
(b) the DM statistical values of the ARMA, SVR and CEEMD-SVR models for all horizons are greater
than the upper limits at the 1% significance level, while the DM statistical values of the MFO-SVR
model for one-step, three-step and six-step forecasting are greater than the upper limits at the 5%, 10%
and 10% significance level, respectively; (c) the proposed model significantly outperforms the other
models, as the DM statistical values are greater than the critical value at the different significance levels,
most of which at the 1% significance level. Therefore, the proposed model exerts a higher degree of
accuracy compared with other benchmark models.

Table 6. Results for the DM test and the forecasting effectiveness.

Test Average Value 1-Step 3-Step 6-Step

DM-test

ARMA 5.871782 *** 4.633155 *** 4.448907 ***
SVR 3.411107 *** 3.047358 *** 2.849780 ***

CEEMD-SVR 2.843565 *** 2.934584 *** 3.069878 ***
MFO-SVR 2.520546 ** 1.876395 * 1.941112 *

CEEMD-MFO-SVR - - -

Average Value 1st-Order

Forecasting
effectiveness 1

ARMA 0.983223 0.969689 0.954089
SVR 0.992377 0.985963 0.974295

CEEMD-SVR 0.987446 0.981848 0.971156
MFO-SVR 0.993770 0.988789 0.978419

CEEMD-MFO-SVR 0.995397 0.990822 0.982607

Average Value 2nd-Order

Forecasting
effectiveness 2

ARMA 0.969691 0.942151 0.913896
SVR 0.984246 0.970631 0.950189

CEEMD-SVR 0.979584 0.967833 0.947045
MFO-SVR 0.986808 0.975962 0.956125

CEEMD-MFO-SVR 0.991312 0.981715 0.964019

* Indicates the 10% significance level; ** indicates the 5% significance level; *** indicates the 1% significance level;
1 Indicates the 1st-order forecasting effectiveness; 2 Indicates the 2nd-order forecasting effectiveness.

Forecasting effectiveness was applied to measure the forecasting accuracy of different models.
A greater forecasting effectiveness proves a more accurate forecasting performance. The forecasting
effectiveness values presented in Table 6 reveal that (a) for the one-step forecasting, the 1st-order
forecasting effectiveness offered by ARMA, SVR, CEEMD-SVR, MFO-SVR and the proposed hybrid
model are 0.983223, 0.992377, 0.987446, 0.993770 and 0.995397, respectively, while the 2nd-order values
are 0.969691, 0.984246, 0.979584, 0.986808 and 0.991312, respectively; (b) the forecasting effectiveness
values of the proposed model are greater than those of the benchmark models in all cases. Thus, the
proposed hybrid model is greatly superior to all compared models.

Remark 3. The testing results based on the DM test and the forecasting effectiveness reveal that the developed
model shows a higher degree of forecasting accuracy than the benchmark models and that the level of forecasting
accuracy of the proposed model is significantly different from that of all the compared models.
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5. Discussion

This section conducts an insightful discussion of the experimental results, including each part in
the hybrid model, forecasting steps and performance time.

5.1. Discussion of the Effectiveness of Data Processing and Optimization

The data in the electrical power system always features high volatility, irregularity or other
tendencies. Therefore, the original data must be preprocessed before conducting the forecasting. In this
paper, the filter time series are reconstructed by using the signal processing technique, which guarantees
that the main feature of the time series can be effectively identified and extracted. By comparing the
forecasting results of the MFO-SVR model and the CEEMD-MFO-SVR model (or comparing the
forecasting results of the SVR model and the CEEMD-SVR model), we can evaluate the effectiveness of
the data processing approach using a metric named decreased relative error (RE) of MAE, RMSE and
MAPE, as presented in Table 7, which shows that the technique can improve the forecasting accuracy
significantly: it improves the MAPE by 22.6320%, 16.7065% and 15.3012% for the one-step, three-step,
and six-step forecasting, respectively.

Table 7. The decreased relative error (RE).

Metric Definition Equation

REMAE The decreased relative error of MAE REMAEij =
MAEmodeli−MAEmodelj

MAEmodeli
× 100%

RERMSE The decreased relative error of RMSE RERMSEij =
RMSEmodeli−RMSEmodelj

RMSEmodeli
× 100%

REMAPE The decreased relative error of MAPE REMAPEij =
MAPEmodeli−MAPEmodelj

MAPEmodeli
× 100%

The optimization algorithm also plays a vital role in the hybrid forecasting model, contributing
greatly to the excellent performance of the proposed model. Similarly, we can testify to the effectiveness
of the optimization algorithm through analyzing the difference between the forecasting result of the
SVR model and that of the MFO-SVR model (or the forecasting result of the CEEMD-SVR model
and that of the CEEMD-MFO-SVR model), which was found to improve the forecasting performance
greatly: the algorithm improves the MAPE by 18.4993%, 18.7910% and 13.8638% for the one-step,
three-step, and six-step forecasting, respectively. The other details are clearly represented in Table 8.

Table 8. The comparison result of RE for different models.

Metric
CEEMD-SVR vs. SVR CEEMD-MFO-SVR vs. MFO-SVR

1-Step 3-Step 6-Step 1-Step 3-Step 6-Step

REMAE 27.0219 18.6139 9.3127 22.1393 15.9649 14.7683
RERMSE 32.1014 22.9231 7.0789 31.8898 20.1550 13.1947
REMAPE 26.4222 17.9821 8.4273 22.6320 16.7065 15.3012

Metric
MFO-SVR vs. SVR CEEMD-MFO-SVR vs. CEEMD-SVR

1-Step 3-Step 6-Step 1-Step 3-Step 6-Step

REMAE 18.7047 19.0036 14.0487 14.2606 17.2792 19.6106
RERMSE 16.0846 18.8714 11.4159 15.9736 16.9289 17.9369
REMAPE 18.4993 18.7970 13.8638 15.1657 18.6323 21.0086

5.2. Steps of Forecasting

To demonstrate the effectiveness of the developed innovative hybrid model, multi-step forecasting,
including one-step, three-step and six-step forecasting, is conducted in this paper. The comparison
result of multi-step forecasting accuracy is presented in Table 9. According to the value of improvement
of MAPE, we list three conditions in this table, i.e., the worst condition, the best condition and the
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average condition. For the best condition, when compared with three-step and six-step forecasting, the
forecasting accuracy of one-step forecasting improves by 0.3495% and 0.9118%, respectively. Even if a
worse condition occurs, i.e., the worst condition, the difference between one-step and three-step and
six-step forecasting is 0.4867% and 1.6160%, respectively. Furthermore, the average difference between
six-step and one-step forecasting is 1.2741%, which is less than 2% and within the acceptable level [55].
Based on the analysis above, we can draw the conclusion that the proposed hybrid model is effective
for multi-step forecasting.

Table 9. Comparison of multi-step forecasting accuracy.

Metric
1-Step 3-Step Improvement 6-Step Improvement

The Worst Condition

MAE 33.2267 69.1963 35.9696 146.1253 112.8986
RMSE 45.7782 102.7112 56.933 251.3388 205.5606
NMSE 0.0032 0.0162 0.0130 0.0968 0.0936
MAPE 0.4703 0.9570 0.4867 2.0863 1.6160

The Best Condition

MAE 23.7795 43.9501 20.1706 76.1427 52.3632
RMSE 28.3290 60.9403 32.6113 101.6079 73.2789
NMSE 0.0018 0.0084 0.0066 0.0233 0.0215
MAPE 0.4227 0.7722 0.3495 1.3345 0.9118

The Average Condition

MAE 30.6114 61.3822 30.7709 114.0364 83.4251
RMSE 40.4738 86.4379 45.9640 167.8995 127.4256
NMSE 0.0028 0.0135 0.0107 0.0508 0.0480
MAPE 0.4603 0.9178 0.4576 1.7344 1.2741

5.3. Performance Time

The comparison of the performance time for different models is presented in Table 10. The average
computation times of ARMA, SVR, CEEMD-SVR, MFO-SVR and CEEMD-MFO-SVR are 3611.5275 s,
2.7966 s, 22.4386 s, 27,561.6998 s and 25,678.1505 s, respectively. According to the result, it can be found
that the proposed hybrid model has the second longest running time, at 25,678.1505 s, which is within
the acceptable scale. Compared with the SVR and CEEMD-SVR model, the performance time increases
greatly due to the optimization process using MFO; however, it is short enough and applicable to
forecast the future changes in the electric power load series.

Table 10. Comparison of performance times for different models.

Week Region ARMA SVR CEEMD-SVR MFO-SVR CEEMD-MFO-SVR

MON.
New South Wales 2988.4327 2.6517 22.8111 36,273.5017 33,365.3239

Singapore 2171.3310 2.9814 20.4886 26,287.0722 30,981.8506

TUE.
New South Wales 3896.0770 2.8452 22.1512 15,035.1159 50,738.5207

Singapore 2161.3349 2.9230 21.6295 29,783.6256 22,643.3096

WED.
New South Wales 4037.3465 2.4868 22.9666 36,980.7584 21,574.4685

Singapore 4440.7009 2.8414 23.6145 22,121.6782 15,928.8826

THU.
New South Wales 3658.7555 2.7870 23.0914 42,269.4998 10,439.6901

Singapore 4330.3255 2.8108 22.0941 40,950.2446 31,348.9129

FRI.
New South Wales 3716.1698 2.6855 22.8007 36,980.7584 25,324.6323

Singapore 4428.5174 2.8974 22.6533 25,286.8452 20,982.2042

SAT.
New South Wales 4004.7119 2.3885 23.0886 6509.0816 37,218.6057

Singapore 3622.7196 2.9257 22.1307 36,716.0380 17,889.1014

SUN.
New South Wales 3814.1602 2.8924 22.9327 23,829.3685 31,144.1004

Singapore 3290.8024 3.0355 21.6872 6840.2093 9914.5042

AVE. - 3611.5275 2.7966 22.4386 27,561.6998 25,678.1505
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6. Conclusions

Electric power forecasting plays a significant role in power systems management. Recently,
growing attention has been paid to improving the performance of power load forecasting.
A high-accuracy forecasting model can yield huge economic, social and environmental benefits,
improve the security of power systems, and help managers develop optimal plans for power system
management. Hence, developing a novel and robust forecasting algorithm and improving the accuracy
become highly desirable. However, the individual and traditional forecasting models cannot always
yield desirable performance. In this paper, a novel integrated model was proposed for short-term
load forecasting; it uses data selection, the signal processing approach, the multi-step forecasting
strategy, and the precise and robust forecasting algorithm SVR, optimized by the new intelligent
algorithm moth-flame optimization algorithm. Specifically, data selection is an innovative application
used to split the original time series into some subsets, which guarantees that the subsets have the
same features; moreover, the effective signal processing approach is employed to decompose the
original series and reconstruct the filter time series, which is effective for identifying and extracting
the main feature of power load series; moreover, the SVR algorithm, which is optimized by the latest
optimization algorithm, is used to deal with the power load featuring irregularity and volatility.
At this point, the proposed hybrid model, which can effectively realize the one-step forecasting based
on historical data, is developed. Furthermore, the proposed model, combined with the multi-step
forecasting strategy, is employed to perform multi-step forecasting. Evaluation of the developed
hybrid models shows that each component is promising and effective for the forecasting problem and
can improve performance by simplifying the intrinsic complexity of the original data. Based on a
series of comparisons and analyses, the performance of the proposed integrated model is found to be
excellent in comparison with the other benchmark models. For instance, the average MAPE of values
of the hybrid model are 0.4603%, 0.9178% and 1.7344% for one-step, three-step and six-step forecasting,
respectively, which shows significant superiority compared to other benchmark models in terms of
four metric rules. Furthermore, comparing the results of the DM Test and forecasting effectiveness,
the developed model shows a higher degree of forecasting accuracy than the compared models and
the level of forecasting accuracy of the proposed model is significantly different from that of all the
benchmark models. The hybrid model, with its outstanding performance, has considerable economic
benefit and dramatic environmental resource savings; moreover, its recessive profit will become a
driver for sustainable development. Furthermore, it is believed that the novel model will be widely
applied in power system administration, load dispatch and electrical power scheduling. In summary,
the meritorious hybridization capitalizes on each component’s advantages and ultimately results in
final success, and the integrated model, which has an excellent performance, will be widely applied in
the field of forecasting in the future.

However, there are still many issues that must be solved in the forecasting fields. This paper
mainly focuses on the study of electrical power load forecasting by developing a novel integrated
model with high forecasting accuracy; further research can be conducted in the future, as follows:
(1) the application of the forecasting model to an energy system is worth studying, e.g., building
a uniform forecasting model for three key indicators in the electrical power system, including the
short-term wind speed, electrical load and electricity price; (2) this paper ignores the conflicts between
different evaluation metrics; hence, future work can focus on maintaining their balance by tackling the
problems with multiple objectives or constraints.
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