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Abstract: Recently, Android malicious code has increased dramatically and the technology of
reinforcement is increasingly powerful. Due to the development of code obfuscation and polymorphic
deformation technology, the current Android malicious code static detection method whose feature
selected is the semantic of application source code can not completely extract malware’s code features.
The Android malware static detection methods whose features used are only obtained from the
AndroidManifest.xml file are easily affected by useless permissions. Therefore, there are some
limitations in current Android malware static detection methods. The current Android malware
dynamic detection algorithm is mostly required to customize the system or needs system root
permissions. Based on the Dendritic Cell Algorithm (DCA), this paper proposes an Android malware
algorithm that has a higher detection rate, does not need to modify the system, and reduces the
impact of code obfuscation to a certain degree. This algorithm is applied to an Android malware
detection method based on oriented Dalvik disassembly sequence and application interface (API)
calling sequence. Through the designed experiments, the effectiveness of this method is verified for
the detection of Android malware.

Keywords: Android malware; Dalvik disassembly sequence; suspicious API; static detection; DCA;
danger theory

1. Introduction

In the second quarter of 2016, from Statista’s global market share held by the leading smartphone
operating systems in sales to end users from 1st quarter 2009 to 2nd quarter 2016, it can be seen that
the market share of Android equipment has reached 87.8% [1]. According to a 2015 Android malicious
code development report from the Wuhan Antiy Mobile Security Laboratory (AVL Team) mobile
security team [2], it can be found that Android malicious code has had explosive growth since 2014.
In addition, the outbreak of an Short Messaging Service (SMS) interception Trojan has resulted in a
significant increase in the number of privacy theft malicious applications.

In a word, the current Android security situation is grim [3], malicious code types continue to
increase, and users’ privacy and personal property are still being confronted with the threat [4]. Due to
the influence of code obfuscation and polymorphic deformation technology, most of the existing
detection methods can hardly extract features that have a strong classification effect from an Android
installation Package. These problems lead to the fact that it is difficult for the current Android malicious
code static detection algorithm to extract the code features from the Android Package (APK) file.
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For these reasons, based on the Dendritic Cell Algorithm (DCA), this paper presents an Android
malicious code detection method. This method is mainly divided into two parts: training and
detection. For the training part, the main task is to extract features from the APK through Dalvik
reduced instruction sequence (DRIS) and N-perm, and to mark the characteristics as a different level of
danger by danger theory. DRIS and N-perm are introduced, respectively, in Sections 3.1 and 3.2. After
the training part, the experiment can gain a feature database which is composed of a risk feature set
(RFS), a common feature set (CFS) and a safe feature set (SFS). In a feature database, each characteristic
will has a danger level vd and security level vs. For the detection part, the main task is to classify
suspicious APK by using an improved DCA and feature database. The feature extraction of the
detection section is the same as the training section.

In the experiment, all malware are obtained from AndroMalShare and VirusShare projects. In the
malware data set, 15 kinds of major malicious code family are selected as specimens, such as FakeInst,
Fakesysui, Jxt, ADRD, and Geinimi. Ultimately, the experiment has a high detection precision rate
(97.4%) in the best cases and a low false positive rate (2%) in the worst cases.

The remainder of this paper is organized as follows: in Section 2, the related work of this paper is
introduced, which includes the analysis of the characteristics of the existing research work. Section 3
briefly introduces the related technology of this paper. Sections 4 and 5, respectively, introduce the
algorithm implementation and the design of experiments, and Section 6 presents conclusions.

2. Related Works

With the rapid popularization of Android, the Android system security has become an important
research direction around the world.

Shabtai and Qing Sihan [5,6] have carried on the analysis of the Android system structure and
security mechanism. Enck, Ongtang, Nauman and others [7–9] put forward an optimizing of an
Android authorization mechanism. Wognsen et al. [10] have conducted in-depth research and analysis
on the Dalvik byte code. Sarma, Sato, Wu and Weichselbaum [11–14], respectively, focus on the
AndroidManifest file for Android malicious code static detection. Grace et al. [15] developed an
automated system called RiskRanker to scalably analyze whether a particular Android application
exhibits dangerous behavior. These pieces of research have laid a solid foundation for the study of
Android malicious code detection.

In 2014, Li et al. [16] presented a static detection scheme for Android malicious code detection.
Li’s method proposed a way to extract the features using a streamlined Dalvik assembly sequence,
and retained the structure of the application source code. However, Li used singularly original Dalvik
assembly sequence characteristics, did not make further processing, and the classification used only
the text edit distance metric. Therefore, Li’s method is still uneffective in the treatment of polymorphic
malicious code and new malware variants. At the same time, Suarez-Tangil [17] put forward a detection
system about the code structure of an Android malicious code family whose analysis and classification
method are based on text mining. Guillermo uses hierarchical clustering to classify feature vectors
which are obtained from a Dalvik reduced instruction sequence (DRIS), and uses phylogenetic trees
to study the evolution of the malicious code family. Compared with Li [16], the system proposed by
Guillermo has more complete abstraction of the malicious application code structure, can identify
existing malicious code family quickly, but is not able to achieve the same classification results for
polymorphic malicious code. Kong Deguang, Abdurrahman et al. [18,19], in the research of malicious
code on the X86 platform, are, respectively, using the N-perm algorithm and N-gram algorithm to
extract the statistical features of malicious code assembly sequences. Kong’s research proves that the
N-perm algorithm can extract the statistical features of the code sequence. Seung-Hyun [4] studies the
Android code application interface (API) and selects 17 kinds of dangerous API calls. Deniel [20] et al.
use the dendritic cell algorithm (DCA) with principal component analysis (PCA) to classify each
of the Android applications as a benign application or as malware. However, there are still some
shortcomings because of running in the sandbox, such as poor real-time, low detection efficiency.
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Based on the dendritic cell algorithm, this paper proposes a new Android malicious code detection
method. Compared to other Android malicious code detection algorithms, this algorithm has a faster
detection speed under the premise of guaranteeing the detection accuracy, and is suitable for Android
malicious code lightweight detection. In addition, the APK code feature extraction method of this
algorithm can reduce the effect of code obfuscation to a certain degree.

3. Problem Statement and Preliminaries

3.1. Dalvik Reduced Instruction Set

Dalvik Reduced Instruction Set (DRIS) is based on a grammar proposed by literature [21] and
shown in Figure 1. DRIS refers to the processing of a Dalvik assembly sequence, which reflects the
program semantic instruction program, such as goto, if, move, invoke and so on. DRIS removed
independent instructions and interference, such as jump destination address and register parameters.
Finally, the single letter is used to substitute the extracted instruction and to obtain sequences.
This sequence can represent the semantics of code. The use of DRIS will be introduced in Section 4.

Grammar： 

Statement  ::=  M|R|C|I|O|V|G|P 

[  ::=  .method 

]  ::=  .end method 

M  ::=  move|move-object|move-result|… 

R  ::=  return|return-void|return-wide|.. 

C  ::=  const|const/4|const/high16|… 

O  ::=  goto|goto/16|goto/32|… 

I  ::=  if-eq|if-ne|if-ge|if-gt|if-eqz|.. 

V  ::=  invoke-virtual|invoke-interface|. 

G  ::=  aget|iget|sget|… 

P  ::=  aput|iput|sput|… 

N  ::=  new-instance|… 

Figure 1. Dalvik reduced instruction sequence (DRIS) letters and instructions mapping table.

3.2. N-Perm Algorithm

Previously, the N-gram algorithm is used for text classification and information retrieval
technology [22], whose core idea is to calculate the frequency of continuous N words. The N-perm
algorithm is the deformation of the N-gram algorithm [18], and the difference between two algorithms
being N-perm ignored the sequence when computing the frequency of continuous N words, which
can reduce the influence of polymorphism in the experiment. As shown in Figure 2, in the extraction
of the specified operation code from the Dalvik bytecode, the experiment counts the frequency of
operation code (Opcode) combination, and uses the two-tuple (Opcode combination, frequency) as the
feature vector. Assuming that the Opcode sequence is CVCPCP. After using the 1-perm algorithm,
the two-tuple ({C, V, P}, {3,1,2}) can be obtained. Using the 2-perm algorithm, the two- tuple ({CV, VC,
CP, PC}, {1,1,2,1}) can be obtained. Using the 3-perm algorithm, the two tuple ({CVC, VCP, CPC, PCP},
{1,1,1,1}) can be obtained. By analogy, when n = 4, 5, 6, they have the same algorithm.

 

const/4 v2, 0x0 

invoke-direct {p0}, … 

const-string v0, "" 

iput-object v0, p0, … 

const-wide/16 v0, 0x0 

iput-wide v0, p0, Lcom/a/a/j;->b:J 

Figure 2. Dalvik instruction set sequence sample.
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3.3. DCA Algorithm

Danger theory is a controversial and famous immune theory, proposed by immunologist
Matzinger [23] in 1994, which has challenged the traditional Self-NonSelf (SNS) theory. Based on
danger theory, Greensmith et al. [24], in the study of natural dendritic cells (DC), proposed the dendritic
cell algorithm (DCA). There are four kinds of signals that can be transmitted: pathogen-associated
molecular patterns (PAMP), safe, danger and inflammatory. A PAMP signal is transmitted if any
bacteria exist. A safe signal is transmitted if a cell dies from aging. A danger signal is transmitted
if a cell is damaged and dies. An inflammatory signal is transmitted if there is any inflammation
in the body.

DCA is a population-based algorithm. The population in a DCA is filled with Dendritic Cells
(DCs). Dendritic Cells (DC) are a kind of special antigen presenting cell that is sensitive to the change
of environment. The main functions of a DC are processing signals and representing antigens. DC is
divided into three states: immature DC (iDC), semi mature DC (smDC), and mature DC (mDC).
When the Costimulatory Molecules (CSM) signal concentration reaches the threshold, the iDC will be
changed to smDC or mDC, which is determined by the concentration of semi-mature output signal
and mature output signal. The transformation relations of DC’s three states are shown in Figure 3.

CSM<threshold

iDC

Obtain signal and antigen

smDC mDC

Refresh output and CSM

Evaluate CSM

Evaluating output cell 
factor

SmDC more 
than mDC

CSM>threshold

mDC more 
than smDC

 

Figure 3. Dendritic Cell (DC) state transformation.

Compared with other algorithms, the DCA algorithm has a faster detection speed and does not
reduce the detection accuracy. These features make the DCA suitable for Android malicious code
lightweight detection.

3.4. Code Obfuscation

To protect their applications, Android application developers use code obfuscation technology
to counter the reverse analysis. Android platform code obfuscation mainly uses ProGuard tools for
completion. Android application code obfuscation replaces the source code’s variable name, function
name, class name and package name with meaningless characters [25], which prevents the analyst
from performing a reverse analysis of the code logic. Code obfuscation gives greater resistance to static
analysis of Android malicious code [26]. However, in the Android application source code, to ensure
the correct execution of the code, there are some code segments that can not be confused such as
Android system components, native method, the method which needs to use Android serialization,
enum, API, the content that resources file reference, the place where the reflection method is used, and
the reference to a third-party library. In addition, code obfuscation does not cause large changes to
the application code structure [27], so the statistical characteristics of the application code will not be
greatly affected.
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4. Design of Detection Method Based on Improved DCA Algorithm

4.1. System Overview

Based on the Dendritic Cell Algorithm, this paper proposes an Android malicious code detection
method, and the detection process is shown in Figure 4. The method that this paper proposed mainly
consists of two parts, training and detection. The symbols that appear in this section are shown
in Table 1.

Feature extraction and processing

Training set Suspicious APK

Characteristic 
marks

Feature DB
(RFS,CFS,SFS)

iDCA classify

Classification 
result

Training process
Detection process

 

Figure 4. Overall system flow.

In the training part, the experiment has extracted Dalvik code features by DRIS and N-perm
from training set APKs. Then, the experiment uses danger theoryto mark Dalvik code features as risk
features (RFs), common features (CFs) and safe features (SFs). Finally, RFs, CFs and SFs are stored in
risk feature sets (RFS), common feature sets (CFS) and safe feature sets (SFS), respectively.

In the detection part, the experiment uses improved DCA to classify the detected APK after
feature extraction and processing.

Table 1. Symbol Table.

Symbol Description

DC Dendritic cell, in this paper is APK sample
iDC immature DC, in this paper is test sample

smDC semi-mature DC, in this paper is normal sample
mDC mature DC, in this paper is malicious sample
CSM the concentration of co-stimulatory molecules, represents the process of iDC transforming

k represents the danger degree of single method in current APK
k̄ a measure indicating the polarisation towards anomaly or normality
M a set of malicious APK
N a set of normal APK
V a set of suspicious APK
S a set of characteristics after data extraction

DS danger signal, represents the hazard degree
SS safe signal, represents the safe degree

RFS risk feature set, a set contains danger characteristic
CFS common feature set, a set contains common characteristic
SFS safe feature set, a set contains safe characteristic
vd represents the danger degree of current characteristic or method
vs represents the safe degree of current characteristic or method
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4.2. Training Part

The training part of this experiment mainly consists of two parts: input data processing and mark
characteristics. The training flow is shown in Figure 5.

Training set

Extracting 
Smali code

Extracting API 
Feature

Filtering API 
Feature

Processing Smali 
code by DRIS

Processing 
feature by N-perm

Feature DB
(RFS,CFS,SFS)

Use danger theory 
to mark 

characteristics

 

Figure 5. Training flow.

4.2.1. Input Data Processing Method

Algorithm input includes DRIS and Android static code APIs.
The processes of obtaining DRIS are as follows. First of all, for the batch of APK files,

the experiment uses ApkTool to decompile it to extract the .smali files. The .smali file is the Android
application source code file which analyzes from the classes.dex file. Classes.dex file is a part of
the Android package (APK) file, including the source code of the logic realization of the Android
application. Smali source code and Dalvik code are based on a similar grammar rules, so the DRIS
can be used to deal with the .smali file. Then, the method content has extracted from the .samli
file and replaced by reduced instruction set to get the reduced instruction set sequence. Next, the
4-perm algorithm is used to simplify the instruction set sequence, and to get a set of two-tuples that is
organized by method. At last, the two-dimensional array is used to store all two-tuples.

Android static code APIs are also obtained from the smali file, in which dangerous API list
references from the Seo’s paper [4].

API feature extraction uses two-tuple (API list, frequency) to complete statistics. Finally, the API
feature Two-Tuple will attach to the tail of Dalvik sequence features two-dimensional array.

In the N-perm algorithm, selecting a suitable N is essential. The smaller the N value, the less
sufficient the extracted characteristic information. The bigger the N value, the less representative the
extracted features. In this paper, the N value is set as 4. The experiments of different N value selections
are shown in Figure 6.
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Figure 6. Effects of N-perm parameter N on detection accuracy.
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4.2.2. Mark Characteristic

The 4-perm algorithm will produce more features, so the information gain value is used to measure
the classification performance of feature and screen features [28]. Random variable Y represents the
classification results, and random variable Xi represents features i corresponding random variable.
Information gain of features i is determined by the formula (1):

I(Y; Xi) = H(Y)− H(Y|Xi). (1)

In formula (1), H(Y) is the entropy of the random variable Y, and H(Y|Xi) is the conditional
entropy of random variable Y that is under the premise of random variables Xi. The information gain
value can be used to measure the difference of information entropy before and after the occurrence of
the feature [29], which is applied with multiple domains, such as the intrusion detection system [30].
The more the entropy gain, the better the classification of corresponding features.

For each APK used for training, 400 features that have the largest information gain value have
been selected, and combined with 17 suspicious APIs, the characteristic set S is composed. In DCA,
the algorithm’s input is antigen and signal. The antigen and signal are the Android malicious code
sample and the set S after the information fusion, respectively.

Let U represent a set of programs with known classification, ∀u ∈ U, and uj is a feature set of
the method j in u, where uj =< x1, x2, x3, ..., xn, y >, (j = 1, 2, ..., m), xi, y ∈ {0, 1, 2, ...}, (i = 1, 2, ..., n).
The xi = 0 indicates the feature xi not appearing in uj. On the contrary, the feature xi has appeared in
uj when xi is equal to 1. The y = 0 indicates that u is a normal sample. Contrarily, it is a malicious
sample. Set M represents the set of malicious code, and set N represents the set of normal code. The
provisions of the set M and set N are as follows:

Definition 1. U = M ∪ N.

Definition 2. M = {m|m ∈ U ∩ y = 1}.

Definition 3. N = {n|n ∈ U ∩ y = 0}.

Set V represents an unknown malicious code set. For ∀v ∈ V, vj is the set of features in method j,
where vj =< x1, x2, x3, ..., xn, y >, y = 2 represents that v is unclassified.

In the algorithm, set V is the antigen, and the features x1, x2, x3, ..., xn will be integrated into the
danger signal (DS) and security signal (SS). The specific steps are as follows.

(1) S is the set of features, which is composed of 1233 features extracted from DRIS and 17 features
extracted from suspicious APIs. The feature set S is divided into three sub sets—Risk Feature Set
(RFS), Security Feature Set (SFS), and Common Feature Set (CFS)—which are defined as follows. RFS,
defined by Definition 4, includes features that only appear in malicious applications. SFS defined by
Definition 5 includes features that only appear in normal applications. CFS defined by Definition 6
includes features that appear in both malicious applications and normal applications:

Definition 4. RFS = {xi|∀u ∈ U ∩ (xi 6= 0⇒ (u ∈ M ∩ u /∈ N))}.

Definition 5. SFS = {xi|∀u ∈ U ∩ (xi 6= 0⇒ (u ∈ N ∩ u /∈ M))}.

Definition 6. CFS = {xi|∀u ∈ U ∩ (xi 6= 0⇒ (u ∈ N ∩ u ∈ M))}.

(2) Denote nmi as the number of elements for which xi 6= 0 and xi ∈ M. Denote nbi as the number
of elements for which xi 6= 0 and xi ∈ N. The weight of each signal component which forms by
features are calculated by the following formula:
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(a) When xi ∈ RFS,

wdi =
|S|
|RFS| × I(Y; Xi) and wsi = 0. (2)

(b) When xi ∈ SFS,

wsi =
|S|
|SFS| × I(Y; Xi) and wdi = 0. (3)

(c) When xi ∈ CFS,

wdi =
|S|
|RFS| × I(Y; Xi)×

nmi
nbi + nmi

, (4)

wdi =
|S|
|SFS| × I(Y; Xi)×

nbi
nbi + nmi

. (5)

In the above formula, wdi represents the risk weight, and wsi represents the security weight.

(3) Finally, calculate the danger signal vdj and security signal vsj, where j = 1, 2, ..., m, and m is
the total number of method which belongs to u. Let zi be the value of xi. The calculation formulas are
as follows:

vdj =
n

∑
i=1

wdi × zi, (6)

vsj =
n

∑
i=1

wsi × zi. (7)

4.3. The Improved Dendritic Cell Algorithm

The process of iDCA is simply described as follows. Firstly, the experiment extracts DRIS and
suspicious APIs from the APK file, and generates the feature vector by feature fusion. An application
corresponds to a feature vector. Then, the experiment initializes the iDC with the i-th feature vector,
calculates the CSM concentration in a DC environment and the k value of each method in the i-th
feature vector. If the CSM concentration is higher than the threshold value, then calculate the expected
of k marked k̄. If k̄ is larger than zero, the iDC state would migrate to mDC. If k̄ is smaller than zero,
the iDC state would migrate to smDC. Through the final state of DC, it can be judged whether the
feature vector belongs to malware or not. The iDCA detection flow is shown in Figure 7.

IDC and feature vector 
initialization

input feature vector i

Select method and 
fusion signal

csm++ and calculate K 
value

the expected 
number of K>0

Caculate the expected 
number of K

Obtained 
mDC

Obtained 
smDC

Sample i is 
malicious 
samples

Sample i is 
normal samples

CSM 
concentration<threshold

CSM 
concentration>threshold

the expected 
number of K<0

Feature DB
(RFS,CFS,SFS)

 

Figure 7. Detection flow.

Because of a large number of uncertain parameters, traditional Dendritic Cell Algorithm (DCA)
has excessive uncertainty and a lack of a formal definition [31], which could lead to ambiguity in
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understanding and using the algorithm. Based on literature [31], the experiment attempts to streamline
and optimize the traditional dendritic cell algorithm, which is suitable for use in Android malware
detection. This method is referred to as iDCA.

By streamlining, the algorithm input signal is reduced to danger signal vdj and security signal
vsj. The concentration threshold of CSM is the number of methods. The life cycle of DCs is uniformly
distributed, and each DC is used alone for a single sample processing. The input of DC is two kinds of
signals and antigens, the output of DC is k̄, and the result of classification is context. The k̄ calculation
formula in iDCA are as follows:

k̄ =
k1 + k2 + k3 + · · ·+ km

m
, (8)

ki = vdi − vsi. (9)

The ki in the above formula is the risk degree of the i-th method from the current sample.
The pseudocode for the iDCA is shown in Algorithm 1.
Classification results are stored in array result[], in which array result[i] = 1 indicates the i-th

sample is malware. Conversely, result[i] = 0 indicates that the i-th sample is normal.

Algorithm 1 Pseudocode for iDCA
Input: Antigen and Signals
Output: Antigen Types and k̄

1: procedure IDCA
2: Initialize DC()
3: while Antigen i f rom 1 to n do
4: while method j f rom 1 to m do
5: initialize vdj, vsj, kj
6: calculate vdj, vsj, kj
7: DC.csm ++
8: DC.li f espan← m− DC.csm
9: k̄← k̄ + kj

10: if DC.li f espan ≤ 0 then
11: DC.k̄← DC.k̄÷m
12: if DC.k̄ > 0 then
13: DC.Context = 1
14: else
15: DC.context = 0
16: end if
17: end if
18: end while
19: result[i]← DC.context
20: reset DC()
21: end while
22: return result[]
23: end procedure

4.4. Analysis of iDCA

As a simulation of the natural dendritic cells’ working principle, iDCA has many advantages.
First of all, the training phase workload of iDCA is very small, which only needs to classify the features
in S into RFS, CFS, and SFS, and calculate the danger degree vd and the safe degree vs of each feature
separately. Secondly, due to the low complexity of the iDCA, the algorithm has higher efficiency
than DCA and some other algorithms. From Algorithm 1, it can be seen that the time complexity of
iDCA is O(n×m). Then, the iDCA has the advantages of highlighted data feature fusion, which can
fuse a large number of features as the danger signal and the security signal. Fourthly, due to the low
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sensitivity of system parameters in a certain range (such as the change of the weight in feature data
fusion and the change of the antigen storage space), the iDCA algorithm has strong robustness. Finally,
for the whole detection process, the calculation of the feature’s information gain value removes a large
number of results that have poor classification performance, and the overall classification efficiency of
the algorithm is improved.

At the same time, the detection algorithm still has some shortcomings. Firstly, because of the
different sizes of the Android applications, the number of methods in which application contained have
a large difference, and this situation will affect the computational efficiency of weight. Secondly, this
algorithm is sensitive to the amount of antigen. When there is an insufficient amount of antigen, the
feature classification performance will lose effectiveness and then affect the classification performance
of the overall algorithm.

5. Experimental Design

5.1. Experimental Data Processing

The experimental environment of algorithm designs is as follows: Intel Core i7-4710MQ CPU,
16GDDR31600Mhz memory and Windows 10 professional operating system. This experiment uses
Python as the programming language.

Datasets are divided into normal samples and malware samples. In this experiment, from Google
Play, 1000 samples have been selected as normal samples, and, from AndroMalShare and VirusShare,
two Android malicious code sharing projects of 15 mainstream malicious code families have been
selected. From each family, 50 cases (750 in total) are selected as malicious samples. In the malicious
sample data set, half of the samples have been processed by code obfuscation. Due to the use of
10-fold-cross-validation, the proportion of the training set and the test set in the experiment is 9:1.
Specific division methods are as follows: all samples were divided into 10 parts, each of the parts
keeps the normal samples and malicious samples ratio of 4:3 constant, that is, 100 cases of normal
samples and 75 cases of malicious samples. In the division of the training set and test set, 10 parts were
successively set as the test set, and the remaining 9 parts were used as the training set. Finally, in each
experiment, the total number of training sets is 1575 cases, and the total number of test sets is 175 cases.

Because of the static characteristic detecting method, the experiment does not need to run the
Android application. The method that paper proposed mainly consists of two parts: training and detection.

For the training section, the main task is to extract features from the APK and to mark the
characteristics as a different level of danger. Firstly, by using the APK unpacking tool (apktool),
each sample has been unpacked, and the smali file is extracted from each unpacked APK. Secondly,
for all smali source files, methods and Android static code APIs were extracted by python script in
experiment. Thirdly, for the extracted method, DRIS and 4-perm algorithm complete statistical feature
extraction are used to obtain two-tuples. According to a well-defined API call sequence table, the
experiment processes the extracted API calls and generates a feature vector.Because the contrast table
of dangerous API contains 17 APIs, the size of API feature vector is 17.

The selection of parameter N value in N-perm is important. When N is small, the N-perm
algorithm will produce a large number of features, and these features do not have a better classification
effect. When N is large, the N-perm algorithm will produce fewer features, whose features may only
exist with the current APK file and are not universal. Through Figure 6, it can be seen that when the
value of N is equal to 4, the detection result is best.

Next, the algorithm calculates the information gain value of characteristics from Dalvik sequence
two-tuples, and, for each APK used for training, our experiment selects 400 characteristics that have
maximum value of the information gain as a part of the final feature vector. Another part of the final
feature vector is generated by the API calls.
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As shown in Figure 8, although the numbers of RFSs and SFSs are not dominant, this algorithm
can reduce the impact of CFS from weight calculation and feature fusion mode, and enhance the
classification accuracy of the detection algorithm.

For the detection section, the main task is to classify suspicious APK by using a feature database
that is obtained during the training section. The feature extraction of the detection section is the same
as the training section.
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5.2. Results Contrast

In addition to the detection algorithm of this paper, as a comparison, the experiment has selected
support vector machines (SVM), Naive Bayes (NB), J48 Decision Tree (DT) and the k-Nearest Neighbor
(KNN) algorithm to verify the effect of the classification algorithm. These algorithms are applied
to many fields of machine learning because of being simple and efficient [32,33]. At the same time,
the method this paper proposed is compared with the method proposed by Wang [34] and Sato [12].
Wang [34] detected the malware by building different information models from Android permission.
Sato [12] extracts permission, intent filter (action), intent filter (category) and process name from the
AndroidManifest.xml file as the basis of classification, and uses the J48 decision tree to detect the
Android malware.

Test results use the true position rate (TPR), false position rate (FPR) and accuracy as the evaluation
index. Accuracy is the proportion of samples that are correctly classified. The TPR, FPR and accuracy
are calculated by the following formula:

TPR =
TP

TP + FN
, (10)

FPR =
FP

FP + TN
, (11)

Accuracy =
TP + TN

TP + FP + TN + FN
. (12)

The malware samples are regarded as positive in the classification model. TP is the number of
correctly classified malware; FN is the number of malware samples wrongly identified as benign;
FP is the number of Google app samples misclassified as malware, and TN is the number of correctly
identified benign applications. From the 10-fold cross-validation, when the number of malicious
samples is 750, the test results are shown in Table 3. As is shown in Table 2, compared with SVM, NB,
DT, KNN, Wang [34], and Sato [12], iDCA has a higher detection accuracy rate when the number of
malicious samples is 750. However, from Figure 9, it can be seen that the performance of iDCA is poor
when the number of samples is small.
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The FPR of iDCA is mainly caused by the features in CFS. There are three reasons for the FPR of
iDCA: (1) the number of features in CFS is more than the sum of RFS and SFS features; (2) there are still
a lot of sensitive operations in the normal code, which will increase the weight of the risk signal of the
normal sample feature vector; (3)through the analysis of the false positive sample feature vector, it can
be found that the number of feature items with a value of 1 is smaller than the items with a value of 0,
which means that the false positive sample feature vector misses identification information because
some samples just have a small amount of code. These problems also lead to the other four classifiers
generating false positives.

From Table 2, the detection result of the iDCA is much better than Wang [34] and Sato [12],
to which it can be attributed that some developers will declare more permissions than they require.
The DRIS and the suspicious APIs compared to permissions have a better performance in identifying
malicious applications.
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Table 2. The results contrast of different algorithms.

Algorithm SVM NB DT KNN iDCA Wang [34] Sato [12]

TPR 0.937 0.947 0.925 0.944 0.980 0.957 0.921
FPR 0.029 0.030 0.043 0.031 0.020 0.035 0.050

Accuracy 0.957 0.960 0.943 0.958 0.974 0.962 0.938

In addition, it can be seen from Table 3 that, due to the low time complexity, iDCA training time
and testing time is much smaller than the other methods, respectively achieved with 0.85 s and 0.55 s.
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Table 3. The time efficiency contrast of different algorithms.

Algorithm Training Time (s) Testing Time (s)

SVM 1.50 1.12
NB 2.15 0.98
DT 2.56 0.79

KNN 1.98 0.85
Wang [34] 1.88 0.69
Sato [12] 2.13 0.63

iDCA 0.85 0.55

6. Conclusions

Compared with the other machine learning based detection methods, the method this paper
proposed has the following improvements. This method takes DRIS and suspicious APIs as features
in the experiment. The N-perm algorithm and information gain value are used in the characteristic
processing, which reduce the data redundancy and improve the classification ability of data. Danger
theory is used to complete feature mark and feature fusion. Finally, iDCA is used for classification.

Through these improvements, this method has a higher classification precision and a higher time
efficiency than the other existing machine learning based detection algorithms. In addition, because
code obfuscation mainly aims at anti-reverse analysis by substituting variable name, function name,
class name and package name, the code statistical characteristics and system API call adopted by this
algorithm will not produce big changes. This algorithm can reduce the influence of code obfuscation
to a certain degree.

However, this algorithm still has some shortcomings: (1) this detection algorithm is not used in
small sample training data sets; (2) this algorithm can not detect the malicious code with dynamical
loading, which is also vulnerable to the influence of the deformation of the polymorphic environment.
Because this algorithm requires a large number of samples to learn, and the sample experiments used
is less, the ability for detection unknown malware still needs to be verified.

In the future, the main focus of the research is to reduce the sensitivity of the polymorphic code
and build a more effective feature library by expanding sets for training, which may improve the
practicality of the algorithm. Meanwhile, to detect malware more accurately, the study of malicious
code dynamic loading technology is also needed.
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