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Abstract: Quantifying synergy among stochastic variables is an important open problem in
information theory. Information synergy occurs when multiple sources together predict an outcome
variable better than the sum of single-source predictions. It is an essential phenomenon in biology
such as in neuronal networks and cellular regulatory processes, where different information flows
integrate to produce a single response, but also in social cooperation processes as well as in statistical
inference tasks in machine learning. Here we propose a metric of synergistic entropy and synergistic
information from first principles. The proposed measure relies on so-called synergistic random
variables (SRVs) which are constructed to have zero mutual information about individual source
variables but non-zero mutual information about the complete set of source variables. We prove
several basic and desired properties of our measure, including bounds and additivity properties. In
addition, we prove several important consequences of our measure, including the fact that different
types of synergistic information may co-exist between the same sets of variables. A numerical
implementation is provided, which we use to demonstrate that synergy is associated with resilience
to noise. Our measure may be a marked step forward in the study of multivariate information theory
and its numerous applications.

Keywords: synergy; synergistic information; synergistic entropy; information theory; stochastic
variables; higher order information

1. Introduction

Shannon’s information theory is a natural framework for studying the correlations among
stochastic variables. Claude Shannon proved that the entropy of a single stochastic variable uniquely
quantifies how much information is required to identify a sample value from the variable, which
follows from four quite plausible axioms (non-negativity, continuity, monotonicity and additivity) [1].
Using similar arguments, the mutual information between two stochastic variables is the only pairwise
correlation measure which quantifies how much information is shared. However, higher-order
informational measures among three or more stochastic variables remain a long-standing research
topic [2–6].

A prominent higher-order informational measure is synergistic information [3–5,7–10], however
it is still an open question how to measure it. It should quantify the idea that a set of variables
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taken together can convey more information than the summed information of its individual variables.
Synergy is studied for instance in the context of regulatory processes in cells and networks of neurons.
To illustrate the idea at a high level, consider the recognition of a simple object, say a red square,
implemented by a multi-layer neuronal network. Some input neurons will implement local edge
detection, and some other input neurons will implement local color detection, but the presence of
the red square is not defined solely by the presence of edges or red color alone: it is defined as
a particular higher-order relation between edges and color. Therefore, a neuronal network which
successfully recognizes an object must integrate the multiple pieces of information in a synergistic
manner. However, it is unknown exactly how and where this is implemented in any dynamical network
because no measure exists to quantify synergistic information among an arbitrary number of variables.
Synergistic information appears to play a crucial role in all complex dynamical systems ranging from
molecular cell biology to social phenomena, and some argue even in quantum entanglement [11].

We consider the task of predicting the values of an outcome variable Y using a set of source
variables X ≡ {Xi}i. The total predictability of Y given X is quantified information-theoretically by
the classic Shannon mutual information:

I(X : Y) = H(Y)− H(Y|X).

Here:
H(Y) = −∑

y
Pr(Y = y) log2 Pr(Y = y)

is the entropy of Y and denotes the total amount of information needed on average to determine a
unique value of Y, in bits. It is also referred to as the uncertainty about Y. The conditional variant
H(Y|X) obeys the chain rule H(X, Y) = H(X) + H(Y|X) and is written explicitly as:

H(Y|X) = −∑
x

Pr(X = x)∑
y

Pr(Y = y|X = x) log2 Pr(Y = y|X = x) .

This denotes the remaining entropy of Y given that the value for X is observed. We note that
H(X) and I(X : Y) easily extend to vector-valued variables, for details see for instance Cover and
Thomas [12].

In this article we address the problem of quantifying synergistic information between X and Y.
To illustrate information synergy, consider the classic example of the XOR-gate of two i.i.d. binary
inputs, defined by the following (deterministic) input-output table (Table 1).

Table 1. Transition table of the binary XOR-gate.

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 0

A priori the outcome value of Y is 50/50 distributed. It is easily verified that observing both
inputs X1 and X2 simultaneously fully predicts the outcome value Y, while observing either input
individually does not improve the prediction of Y at all. Indeed, we find that:

I(X1 : Y) = 0,
I(X2 : Y) = 0,

I(X1, X2 : Y) = 1.
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In words this means that in this case the information about the outcome is not stored in either
source variable individually, but is stored synergistically in the combination of the two inputs. In this
case Y stores whether X1 6= X2, which is independent of the individual values of either X1 or X2.

Two general approaches to quantify synergy exist in the current literature. On the pragmatic and
heuristic side, methods have been devised to approximate synergistic information using simplifying
assumptions. An intuitive example is the “whole minus sum” (WMS) method [10] which simply
subtracts the sum of pairwise (“individual”) mutual information quantities from the total mutual
information, i.e., I(X : Y) − ∑i I(Xi : Y). This formula is based on the assumption that the Xi are
uncorrelated; in the presence of correlations this measure may become negative and ambiguous.

On the theoretical side, the search is ongoing for a set of necessary and sufficient conditions for a
general synergy measure to satisfy. To our knowledge, the most prominent systematic approach is
the Partial Information Decomposition framework (PID) proposed by Williams and Beer [3]. Here,
synergistic information is implicitly defined by additionally defining so-called “unique” and “shared”
information; together they are required to sum up to the total mutual information I(X : Y), among
other conditions. However, it appears that the original axioms of Shannon’s information theory
are insufficient to uniquely determine the functions in this decomposition framework [13], so two
approaches exist: extending or changing the set of axioms [3,7,8,14], or finding “good enough”
approximations [3,6,9,10].

Our work differs crucially from both abovementioned approaches. In fact, we will define
“synergy” from first principles which is incompatible with PID. We use a simple example to motivate
our intuitive incongruence of PID; however, no mathematical argument are found in favor of either
framework. Our proposed procedure of calculating synergy is based upon a newly introduced notion
of perfect “orthogonal decomposition” among stochastic variables. We will prove important basic
properties which we feel any successful synergy measure should obey, such as non-negativity and
insensitivity to reordering subvariables. We will also derive a number of intriguing properties, such as
an upper bound on the amount of synergy that any variable can have about a given set of variables.
Finally, we provide a numerical implementation which we use for experimental validation and to
demonstrate that synergistic variables tend to have increased resilience to localized noise, which is an
important property at large and specifically in biological systems.

2. Definitions

2.1. Preliminaries

Definition 1: Orthogonal Decomposition

Following the intuition from linear algebra we refer to two stochastic variables A, B as orthogonal
in case they are independent, i.e., I(A : B) = 0. Given a joint distribution of two stochastic variables

A, B we say that a decomposition B =
(

B⊥, B‖
)

def
= D(B, A) is an orthogonal decomposition of B with

respect to A in case it satisfies the following five properties:

sufficiency :I
(

B⊥, B‖ : B
)
= H(B),

orthogonality :I
(

B⊥ : A
)
= 0,

parallelism :I
(

B‖ : A
)
= I(B : A),

non-spuriousness :I
(

B‖ : A|B
)
= 0,

parsimony :I
(

B‖ : B
)
= I(B : A).

(1)

In words, B is decomposed into two orthogonal stochastic variables B⊥, B‖ so that (i) the two
parts taken together are informationally equivalent to B; (ii) the orthogonal part has zero mutual
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information about A; and (iii) the parallel part has the same mutual information with A as the original
variable B has.

Our measure of synergy is defined in terms of orthogonal decompositions of MSRVs. However
this decomposition is not a trivial procedure and is even impossible to do exactly in certain cases.
A deeper discussion of its applicability and limitations is deferred to Section 7.1; here we proceed with
defining synergistic information.

2.2. Proposed Framework

2.2.1. Synergistic Random Variable

Firstly we define S as a synergistic random variable (SRV) of X ≡ {Xi}i if and only if it satisfies
the conditions:

I(S : X) > 0,
∀i : I(S : Xi) = 0.

(2)

In words, an SRV stores information about X as a whole but no information about any individual
Xi which constitutes X. Each SRV Si is defined by a conditional probability distribution Pri(Si|X ) and
is thus conditionally independent of any other SRV given X, i.e., Pr

(
Si, Sj|X

)
= Pr(Si|X ) · Pr

(
Sj|X

)
.

We denote the collection of all possible SRVs of X as the joint random variable σ(X). We sometimes
refer to σ(X) as a set because the ordering of its marginal distributions (SRVs) is irrelevant due to their
conditional independence.

2.2.2. Maximally Synergistic Random Variables

The set σ(X) may in general be uncountable, and many of its members may have extremely small
mutual information with X, which would prevent any practical use. Therefore we introduce the notion
of maximally synergistic random variables (MSRV) which we will also use in some derivations. We do
not have a proof yet that this set is countable, however our numerical results (see especially the figure
in Section 6.2) show that a typical MSRV has substantial mutual information with X (about 75% of
the maximum possible). This suggests that either the set of MSRVs is countable or that the mutual
information of a small set of MSRVs rapidly converges to the maximum possible mutual information,
enabling a practical use.

We define the set of MSRVs of X, denoted Σ(X), as the smallest possible subset of σ(X) which
still makes σ(X) redundant, i.e.:

Σ(X) = min|Σ|{Σ ⊆ σ(X) : H(σ(X)|Σ(X) ) = 0}. (3)

Here, |Σ| denotes the cardinality of set Σ which is minimized. Intuitively, one could imagine
building Σ(X) by iteratively removing an SRV Si from σ(X) in case it is completely redundant given
another SRV Sj, i.e., if ∃j : H

(
Si
∣∣Sj
)
= 0. The result is a set Σ(X) with the same informational

content (entropy) as σ(X) since only redundant variables are discarded. In case multiple candidates
for Σ(X) would exist then any candidate among them will induce the same synergy quantity in
our proposed measure, as will be clear from the definition in Section 2.2.5 and further proven in
Appendix A.2 and A.3.

2.2.3. Synergistic Entropy of X

We interpret Σ(X) as representing all synergistic information that any stochastic variable could
possibly store about X. Therefore we define the synergistic entropy of X as H(Σ(X)). This will be the
upper bound on the synergistic information of any other variable about X.
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2.2.4. Orthogonalized SRVs

In order to prevent doubly counting synergistic information we orthogonalize all MSRVs. Let us
denote πk(Σ) for the kth permuted sequence of all MSRVs in Σ(X) out of all |Σ|! possibilities which
are arbitrarily labeled by integers 1 ≤ k ≤ |Σ|. Then we convert Σ(X) into a set of orthogonal MSRVs,
or OSRVs for short, for a given ordering:

Σ⊥πk(Σ)
(X) ≡

(
S⊥i ∈ D(Si; S1, ..., Si−1)

)
i
. (4)

In words, we iteratively take each MSRV Si in Σ(X) and add its orthogonal part S⊥i to the set
Σ⊥

πk(Σ)
(X) in the specific order πk(Σ). As a result, each OSRV in Σ⊥

πk(Σ)
(X) is completely independent

from all others in this set. Σ⊥
πk(Σ)

(X) is still informationally equivalent to Σ(X) because during its

construction we only discard completely redundant variables S‖i given other SRVs.
Note that each orthogonal part S⊥i is an SRV if Si is an SRV (or MSRV), which follows from

the contradiction of the negation: if S⊥i is not an SRV then ∃j : I
(
S⊥i : Xj

)
> 0 and consequently(

S‖i , S⊥i
)

/∈ σ(X) which contradicts Si ∈ σ(X) since
(

S‖i , S⊥i
)

= Si by the above definition of
orthogonal decomposition.

2.2.5. Total Synergistic Information

We define the total amount of synergistic information that Y stores about X as:

Isyn(X → Y) ≡ maxk∑ S⊥i ∈Σ⊥
πk(Σ)

(X) I
(

Y : S⊥i
)

. (5)

In words, we propose to quantify synergy as the sum of the mutual information that Y contains
about each MSRV of X, after first making the MSRVs independent and then reordering them to
maximize this quantity. Note that the optimal ordering πk(Σ) is dependent on Y, making the calculation
of the set of MSRVs used to calculate synergy also dependent on Y.

Intuitively, we first “extract” all synergistic entropy of a set of variables X ≡ {Xi}i by
constructing a new set of all possible maximally synergistic random variables (MSRVs) of X, denoted Σ(X),
where each MSRV has non-zero mutual information with the set X but zero mutual information with
any individual Xi. This set of MSRVs is then transformed into a set of independent orthogonal SRVs
(OSRV), denoted Σ⊥

πk(Σ)
(X), to prevent over counting. Then we define the amount of synergistic

information in outcome variable Y about the set of source variables X as the sum of OSRV-specific
mutual information quantities, ∑Si∈Σ⊥

πk(Σ)
(X) I(Si : Y).

We illustrate our proposed measure on a few simple examples in Section 5 and compare to
other measures. In the next Section we will prove several desired properties which this definition
satisfies; here we finish with an informal outline of the intuition behind this definition and refer to
corresponding proofs where appropriate.

Outline of Intuition of the Proposed Definition

Our initial idea was to quantify synergistic information directly as I(Y : σ(X)), however we
found that this results in undesired counting of non-synergistic information which we demonstrate
in Section 4.3 and in Appendix A.2.1. That is, two or more SRVs taken together do not necessarily
form an SRV, meaning that their combination may store information about individual inputs. For this
reason we use the summation over individual OSRVs. Intuitively, each term in the sum quantifies
a “unique” amount of synergistic information which none of the other terms quantifies, due to the
independence among all OSRVs in Σ⊥

πk(Σ)
(X). That is, no synergistic information is doubly counted,

which we also discuss in Appendix A.2 by proving that Isyn(X → Y) never exceeds I
(

Y : Σ⊥
πk(Σ)

(X)
)

.
On the other hand, no possible type of synergistic information is ignored (undercounted). This can be
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seen from the fact that only fully redundant variables are ever discarded in the above process; also
we prove for example in Section 3.6 in the sense that for any arbitrary X there exists a Y such that
Isyn(X → Y) equals the maximum H(σ(X)), namely Y = X.

This summation is sensitive to the ordering of the orthogonalization of the SRVs. The reason for
maximizing over these orderings is the possible presence of synergies among the SRVs themselves.
We prove that Isyn(X → Y) handles correctly such “synergy-among-synergies”, i.e., does not lead to
over counting or undercounting, in Appendix A.3.

3. Basic Properties

Here we first list important minimal requirements that the above definitions obey. The first four
properties typically appear in the related literature either implicitly or explicitly as desired properties;
the latter two properties are direct consequences of our first principle to use SRVs to encode synergistic
information. The corresponding proofs are straightforward and sketched briefly.

3.1. Non-Negativity

Isyn(X → Y) ≥ 0. (6)

This follows from the non-negativity of the underlying mutual information function, making
every term in the sum of Equation (5) non-negative.

3.2. Upper-Bounded by Mutual Information

Isyn(X → Y) ≤ I(X : Y). (7)

This follows from the Data-Processing Inequality [12] where X is first processed into Σ⊥
πk(Σ)

(X)

and then Isyn(X → Y) ≤ I
(

Σ⊥
πk(Σ)

(X) : Y
)

follows because we can write:

I
(

Σ⊥
πk(Σ)

(X) : Y
)

= H
(
S⊥1 , ..., S⊥n

)
− H

(
S⊥1 , ..., S⊥n |Y

)
= ∑

i
H
(
S⊥i
)
− H

(
S⊥1 , ..., S⊥n |Y

)
≥ ∑

i
H
(
S⊥i
)
−∑

i
H
(
S⊥i |Y

)
= ∑

i
I
(
S⊥i : Y

)
= Isyn(X → Y).

(8)

Here, S⊥i is understood to denote the ith element in Σ⊥
πk(Σ)

(X) after maximizing the sequence

πk(Σ) used to construct Σ⊥
πk(Σ)

(X) for computing Isyn(X → Y).

3.3. Equivalence Class of Reordering in Arguments

Isyn
(
πn(X)→ πj(Y)

)
= Isyn

(
πm(X)→ πj(Y)

)
, for any n and m. (9)

This follows from the same property of the underlying mutual information function and that of
the sum in Equation (5).

3.4. Zero Synergy about a Single Variable

Isyn(X1 → Y) = 0. (10)

This follows from the constraint that any SRV must be ignorant about any individual variable in
X, so σ(X1) = ∅.
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3.5. Zero Synergy in a Single Variable

Isyn(X → X1) = 0. (11)

This also follows from the constraint that any SRV must be ignorant about any individual variable
in X: all terms in the sum in Equation (5) are necessarily zero.

3.6. Identity Maximizes Synergistic Information

Isyn(X → X) = H(Σ(X)) = max. (12)

This follows from the fact that each Si ∈ Σ⊥
πk(Σ)

(X) is computed from X and is therefore completely

redundant given X, so each term in the sum in Equation (5) must be maximal and equal to H
(
S⊥i
)
.

Since all S⊥i ∈ Σ⊥
πk(Σ)

(X) are independent, ∑i H
(
S⊥i
)
= H

(
Σ⊥

πk(Σ)
(X)

)
.

4. Consequential Properties

We now list important properties which are induced by our proposed synergy measure
Isyn(X → Y) along with their corresponding proofs.

4.1. Upper Bound on the Mutual Information of an SRV

The maximum amount of mutual information (and entropy) of an SRV of a set of variables can be
derived analytically. We start with the case of two input variables, i.e., |X| = 2, and then generalize.
Maximizing I(X1, X2 : S) under the two constraints I(X1 : S) = 0 and I(X2 : S) = 0 from Equation (2)
leads to:

I(X1, X2 : S) = I(X1 : S) + I(X2 : S|X1),
= I(X2 : S|X1),
= H(X2|X1)− H(X2|S, X1),
≤ H(X2|X1),

(13)

using that I(X1 : S) = 0 by construction. Since the first term in the third line H(X2|X1) does
not change by varying S we can maximize I(X1, X2 : S) only by minimizing the second term
H(X2|S, X1) . Since H(X2|S, X1) ≥ 0 and from relabeling (reordering) the inputs we also have the
constraint I(X1, X2 : S) ≤ H(X1|X2 ), leading to:

I(S : X1, X2) ≤ min(H(X2|X1), H(X1|X2)), where S ∈ σ(X1, X2). (14)

This can be rewritten as:

I(S : X1, X2) ≤ H(X1, X2)−max(H(X1), H(X2)), where S ∈ σ(X1, X2). (15)

The generalization to N variables is fairly straightforward by induction (see Appendix A.1) and
here illustrated for the case N = 3 for one particular labeling (ordering) πm(X):

I(X1, X2, X3 : S) = I(X1, X2 : S) + I(X3 : S|X1, X2 )

= I(X2 : S1|X1 ) + I(X3 : S|X1, X2 )

= [H(X2|X1 )− H(X2|S, X1 )] + [H(X3|X1, X2 )− H(X3|S, X1, X2 )]

≤ H(X2|X1 ) + H(X3|X1, X2 )

= H(X1, X2, X3)− H(X1).

(16)

Since this inequality must be true for all labelings of the πm(Σ), in particular for the labeling that
maximizes H(X1), and extending this result to any N, we find that:
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I(X1, ..., XN : S) ≤ H(X1, ..., XN)−maxi H(Xi), where S ∈ σ(X). (17)

Corollary. Suppose that Y is completely synergistic about X, i.e., Y ∈ σ(X). Then their mutual
information is bounded as follows:

I(X : Y) ≤ H(X1, ..., XN)−maxi H(Xi), where Y ∈ σ(X). (18)

Finally, we assume that the SRV is “efficient” in the sense that it contains no additional entropy
that is unrelated to X, i.e., I(X1, X2 : S) = H(S). After all, if it would contain additional entropy then
by our orthogonal decomposition assumption we can distill only the dependent part exactly. Therefore
the derived upper bound of any SRV is also the upper bound on its entropy.

4.2. Non-Equivalence of SRVs

It is indeed possible to have at least two non-redundant MSRVs in Σ(X), i.e., I(S1 : S2) < H(S1)

where S1, S2 ∈ Σ(X), or even I(S1 : S2) = 0. In words, this means that there can be multiple types
of synergistic relation with X which are not equivalent. This is demonstrated by the following
example: X = {X1, X2} with Xi ∈ {0, 1, 2} and uniform distribution Pr(X) = 1/9, where
S1 ≡ (2− X1 + X2)mod3 and S2 = (X1 + X2)mod3. The fact that these functions are MSRVs is
verified numerically by trying all combinations. It can also be seen visually in Figure 1; adding
additional states for S1 or S2 or changing their distribution will break the symmetries needed to stay
uncorrelated with the individual inputs. In this case I(S1 : S2) = 0 so the two MSRVs are mutually
independent, whereas I(S1 : X) = I(S2 : X) = log2 3 ≈ 1.58. In fact, as shown in Section 4.1 this is
actually the maximum possible mutual information that any SRV can store about X. Since the MSRVs
are a subset of the SRVs it follows trivially that SRVs can be non-equivalent or even independent.Entropy 2017, 19, 85  9 of 29 
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Figure 1. The values of the two MSRVs S1 and S2 which are mutually independent but highly
synergistic about two 3-valued variables X1 and X2. X1 and X2 are uniformly distributed
and independent.

4.3. Synergy among MSRVs

The combination of two (or more) MSRVs (S1, S2), S1, S2 ∈ Σ(X), cannot be an SRV,
i.e., (S1, S2) /∈ σ(X). Otherwise it would be a contradiction: if (S1, S2) ∈ σ(X) would be true then
it follows that S1, S2 /∈ Σ(X), since both S1 and S2 would be completely redundant given (S1, S2),
and therefore discarded in the construction of MSRV.

This means that all combinations of MSRVs, such as (S1, S2), must necessarily have non-zero
mutual information about at least one of the individual source variables, i.e., ∃i : I(S1, S2 : Xi) > 0,
violating Equation (2). Since each individual MSRV has zero mutual information with each individual
source variable by definition, it must be true that this “non-synergistic” information results from
synergy among MSRVs. We emphasize that this type of synergy among the Si ∈ Σ(X) is different from
the synergy among the Xi ∈ X which we intend to quantify in this paper, and could more appropriately
be considered as a “synergy of synergies”.
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The fact that multiple MSRVs are possible is already proven by the example used in the previous
proof in Section 4.2. The synergy among these two MSRVs in this example is indeed easily verified:
I(S1 : X1) = 0 and I(S2 : X1) = 0, whereas I(S1, S2 : X1) = I(S1, S2 : X1) = log2 3.

Since MSRVs are a subset of the SRVs it follows that also SRVs can have such
“synergy-of-synergies”. In fact, the existence of multiple MSRVs means that there are necessarily
SRVs which are synergistic about another SRV, and conversely, if there is only one MSRV then there
cannot be any set of SRVs which are synergistic about another SRV.

Corollary. Alternatively quantifying synergistic information using directly the mutual information
I
(

Y : Σ⊥
πk(Σ)

(X)
)

could violate the fourth desired property, “Zero synergy about a single variable”,
because if Σ(X) consists of two or more MSRVs then ∃i : I(S1, S2 : Xi) > 0. In this case the choice
Y = Xi would have non-zero synergistic information about X, which is undesired.

4.4. XOR-Gates of Random Binary Inputs Always Form an MSRV

Lastly we use our definition of synergy to prove the common intuition that the XOR-gate
is maximally synergistic about a set of i.i.d. binary variables (bits), as suggested in the
introductory example.

We start with the case of two bits X1, X2 ∈ {0, 1}. As SRV we take S1 ≡ X1 ⊕ X2. The entropy of
this SRV equals 1, which is in fact the upper bound of any SRV for this X, Equation (17). Therefore
no other SRV can make S1 completely redundant such that it would prevent S1 from becoming an
MSRV (Section 2.2.2). It is only possible for another SRV to make S1 redundant in case the converse is
also true, in which case the two SRVs are equivalent. An example of this would be the NOT-XOR gate
which is informationally equivalent to XOR. Here we consider equivalent SRVs as one and the same.

For the more general case of N bits X1, ..., XN ∈ {0, 1}, consider as SRV the set of XOR-gates
S ≡ {S1, S2, ..., SN−1} where Si ≡ X1 ⊕ ...⊕ Xi+1. It is easily verified that S does not contain mutual
information about any individual bit Xi, so indeed S ∈ σ(X). Moreover it is also easily verified that
all Si are independent, so the entropy H(S) = N − 1 which equals the upper bound on any SRV.
Following the same reasoning as the two-bit case, S is indeed an MSRV. We remark that conversely,
each possible set of XOR gates is not necessarily an MSRV because, e.g., X1 ⊕ X3 is redundant given
both X1 ⊕ X2 and X2 ⊕ X3. That is, some (sets of) XOR-gates are redundant given others and will
therefore not be member of the set Σ(X) by construction.

The converse is proved for the case of two independent input bits in Appendix A.4, that is, the
only possible MSRV of two bits is the XOR-gate.

5. Examples

In this Section we derive the SRVs and MSRVs for some small example input-output relations to
illustrate how synergistic information is calculated using our proposed definition. This also allows
comparing our approach to that of others in the field, particularly PID-like frameworks even though
the community has not yet settled on a satisfactory definition of such a framework.

5.1. Two Independent Bits and XOR

Let X1, X2 ∈ {0, 1} be two independent input bits, so Pr(X1, X2) = 1/4. Let S be a k-valued SRV
of X ≡ {X1, X2}.

We derive in Appendix A.4 that any SRV in this case is necessarily a (stochastic) function of the
XOR relation X1 ⊕ X2. One could thus informally write S = f (X1 ⊕ X2) with the understanding that
the function f could be either a deterministic function or result in a stochastic variable. Therefore,
the set σ(X) consists of all possible deterministic and stochastic mappings f . A deterministic
example would be S1 = ¬(X1 ⊕ X2) and a stochastic example could be written loosely as the mixture
S2 = p · (X1 ⊕ X2) + (1− p) · ¬(X1 ⊕ X2) where the probability p 6= 1/2 satisfies the first condition in
Equation (2).
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The set σ(X) is indeed an uncountably large set in this case. However in Appendix A.4 we also
derive that there is only a single MSRV in the set Σ(X): the XOR-gate X1 ⊕ X2 itself. It makes all other
SRVs redundant. This confirms our conjecture in Section 2.2.2 that although σ(X) is uncountable, Σ(X)

may typically still be countable.
For any output stochastic variable Y the amount of synergistic information is simply equal to

I(Y : X1 ⊕ X2), according to Equation (5). This implies trivially that the XOR-gate Y⊕ = X1 ⊕ X2

has maximum synergistic information for two independent input bits, as is shown schematically in
Figure 2a.
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information I(X3 : Y) = 1.

5.2. XOR-Gate and Redundant Input

Suppose now that an extra independent input bit X3 is added as X3 = X1 ⊕ X2 and that the
output is still Y⊕ = X1 ⊕ X2 (see Figure 2b). This case highlights a crucial difference between our
method and that of PID-like frameworks.

In our method this leaves the perceived amount of synergistic information stored in Y unchanged
as it still stores the XOR-gate. Adding unique or “individual” information can never reduce this.

In PID-like frameworks, however, synergistic information and individual information are treated
on equal footing and subtracted; intuitively, the more individual information is in the output, the less
synergy it computes. As a result, various canonical PID-based synergy measures all reach “the desired
answer of 0 bits” for this so-called XorLoses example [10].

5.3. AND-Gate

Our method nevertheless still differs from that of Bertschinger et al. [14] as demonstrated in the
simple case of the AND-gate of two independent random bits, i.e., Y∧ = X1 ∧ X2. In our method the
outcome of the AND-gate is simply correlated (using mutual information) with that of the XOR-gate
as shown in Section 5.1, i.e.:

Isyn(X → Y∧) = I(Y∧ : Y⊕) = −3/4 log2 3/4 ≈ 0.311.

Their proposed method in contrast calculates that the individual information with either input
equals Isyn(X1 : Y∧) = I(X2 : Y∧) = −3/4 log2 3/4 ≈ 0.311. which they infer as fully “shared”
(intuitively speaking, both inputs are said to provide exactly the same individual information to
the output). The total information with both inputs equals I(X : Y∧) = 1/2− 3/4 log2 3/4 ≈ 0.811.
Since in the PID framework all four types of information are required to sum up to the total
mutual information and no “unique” information exists, their method infers the synergy equals
I(X : Y∧)− I(X1 : Y∧) = 1/2. Indeed, Griffith and Koch [10] state that for this example all but one
PID-like measure result in 0.189 bits of synergy; only the original Imin measure also results in 0.5 bits
which agrees with our method.
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6. Numerical Implementation

We have implemented the numerical procedures to compute the above as part of a Python library
named jointpdf (https://bitbucket.org/rquax/jointpdf). Here, a set of discrete stochastic variables X is
represented by a matrix of joint probabilities of dimensions mn, where n is the number of variables
and m is the number of possible values per variable. This matrix is uniquely identified by mn − 1
independent parameters each on the unit line.

In brief, finding an MSRV S amounts to numerically optimizing a subset of the (bounded)
parameters of Pr(X,S) in order to maximize I(S:X) while satisfying the conditions for SRVs in
Equation (2). Then we approximate the set of OSRVs Σ⊥

πk(Σ)
(X) by constructing it iteratively.

For finding the next OSRV SN in addition to an existing set S1, . . . ,SN−1, the independence constraint
I(SN : S1, ..., SN−1) = 0 is added to the numerical optimization. The procedure finishes once no more
OSRVs are found. The optimization of their ordering is implemented by restarting the sequence of
numerical optimizations from different starting points and taking the result with highest synergistic
information. Orthogonal decomposition is also implemented even though it is not used since the OSRV
set is built directly using this optimization procedure. This uses the fact that each decomposed part of
an SRV must also be an SRV (assuming perfect orthogonal decomposition) and can therefore be found
directly in the optimization. For all numerical optimizations the algorithm scipy.optimize.minimize
(version 0.11.0) is used. Once the probability distribution is extended with the set of OSRVs,
the amount of synergistic information has a confidence interval due to the approximate nature of
the numerical optimizations. That is, one or more OSRVs may turn out to store a small amount of
unwanted information about individual inputs. We subtract these unwanted quantities from each
mutual information term in Equation (5) in order to estimate the synergistic information in each
OSRV. However, these subtracted terms could be (partially) redundant, the extent of which cannot be
determined in general. Thus, once the optimal sequence of OSRVs is found we take the lower bound
on the estimated synergistic information Îsyn(X → Y) as:

Îsyn(X → Y) ≥ ∑
i∈1,...,N

[
I(Si : X)−∑

j
I
(
Si : Xj

)]
.

This corresponds to the case where each subtracted mutual information term is fully independent
so that they can be summed, leading to this WMS form [6]. On the other hand, the corresponding
upper bound would occur if all subtracted mutual information terms would be fully redundant,
in which case:

Îsyn(X → Y) ≤ ∑
i∈1,...,N

[
I(Si : X)−maxj I

(
Si : Xj

)]
.

We take the middle point between these bounds as the best estimate Îsyn(X → Y).
The corresponding measure of uncertainty is then defined as the relative error:

∆ Îsyn(X → Y) ≡
∑
j

I
(
Si : Xj

)
−maxj I

(
Si : Xj

)
Îsyn(X → Y)

. (19)

The following numerical results have been obtained for the case of two input variables, X1 and
X2, and one output variable Y. Their joint probability distribution Pr(X1,X2,Y) is randomly generated
unless otherwise stated. Once an OSRV is found it is added to this distribution as an additional
variable. All variables are constrained to have the same number of possible values (“state space”)
in our experiments. All results reported in this section have been obtained by sampling random
probability distributions. This results in interesting characteristics pertaining to the entire space of
probability distributions but offers a limitation when attempting to translate the results to any specific

https://bitbucket.org/rquax/jointpdf
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application domain such as neuronal networks or gene-regulation models, since domains focus only
on specific subspaces of probability distributions.

6.1. Success Rate and Accuracy of Finding SRVs

Our first result is on the ability of our numerical algorithm to find a single SRV as function
of the number of possible states per individual variable. Namely, our definition of synergistic
information in Equation (5) relies on perfect orthogonal decomposition; we showed that perfect
orthogonal decomposition is impossible for at least one type of relation among binary variables
(Appendix A.6), whereas previous work hints that continuous variables might be (almost) perfectly
decomposed (Section 7.1).

Figure 3 shows the probability of successfully finding an SRV for variables with a state space
of 2, 3, 4 and 5 values. Success is defined as a relative error on the entropy of the SRV of less than
10%. In Figure 3 we also show the expected relative error on the entropy of an SRV once successfully
found. This is relevant for our confidence in the subsequent results. For 2 or 3 values per variable we
find a relative error in the low range of 1%–3%, indicating that finding an SRV is a bimodal problem:
either it is successfully found with relatively low error or it is not found successfully and has high
error. For 4 or more values per variable a satisfactory SRV is always successfully found. This indicates
that additional degrees of freedom aid in finding SRVs.Entropy 2017, 19, 85  13 of 29 

 

 
Figure 3. Effectiveness of the numerical implementation to find a single SRV. The input consists of 
two variables with 2, 3, 4, or 5 possible values each (x-axis). Red line with dots: probability that an 
SRV could be found with at most 10% relative error in 50 randomly generated Pr(X1,X2,Y) 
distributions. The fact that it is lowest for binary variables is consistent with the observation that 
perfect orthogonal decomposition is impossible in this case under at least one known condition 
(Appendix A.6). The fact that it converges to 1 is consistent with our suggestion that orthogonal 
decomposition could be possible for continuous variables (Section 7.1). Blue box plot: expected 
relative error of the entropy of a single SRV, once successfully found. 

6.2. Efficiency of a Single SRV 

Once an SRV is successfully found, the next question is how much synergistic information it 
actually contains compared to the maximum possible. According to Equation (17) and its preceding, 
the upper bound is the minimum of 2 1( | )H X X  and 1 2( | )H X X . Thus, a single added variable as 
SRV has in principle sufficient entropy to store this information. However, depending on 

( )1 2Pr ,X X  it is possible that a single SRV cannot store all synergistic information at once, 

regardless of how much entropy it has, as demonstrated in Section 4.3. This happens if two or more 
SRVs would be mutually “incompatible” (cannot be combined into a single, large SRV). Therefore 
we show the expected synergistic information in a single SRV normalized by the corresponding 
upper bound in Figure 4.  

The decreasing trend indicates that this incompatibility among SRVs plays a significant role as 
the state space of the variables grows. This would imply that an increasing number of SRVs must be 

found in order to estimate the total synergistic information ( )synI X Y→ . Fortunately, Figure 4 also 

suggests that the efficiency settles to a non-zero constant which suggests that the number of needed 
SRVs does not grow to impractical numbers. 

Figure 3. Effectiveness of the numerical implementation to find a single SRV. The input consists
of two variables with 2, 3, 4, or 5 possible values each (x-axis). Red line with dots: probability
that an SRV could be found with at most 10% relative error in 50 randomly generated Pr(X1,X2,Y)
distributions. The fact that it is lowest for binary variables is consistent with the observation that perfect
orthogonal decomposition is impossible in this case under at least one known condition (Appendix A.6).
The fact that it converges to 1 is consistent with our suggestion that orthogonal decomposition could
be possible for continuous variables (Section 7.1). Blue box plot: expected relative error of the entropy
of a single SRV, once successfully found.

6.2. Efficiency of a Single SRV

Once an SRV is successfully found, the next question is how much synergistic information it
actually contains compared to the maximum possible. According to Equation (17) and its preceding,
the upper bound is the minimum of H(X2|X1) and H(X1|X2) . Thus, a single added variable as
SRV has in principle sufficient entropy to store this information. However, depending on Pr(X1, X2)

it is possible that a single SRV cannot store all synergistic information at once, regardless of how
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much entropy it has, as demonstrated in Section 4.3. This happens if two or more SRVs would
be mutually “incompatible” (cannot be combined into a single, large SRV). Therefore we show the
expected synergistic information in a single SRV normalized by the corresponding upper bound in
Figure 4.

The decreasing trend indicates that this incompatibility among SRVs plays a significant role as
the state space of the variables grows. This would imply that an increasing number of SRVs must be
found in order to estimate the total synergistic information Îsyn(X → Y). Fortunately, Figure 4 also
suggests that the efficiency settles to a non-zero constant which suggests that the number of needed
SRVs does not grow to impractical numbers.Entropy 2017, 19, 85  14 of 29 
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Figure 4. Synergistic entropy of a single SRV normalized by the theoretical upper bound. The input
consists of two randomly generated stochastic variables with 2, 3, 4, or 5 possible values per variable
(x-axis). The SRV is constrained to have the same number of possible values. The initial downward
trend shows that individual SRVs become less efficient in storing synergistic information as the state
space per variable grows. The apparent settling to a non-zero constant suggests that estimating
synergistic information does not require a diverging number of SRVs to be found for any number of
values per variable.

6.3. Resilience Implication of Synergy

Finally we compare the impact of two types of perturbations in two types of input-output
relations, namely the case of a randomly generated Pr(Y|X1, X2 ) versus the case that Y is an SRV of
X. A “local” perturbation is implemented by adding a random vector with norm 0.1 to the point
in the unit hypercube that defines the marginal distribution of a randomly selected input variable,
so P(X1) or P(X2). Conversely, a “non-local” perturbation is similarly applied to P(X1, X2) while
keeping the marginal distributions P(X1) and P(X2) unchanged. The impact is quantified by the
relative change of the mutual information I(X1, X2 : Y) due to the perturbation. That is, we ask
whether a small perturbation disrupts the information transmission when viewing X1, X2 → Y as a
communication channel.

In Figure 5 we show that a synergistic Y is significantly less susceptible to local perturbations
compared to a randomly generated Y. For non-local perturbations the difference in susceptibility is
smaller but still significant. The null-hypothesis of equal population median is rejected both for local
and non-local perturbations (Mood’s median test, p-values 1.2× 10−13 and 5.5× 10−5 respectively;
threshold 0.001).
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The difference in susceptibility for local perturbations is intuitive because an SRV has zero mutual
information with individual inputs, so it is arguably insensitive to changes in individual inputs.
We still find a non-zero expected impact; this could be partly explained by our algorithm’s relative
error being on the order of 3% which is the same order as the relative impact found (2%). In order to
test this intuition we devised the non-local perturbations to compare against. A larger susceptibility is
indeed found for non-local perturbations, however it remains unclear why synergistic variables are
still less susceptible in the non-local case compared to randomly generated variables. Nevertheless,
our numerical results indicate that synergy plays a significant role in resilience to noise. This is relevant
especially for biological systems which are continually subject to noise and must be resilient to it.
A simple use-case on using the jointpdf package to estimate synergies, as is done here, is included in
Appendix A.8.Entropy 2017, 19, 85  15 of 29 
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7. Limitations

7.1. Orthogonal Decomposition

Our formulation is currently dependent on being able to orthogonally decompose MSRVs exactly.
To the best of our knowledge our decomposition formulation has not appeared in previous literature.
However from similar work we gather that it is not a trivial procedure, and we derive that it is even
impossible to do exactly in certain cases, as we explore next.

7.1.1. Related Literature on Decomposing Correlated Variables

Our notion of orthogonal decomposition is related to the ongoing study of “common random
variable” definitions dating back to around 1970. In particular our definition of B‖ appears equivalent
to the definition by Wyner [15], here denoted B‖W , in case it holds that I

(
B‖W : A, B

)
= I(B : A).

That is, in Appendix A.7 we show that under this condition their B‖W satisfies all three requirements
in Equation (1) which do not involve B⊥ (which remains undefined in Wyner’s work). In brief,
their B‖W is the “smallest” common random variable which makes A and B conditionally independent,

i.e., B‖W = argminA→W→B I(A, B : W). Wyner shows that I
(

B‖W : A
)
≥ I(B : A). In cases where

their minimization is not able to reach the desired equality condition I
(

B‖W : A
)
= I(B : A) it is an
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open question whether this implies that our B‖ does not exist for the particular A, B. The required
minimization step to calculate B‖W is highly non-trivial and solutions are known only for very specific
cases [16,17].

To illustrate a different approach in this field, Gács and Körner [18] define their common random
variable as the “largest” random variable which can be extracted deterministically from both A and B
individually, i.e., f (A) = g(B) = B‖0 for functions f and g chosen to maximize H

(
B‖0
)

. They show that

I
(

B‖W : A
)
≤ I(B : A) and it appears in practice that typically the “less than” relation actually holds,

preventing its use for our purpose. Their variable is more restricted than ours but has applications in
zero-error communication and cryptography.

7.1.2. Sufficiency of Decomposition

Our definition of orthogonal decomposition is sufficient to be able to define a consistent measure
of synergistic information. However we leave it as an open question whether Equation (1) is actually
more stringent than strictly necessary. Therefore, our statement is that if orthogonal decomposition is
possible then our synergy measure is valid; in case it is not possible then it remains an open question
whether this implies the impossibility to calculate synergy using our method. For instance, for the
calculation of synergy in the case of two independent input bits there is actually no need for any
orthogonal decomposition step among SRVs, such as in the examples in Section 4.2 and in Section 5.
Important future work is thus to try to minimize the reliance on orthogonal decomposition while
leaving the synergy measure intact.

7.1.3. Satisfiability of Decomposition

Indeed it turns out that it is not always possible to achieve a perfect orthogonal decomposition
according to Equation (1), depending on A and B. For example, we demonstrate in Appendix A.6 that
for the case of binary-valued A and B, it is impossible to achieve the decomposition in case B depends
on A as Pr(B = A) = pb.

On the other hand, one sufficient condition for being able to achieve a perfect orthogonal
decomposition is being able to restate A and B as A = (W, X) and B = (W, Y) for W, X, Y independent
from each other. In this case it is easy to see that B‖ = W and B⊥ = Y are a valid orthogonal
decomposition. Such a restating could be reached by reordering and relabeling of variables and states.

As an example consider A and B denoting the sequences of positions (paths) of two causally
non-interacting random walkers on the plane which are under influence of the same constant drift
tendency (e.g., a constant wind speed and direction). This drift creates a spurious correlation (mutual
information) between the two walkers. From sufficiently long paths this constant drift tendency W can
however be estimated and subsequently subtracted from both paths to create drift-corrected paths X
and Y which are independent by construction, reflecting only the internal decisions of each walker. The
two walkers therefore have a mutual information equal to the entropy H(W) of the “wind” stochastic
variable whose value is generated once at the beginning of the two walks and then kept constant.

We propose the following more general line of reasoning to (asymptotically) reach this restating
of A and B or at least approximate it. Nevertheless the remainder of the paper simply assumes the
existence of the orthogonal decomposition and does not use any particular method to achieve it.

Consider the Karhunen-Loève transform (KLT) [19–21] which can restate any stochastic variable
X as:

X KLT
= µ +

∞

∑
k=1

αk · Zk.

Here, µ is the mean of X, the Zk are pairwise independent random variables, and the coefficients
αk are real scalars. This transform could be seen as the random variables analogy to the well-known
principle component analysis or the Fourier transform.
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Typically this transform is defined for a range of random variables in the context of a continuous
stochastic process

{
Xt}

a≤t≤b. Here each Xt is decomposed by Zk which are defined through the Xt

themselves as:

Zk =

b∫
a

αk(t) · Xtdt.

Here, the scalar coefficients become functions αk(t) on [a, b] which must be pairwise orthogonal
(zero inner product) and square-integrable. Otherwise the abovementioned transform applies to each
single Xt in the same way, now with t-dependent coefficients αk(t). Nevertheless, for our purpose we
leave it open how the Zk are chosen; through being part of a stochastic process or otherwise. We also
note that the transform works similarly for the discrete case, which is often applied to image analysis.

Let us now choose a single sequence of Zk as our variable “basis”. Now consider two random
variables A and B which can both be decomposed into Zk as the sequences {αkZk} and {βkZk},
respectively. In particular, the mutual information I(A : B) must be equal before and after this
transform. Then the desired restating of A and B into A = (W, X) and B = (W, Y) is achieved by:

W = {Zk : αk > 0 and βk > 0},
X = {Zk : αk > 0 and βk = 0},
Y = {Zk : αk = 0 and βk > 0}.

(20)

The choice of the common Zk could either be natural, such as a common stochastic process of
which both A and B are part, or a known common signal which two receivers intermittently record.
Otherwise Zk could be found through a numerical procedure to attempt a numerical approximation,
as is done for instance in image analysis tasks.

8. Discussion

Most theoretical work on defining synergistic information uses the PID framework [3],
which (informally stated) requires that I(X : Y) = synergy + individual. That is, the more synergistic
information Y stores about X, the less information it can store about an individual Xi and vice versa
because those two types of information are required to sum up to the quantity I(X : Y) as non-negative
terms. Our approach is incompatible with this viewpoint. That is, in our framework the amount of
synergistic information Isyn(X → Y) makes no statement on the amount of “individual” information
that Y may also store about Xi. In fact, the proposed synergistic information Isyn(X → Y) can be
maximized by the identity Isyn(X → X), which obviously also stores maximum information about all
individual variables Xi. To date no synergy measure has been found which has earned the consensus
of the PID framework (or similar) community, typically by offering counter-examples. This led us to
explore this completely different viewpoint. If our proposed measure would prove successful then it
may imply that the decomposition requirement is too strong for a synergy measure to obey, and that
synergistic information and individual information cannot be treated on equal footing (increasing one
means decreasing the other by the same amount). Whether our proposed synergy measure can be used
to define a different notion of non-negative information decomposition is left as an open question.

Our intuitive argument against the decomposition requirement is exemplified in
Sections 4.2 and 4.3. This example demonstrates that two independent SRVs can exist which
are not synergistic when taken together. That is, there are evidently two distinct (independent or
uncorrelated) ways in which a variable Y can be completely synergistic about X (it could be set equal
to one or the other SRV). However, we show it is impossible for Y to store information about both these
SRVs simultaneously (maximum synergy) while still having zero information about all individual
input variables Xi—in fact this leads to maximum mutual information with all individual inputs in the
example. This suggests that synergistic information and “individual” information cannot simply be
considered on equal footing or as mutually exclusive.
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Therefore we propose an alternative viewpoint. Whereas synergistic information could be
measured by Isyn(X → Y), the amount of “individual information” could foreseeably be measured
by a similar procedure. For instance, the sequence Σ⊥

πk(Σ)
could be replaced by the individual inputs

πm(X) after which the same procedure in Equation (5) as for Isyn(X → Y) is repeated. This would
measure the amount of “unique” information that Y stores about individual inputs which is not
also stored in (combinations of) other inputs. This measure would be upper bounded by H(X).
For N completely random and independent inputs, this individual information in Y would be upper
bounded by N · H(X1) whereas if Y were synergistic then its total mutual information would be upper
bounded by (N − 1) · H(X1) (since it is then an SRV). This suggests that both quantities measure
different but not fully independent aspects. How the two measures relate to each other is subject of
future work.

Our proposed definition builds upon the concept of orthogonal decomposition. It allows us to
rigorously define a single, definite measure of synergistic information from first principles. However
further research is needed to determine for which cases this decomposition can be done exactly,
approximately, or not at all, and in which cases a decomposition is even necessary. Even if in a specific
case it would turn out to be not exactly computable (due to imperfect orthogonal decomposition)
then our definition can still serve as a reference point. To the extent that a necessary orthogonal
decomposition must be numerically approximated (or bounded), the resulting amount of synergistic
information must also be considered an approximation (or bound).

Our final point of discussion is that the choice of how to divide a stochastic variable X into
subvariables X ≡ {Xi}i is crucial and determines the amount of information synergy found.
This choice strongly depends on the specific research question. For instance, the neurons of a brain
may be divided into the two cerebral hemispheres, into many anatomical regions, or into individual
neurons altogether, where at each level the amount of information synergy may differ. In this article
we are not concerned with choosing the division and will calculate the amount of information synergy
once the subvariables have been chosen.

9. Conclusions

In this paper we propose a measure to quantify synergistic information from first principles.
Briefly, we first “extract” all synergistic entropy of a set of variables X ≡ {Xi}i by constructing a
new set of all possible maximally synergistic random variables (MSRVs) of X, denoted ∑(X), where
each MSRV has non-zero mutual information with the set X but zero mutual information with any
individual Xi. This set of MSRVs is then transformed into a set of independent orthogonal SRVs (OSRV),
denoted Σ⊥

πk(Σ)
(X), to prevent over counting. Then we define the amount of synergistic information in

outcome variable Y about the set of source variables X as the sum of OSRV-specific mutual information
quantities, ∑Si∈Σ⊥

πk(Σ)
(X) I(Si : Y).

Our proposed measure satisfies important desired properties, e.g., it is non-negative and bounded
by mutual information, invariant under reordering of X, and always has zero synergy if the input
is a single variable. We also prove four important properties of our synergy measure. In particular,
we derive the maximum mutual information in case Y is an SRV; we demonstrate that synergistic
information can be of different types (multiple, independent SRVs); and we prove the fact that the
combination of multiple SRVs may store non-zero information about an individual Xi in a synergistic
way. This latter property leads to the intriguing concept of “synergy among synergies”, which we
show must necessarily be excluded from quantifying synergy in Y about X but which might turn out
to be an interesting subject of study in its own right. Finally, we provide a software implementation of
the proposed synergy measure.

The ability to quantify synergistic information in an arbitrary multivariate setting is a necessary
step to better understand how dynamical systems implement their complex information processing
capabilities. Our proposed framework based on SRVs and orthogonal decomposition provides a
new line of thinking and produces a general synergy measure with important desired properties.
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Our initial numerical experiments suggest that synergistic relations are less sensitive to noise, which is
an important property of biological and social systems. Studying synergistic information in complex
adaptive systems will certainly lead to substantial new insights into their various emergent behaviors.
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Appendix A

Appendix A.1 Upper Bound of Possible Entropy of an SRV by Induction

Appendix A.1.1 Base Case

The base case is that it is true that I(X1, ..., XN−1 : S) ≤ H(X1, ..., XN−1) −max1≤i≤N−1H(Xi),
which is proven for N = 2 in Section 4.1.

Appendix A.1.2 Induction Step

We will prove that the base case induces I(X1, ..., XN : S) ≤ H(X1, ..., XN)−max1≤i≤N H(Xi).
An S ∈ σ(X) must be chosen which satisfies:

∀πm(X) I(X1, ..., XN−1, XN : S) = I(X1, ..., XN−1 : S) + I(XN : S|X1, ..., XN−1 )

= H(X1, ..., XN−1)−max1≤i≤N−1H(Xi) + I(XN : S|X1, ..., XN−1 )

= H(X1, ..., XN−1)−max1≤i≤N−1H(Xi) + H(XN |X1, ..., XN−1 )

−H(XN |S, X1, ..., XN−1 )

= H(X1, ..., XN)−max1≤i≤N−1H(Xi)− H(XN |S, X1, ..., XN−1 )

≤ H(X1, ..., XN)−max1≤i≤N−1H(Xi).

Here, the negative maximization term arises from applying the base case. We emphasize that
this upper bound relation must be true for all choices of orderings πm(X) of all N labels (since the
labeling is arbitrary and due to the desired property in Section 3.3). Therefore, S must satisfy all N!
simultaneous instances of the above inequality, one for each possible ordering. Any S that satisfies
the “most constraining” inequality, i.e., where the r.h.s. is minimal, necessarily also satisfies all N!
inequalities. The r.h.s. is minimized for any ordering where the Xi with overall maximum H(Xi) is
part of the subset {X1, ..., XN−1}. In other words, for the inequality with minimal r.h.s. it is true that,
due to considering all possible reorderings,

max1≤i≤N−1H(Xi) = max1≤i≤N H(Xi).

Substituting this above we find indeed that

I(X1, ..., XN : S) ≤ H(X1, ..., XN)−max1≤i≤N H(Xi).

Appendix A.2 Isyn(X → Y) Does Not “Overcount” Any Synergistic Information

All synergistic information that any Y can store about X is encoded by the set of SRVs σ(X)

which is informationally equivalent to Σ⊥
πk(Σ)

(X), i.e., they have equal entropy and zero conditional

entropy. Therefore I
(

Y : Σ⊥
πk(Σ)

(X)
)

should be an upper bound on Isyn(X → Y) since otherwise some
synergistic information must have been doubly counted. In this section we derive that Isyn(X → Y) ≤
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I
(

Y : Σ⊥
πk(Σ)

(X)
)

. In Appendix A.2.1 we use the same derivation to demonstrate that a positive

difference I
(

Y : Σ⊥
πk(Σ)

(X)
)
− Isyn(X → Y) is undesirable at least in some cases.

Here we start with the proof that Isyn(X → Y) ≤ I
(

Y : Σ⊥
πk(Σ)

(X)
)

in case Σ⊥
πk(Σ)

(X) consists of
two OSRVs, taken as base case n = 2 for a proof by induction. Then we also work out the case n = 3
so that the reader can see how the derivation extends for increasing n. Then we provide the proof by
induction in n.

Let Σ⊥
πk(Σ)

(X) = S1, ..., SN consist of an arbitrary number N of OSRVs. Let Σ⊥
πk(Σ)

(X)n ≡ S1, ..., Sn

denote the first n OSRVs for n ≤ N. Let Isyn(X → Y)n be defined using Σ⊥
πk(Σ)

(X)n instead of

Σ⊥
πk(Σ)

(X), i.e., only the first n terms in the sum in Equation (5).

For n = 2 we use the property H(S1|S2 ) = H(S1) by construction of Σ⊥
πk(Σ)

(X):

I
(

Y : Σ⊥
πk(Σ)

(X)n=2

)
= I(Y : S1, S2)

= I(Y : S1) + I(Y : S2|S1 )

= I(Y : S1) + I(Y : S2) + H(S1|Y ) + H(S1|S2 )− H(S1|Y, S2 )− H(S1)

= I(Y : S1) + I(Y : S2) + H(S1|Y )− H(S1|Y, S2 )

≥ I(Y : S1) + I(Y : S2)

= Isyn(X → Y)n=2.

For n = 3 we similarly use the independence properties H(S1|S2 ) = H(S1) and
H(S1, S2|S3 ) = H(S1, S2):

I
(

Y : Σ⊥
πk(Σ)

(X)n=3

)
= I(Y : S1, S2, S3)

= I(Y : S1) + I(Y : S2|S1 ) + I(Y : S3|S1, S2 )

= I(Y : S1) + I(Y : S2) + H(S1|Y ) + H(S1|S2 )− H(S1|Y, S2 )− H(S1)

+I(Y : S3|S1, S2 )

= I(Y : S1) + I(Y : S2) + H(S1|Y )− H(S1|Y, S2 ) + I(Y : S3|S1, S2 )

= I(Y : S1) + I(Y : S2) + I(Y : S3) + H(S1|Y )− H(S1|Y, S2 )

+H(S1, S2|Y )− H(S1, S2|Y, S3 )− H(S1, S2) + H(S1, S2|S3 )

= Isyn(X → Y)n=3 + [H(S1|Y )− H(S1|Y, S2 )] + [H(S1, S2|Y )− H(S1, S2|Y, S3 )]

≥ Isyn(X → Y)n=3.

Essentially, the proof for each n proceeds by rewriting each conditional mutual information term
as a mutual information term and four added entropy terms (third equality above) of which two cancel
out (H(S1, S2) = H(S1, S2|S3 ) above) and the remaining two terms summed together are non-negative
(H(S1, S2|Y ) ≥ H(S1, S2|Y, S3 ) above). Thus, by induction:

I
(

Y : Σ⊥
πk(Σ)

(X)n

)
= I(Y : S1, ..., Sn)

= I(Y : S1, ..., Sn−1) + I(Y : Sn|S1, ..., Sn−1 )

= I(Y : S1, ..., Sn−1) + I(Y : Sn) + H(S1, ..., Sn−1|Y )− H(S1, ..., Sn−1|Y, Sn )

−H(S1, ..., Sn−1) + H(S1, ..., Sn−1|Sn )

= I(Y : S1, ..., Sn−1) + I(Y : Sn) + [H(S1, S2|Y )− H(S1, S2|Y, S3 )]

≥ Isyn(X → Y)n−1 + I(Y : Sn) + [H(S1, S2|Y )− H(S1, S2|Y, S3 )]

≥ Isyn(X → Y)n.

Thus we find that it is not possible for our proposed Isyn(X → Y) to exceed the mutual information

I
(

Y : Σ⊥
πk(Σ)

(X)
)

. This suggests that Isyn(X → Y) does not “overcount” any synergistic information.
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Appendix A.2.1 I
(

Y : Σ⊥
πk(Σ)

(X)
)

Also Includes Non-Synergistic Information

In the derivation of the previous section we observe that, conversely, I
(

Y : Σ⊥
πk(Σ)

(X)
)

can exceed
Isyn(X → Y) and we will now proceed to show that this is undesirable at least in some cases.

The positive difference I
(

Y : Σ⊥
πk(Σ)

(X)
)
− Isyn(X → Y) must arise from one of the non-negative

terms in square brackets in all derivations above. Suppose that Y = Xi and therefore has zero
information with any individual OSRV by definition. That is, Y = Xi does not correlate with any
possible synergistic relation (SRV) about X. In our view, Y = Xi should thus be said to store zero
synergistic information about X. However, even though ∀i : H(Si|Y) = H(Si) by construction, this
does not necessarily imply H(S1, ..., Sn−1|Y ) = H(S1, ..., Sn−1|Y, Sn ), among others, and therefore
any term in square brackets above can still be positive. In other words, it is possible for Y = Xi
to “cooperate” or have synergy with one or more OSRVs to have non-zero mutual information
about another OSRV. A concrete example of this is given in Section 4.3. This would lead to a non-zero
synergistic information if quantified by I

(
Y : Σ⊥

πk(Σ)
(X)

)
, which is undesirable in our view. In contrast,

our proposed definition for Isyn(X → Y) in Equation (5) purposely ignores this “synergy-of-synergies”
and in fact will always yield Isyn(X → Y) = 0 in case Y ≡ Xi, which is desirable in our view and
proved in Section 3.5.

Appendix A.3 Synergy Measure Correctly Handles Synergy-of-Synergies among SRVs

By “correctly handled” we mean that synergistic information is neither overcounted nor
undercounted. We already start by the conjecture that “non-synergistic” redundancy among a
pair of SRVs does not lead to under or overcounting synergistic information. That is, suppose that
I(S1 : S2) > 0, which we consider “non-synergistic” mutual information. If Y correlates with one or
neither SRV then the optimal ordering is trivial. If it correlates with both then any ordering will do,
assuming that their respective “parallel” parts (see Section 2.1) are informationally equivalent and it
does not matter which one is retained in Σ⊥

πk(Σ)
(X). The respective orthogonal parts are retained in

any case. Therefore we now proceed to handle the case where there is synergy among SRVs.
First we illustrate the apparent problem which we handle in this section. Suppose that

σ(X) = {S1, S2, S3} and further suppose that I(S1, S2 : S3) = H(S3) while ∀i, j : I
(
Si : Sj

)
= 0.

In other words, by this construction the pair S1, S2 synergistically makes S3 fully redundant, and no
non-synergistic redundancy among the SRVs exists. Finally, let S3 ∈ Y. At first sight it appears possible
that Σ⊥

πk(Σ)
(X) happens to be constructed using an ordering (Si)i such that S3 appears after S1 and S2.

This is unwanted because then S3 will not be part of the Σ⊥
πk(Σ)

(X) used to compute Isyn(X → Y), i.e.,
the term I(Y : S3) disappears from the sum, which potentially leads to the contribution of S3 to the
synergistic information being ignored.

In this Appendix we show that the contribution is always counted towards Isyn(X → Y) by
construction, and that the only possibility for the individual term I(Y : S3) to disappear is if its
synergistic information is already accounted for.

First we interpret each such (synergistic) mutual information from a set of SRVs to another, single
SRV as a (n− 1 to 1) hyperedge in a hypergraph. In the above example, there would be a hyperedge
from the pair S1, S2 to S3. Let the weight of this hyperedge be equal to the mutual information. In
the Appendix A.3.1 below we prove that in this setting, one hyperedge from n − 1 SRVs to one SRV
implies a hyperedge from all other possible n − 1 subsets to the remaining SRV, at the same weight.
That is, the hypergraph for σ(X) = {S1, S2, S3} forms a fully connected “clique” of three hyperedges.

In this setting, finding a “correct” ordering translates to letting Sn appear before all S1, ..., Sn−1

have appeared in case there is a hyperedge S1, ..., Sn−1 → Sn and I(Y : Sn) > 0. This translates to
traversing a path of n steps through the hyperedges in reverse order, each time choosing one SRV from
the ancestor set that is not already previously chosen, such that for each SRV either (i) not all ancestor
SRVs were chosen, or (ii) it has zero mutual information with Y. In other words, in case there is an



Entropy 2017, 19, 85 21 of 27

Si such that I(Y : Si) = 0 then any ordering with Si as last element will suffice. Only if Y correlates
with all SRVs then one of the SRVs will be (partially) discarded by the order maximization process in
Isyn(X → Y). This is desirable because otherwise Isyn(X → Y) could exceed I(X : Y) or even H(Y).
Intuitively, if Y correlates with n− 1 SRVs then it automatically correlates with the n th SRV as well,
due to the redundancy among the SRVs. Counting this synergistic information would be overcounting
this redundancy, leading to the violation of the boundedness by mutual information.

An example that demonstrates this phenomenon is given by X ≡ {X1, X2, X3} consisting of three
i.i.d. binary variables. It has four pairwise-independent MSRVs, namely the three pairwise XOR
functions and one nested “XOR-of-XOR” function (verified numerically). However, one pairwise XOR
is synergistically fully redundant given the two other pairwise XORs, so the entropy H(σ(X)) = 3,
which equals H(X). Taking e.g., Y ≡ X yields indeed 3 bits of synergistic information according to our
proposed definition of Isyn(X → Y), correctly discarding the synergistic redundancy among the four
SRVs. However, if the synergistically redundant SRV would not be discarded from the sum then we
would find 4 bits of synergistic information in Y about X, which is counterintuitive because it exceeds
H(X), H(Y), and I(X : Y). Intuitively, the fact that Y correlates with two pairwise XORs necessarily
implies that it also correlates with the third pairwise XOR, so this redundant correlation should not
be counted.

Appendix A.3.1 Synergy among SRVs Forms a Clique

Given is a particular set of SRVs σ(X) in arbitrary order. Suppose that the set S1, S2 is fully
synergistic about S3, i.e., I(S1, S2 : S3) = d > 0 and we first assume that ∀i, j : I

(
Si : Sj

)
= 0.

This assumption is dropped in the subsection below. The question is: are S2, S3 then also synergistic
about S1, and S1, S3 about S2? We will now prove that in fact they are indeed synergistic at exactly the
same amount, i.e., I(S2, S3 : S2) = I(S1, S3 : S2) = d. The following proof is thus for the case of two
variables being synergistic about a third, but trivially generalizes to n variables (in case the condition
∀i, j : I

(
Si : Sj

)
= 0 is also generalized for n− 1 variables).

First we find that the given condition I(S1, S2 : S3) = d > 0 leads to known quantities for two
conditional mutual information terms:

I(S1, S2 : S3) = I(S1 : S3) + I(S2 : S3|S1 ) = I(S2 : S3) + I(S1 : S3|S2 ) = d
= I(S2 : S3|S1 ) = I(S1 : S3|S2 ) = d.

Then we use this to derive a different combination I(S1, S3 : S2) (the third combination is
derived similarly):

I(S1, S3 : S2) = I(S1 : S2) + I(S3 : S2|S1 )

= I(S3 : S2) + H(S1|S3 ) + H(S1|S2 )− H(S1|S3, S2 )− H(S1)

= −(H(S1)− H(S1|S3 )) + (H(S1|S2 )− H(S1|S2, S3 ))

= −I(S1 : S3) + I(S1 : S3|S2 )

= d.

In conclusion, we find that if a set of SRVs S1, ..., Sn−1 synergistically stores mutual information
about Sn at amount d, then all subsets of n− 1 SRVs of S1, ..., Sn will store exactly the same synergistic
information about the respective remaining SRV. If each such synergistic mutual information from a
set of SRVs to another SRV is considered as a directed (n− 1 to 1) hyperedge in a hypergraph, then the
resulting hypergraph of SRVs will have a clique in S1, ..., Sn.

Appendix A.3.2 Generalize to Partial Synergy among SRVs

Above we assumed ∀i, j : I
(
Si : Sj

)
= 0. Now we remove this constraint and thus let all mutual

informations of 2 (or n− 1 in general) to be arbitrary. We then proceed as above, first:
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I(S1, S2 : S3) = I(S1 : S3) + I(S2 : S3|S1 ) = I(S2 : S3) + I(S1 : S3|S2 ) = d

Then:

I(S1, S3 : S2) = I(S1 : S2) + I(S3 : S2|S1 )

= I(S1 : S2) + I(S3 : S2) + H(S1|S3 ) + H(S1|S2 )− H(S1|S3, S2 )− H(S1)

= I(S1 : S2) + I(S3 : S2)− (H(S1)− H(S1|S3 )) + (H(S1|S2 )− H(S1|S2, S3 ))

= I(S1 : S2) + I(S3 : S2)− I(S1 : S3) + I(S1 : S3|S2 )

= I(S1 : S2, S3) + I(S3 : S2)− I(S1 : S3)

= d + I(S3 : S2)− I(S1 : S3).

We see that again d is obtained for the mutual information among n variables, but a correction
term appears to account for a difference in the mutual information quantities among n− 1 variables.

Appendix A.4 SRVs of Two Independent Binary Variables are Always XOR Gates

Let X1, X2 ∈ {0, 1} and Pr(X1, X2) = 1/4. Let S be a k-valued SRV of X ≡ {X1, X2}.
The conditional probability Pr(S|X ) is illustrated in Figure A1.
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be seen by summing the two equalities: 

k

Figure A1. Left: The median relative change of the mutual information I(X1, X2 : Y) after perturbing
a single input variable’s marginal distribution P(X1) (“local” perturbation). Error bars indicate the
25th and 75th percentiles. A perturbation is implemented by adding a random vector with norm 0.1
to the point in unit hypercube that defines the marginal distribution P(X1). Each bar is based on 100
randomly generated joint distributions P(X1, X2, Y), where in the synergistic case Y is constrained to
be an SRV of X1, X2. Right: the same as left except that the perturbation is “non-local” in the sense that
it is applied to P(X2|X1 ) while keeping P(X1) and P(X2) unchanged.

For S to satisfy the conditions for being an SRV in Equation (2) the conditional probabilities must
satisfy the following constraints. Firstly, it must be true that Pr(S, X1) = Pr(S)Pr(X1) which implies
Pr(S|X1 = 0 ) = Pr(S|X1 = 1 ), and similarly Pr(S|X2 = 0 ) = Pr(S|X2 = 1 ), leading to:

∀i : ai + bi = ci + di, and
∀i : ai + ci = bi + di.

Secondly, in order to ensure that I(S : X) > 0 it must be true that Pr(S|X ) 6= Pr(S), meaning that
the four k-vectors cannot be all equal:

¬(∀i : ai = bi = ci = di).

The first set of constraints implies that the diagonal probability vectors must be equal, which can
be seen by summing the two equalities:

∀i : ai + bi + ai + ci = ci + di + bi + di ⇔ ∀i : ai = di, and
∀i : ai + bi + bi + di = ci + di + ai + ci ⇔ ∀i : bi = ci.
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The second constraint then requires that the non-diagonal probability vectors must be
unequal, i.e.:

¬(∀i : ai = ci), and
¬(∀i : bi = di).

The mutual information I(S : X) equals the entropy computed from the average of the four
probability vectors minus the average entropy computed of one of the probability vectors. First let us
define the shorthand:

h(p1, ..., pk) = −∑
i

pi log pi. (A1)

Then the mutual information equals:

I(S : X) = H(S)− H(S|X ),

= h
(

a1+b1+c1+d1
4 , ..., ak+bk+ck+dk

4

)
− ∑

p∈{a,b,c,d}

1
4 h(p1, ..., pk). (A2)

Let yi = (ai + di)/2 and yi = (bi + ci)/2. Due to the equality of diagonal probability vectors the
above simplifies to:

I(S : X) = h
(

y1+y1
2 , ..., yk+yk

2

)
− ∑

p∈{y,y}

1
2 h(p1, ..., pk),

= I(S : X1 ⊕ X2).
(A3)

In words, the mutual information that any SRV S stores about two independent bits X1, X2 is
equal to the mutual information with the XOR of the bits, X1 ⊕ X2. Intuitively, one could therefore
think of S as the result of the following sequence of (stochastic) mappings: X1, X2 7→ X1 ⊕ X2 7→ S .

A corollary of this result is that the deterministic XOR function S = X1 ⊕ X2 is an MSRV of two
independent bits since this maximizes I(S : X) due to the data-processing inequality condition.

To be more precise and as an aside, the MSRV S = X1 ⊕ X2 would technically also have to
include all additional stochastic variables (“noise sources”) which are used in any SRVs, in order
for S to make all SRVs redundant and thus satisfy Equation (3). For instance, for S to make, e.g.,
S2 = p · (X1 ⊕ X2) + (1 − p) · ¬(X1 ⊕ X2) redundant it would also have to store the outcome of
the independent random probability p as a stochastic variable, meaning that the combined variable
(X1 ⊕ X2, p) must actually be the MSRV, and so forth for the uncountably many SRVs in σ(X). However
we assume that these noise sources like p are independent of the inputs X and outputs Y. Therefore in
the mutual information terms in calculating the synergistic information in Equation (5) they do not
contribute anything, meaning that we may ignore them in writing down MSRVs.

Appendix A.5 Independence of the Two Decomposed Parts

From the first constraint I
(

B⊥ : A
)
= 0 it follows that:

I
(

B⊥ : A
)

= ∑
a,b,b⊥

p(a)p(b|a)p
(
b⊥
∣∣b) log

p(a)p(b|a)p(b⊥|b)
p(a)p(b⊥)

= ∑
a,b,b⊥

p(a)p(b|a)p
(
b⊥
∣∣b) log

p(b|a)p(b⊥|b)
p(b⊥)

= ∑
a,b,b⊥

p(a)p(b|a)p
(
b⊥
∣∣b) log

p(b⊥|b)
p(b⊥)

+ ∑
a,b,b⊥

p(a)p(b|a)p
(
b⊥
∣∣b) log p(b|a)

= ∑
a,b,b⊥

p(b)p
(
b⊥
∣∣b) log

p(b⊥|b)
p(b⊥)

+ ∑
a,b,b⊥

p(a)p(b|a) log p(b|a)

= I
(

B⊥ : B
)
− H(B|A ) = 0.

(A4)

Here we used the shorthand p(b|a ) ≡ Pr(B = b|A = a ). From the resulting I
(

B⊥ : B
)
= H(B|A )

combined with the second constraint I
(

B‖ : B
)
= I(B : A) = H(B)− H(B|A ) it follows that B⊥ and

B‖ must be independent, namely:
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I
(

B⊥, B‖ : B
)

= I
(

B⊥ : B
)
+ I
(

B‖ : B
∣∣B⊥ )

= I
(

B⊥ : B
)
+ I
(

B‖ : B
)
+ H

(
B⊥
∣∣∣B‖ )+ H

(
B⊥|B

)
− H

(
B⊥
∣∣∣B‖, B

)
− H

(
B⊥
)

= I
(

B⊥ : B
)
+ I
(

B‖ : B
)
+ H

(
B⊥
∣∣∣B‖ )+ H

(
B⊥|B

)
− H

(
B⊥
)

= H(B)
= I
(

B⊥ : B
)
+ I
(

B‖ : B
)

.

(A5)

Appendix A.6 Impossibility of Decomposition for Binary Variables

Consider A, B, B⊥ ∈ {0, 1} as stochastic binary variables. The orthogonal decomposition
D : A, B→ B⊥, B‖ imposes constraints on B⊥ and B‖ which cannot always be satisfied perfectly
for the binary case, as we show next. We use the following model for A and B:

p(A = 1) ≡ pa,

p(B = x|A = x ) ≡ pb.

In particular, we will show that B⊥ cannot be computed from B without storing information
about A, violating the orthogonality condition. Being supposedly independent from A, we encode B⊥

by its dependence on B fully encoded by two parameters as:

p
(

B⊥ = x|B = x
)
≡ px

c . (A6)

Intuitively, in the case of binary variables, B⊥cannot store information about B without also
indirectly storing information about A. A possible explanation is that the binary case has an insufficient
number of degrees of freedom for this.

To satisfy the condition I
(

B⊥ : A
)
= 0 it must be true that Pr

(
B⊥|A

)
= Pr

(
B⊥
)

and therefore
that Pr

(
B⊥ = 1|A = 1

)
= Pr

(
B⊥ = 1

)
, among others. Let us find the conditions for this equality:

Pr
(

B⊥ = 1|A = 1
)
= Pr

(
B⊥ = 1

)
,

pb p1
c + (1− pb)(1− p0

c )= pa

(
pb p1

c + (1− pb)(1− p0
c )
)
+ (1− pa)

(
(1− pb)p1

c + pb(1− p0
c )
)

,

1= pa + (1− pa)
(1− pb)p1

c + pb(1− p0
c )

pb p1
c + (1− pb)(1− p0

c )
,

pb p1
c + (1− pb)(1− p0

c )= (1− pb)p1
c + pb(1− p0

c ).

(A7)

The conditions for satisfying this equality are either pb = 1/2 or p1
c = 1− p0

c . The first condition
describes the trivial case where B is independent from A. The second condition is less trivial but
severely constrains the relations that B⊥ can have with A. In fact it constrains the mutual information
I
(

B : B⊥
)

to exactly zero regardless of pa and pb, as we show next. Using the shorthand p(B = 1) =
pa pb + (1− pa)(1− pb),

I
(

B⊥ : B
)
=
(

p(B = 1)(p0
c + p1

c − 1)− p0
c
)

log
(

p0
c − p(B = 1)(p0

c + p1
c − 1)

)
−
(

p(B = 1)(p0
c + p1

c − 1)− p0
c + 1

)
log
(

p(B = 1)(p0
c + p1

c − 1)− p0
c + 1

)
+(p(B = 1)− 1)((p0

c − 1) log(1− p0
c )− p0

c log(p0
c ))

−p(B = 1)((p1
c − 1) log(1− p1

c )− p1
c log(p1

c )).

(A8)

Using the substitution p1
c = 1− p0

c and after some algebra steps it can be verified that indeed
I
(

B : B⊥
)

simplifies to zero.
Extending the parameters px

c to also depend on A would certainly be possible and add
degrees of freedom, however this can only create a non-zero conditional mutual information,
I
(

B : B⊥|A
)
. As soon as I

(
B : B⊥

)
is calculated then these extra parameters will be summed out

into certain px
c parameters, which we demonstrated will lead to zero mutual information under the

orthogonality constraint.
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This result demonstrates that a class of correlated binary variables A and B exists for which
perfect orthogonal decomposition is impossible. Choices for binary A and B for which decomposition
is indeed possible do exist, such as the trivial independent case. Exactly how numerous such cases are
is currently unknown, especially when the number of possible states per variable is increased.

Appendix A.7 Wyner’s Common Variable B‖W Satisfies Orthogonal Decomposition if I
(

B‖W : A, B
)
= I(A : B)

Wyner’s common variable is defined as a non-trivial minimization procedure, namely
B‖W = argminA→W→B I(A, B : W) where A→W → B means that the minimization considers only
random variables W which make A and B independent, i.e., I(A : B|W ) = 0. Wyner showed that
in general I

(
B‖W : A

)
≥ I(B : A) [15]. Here we show that for cases where the equality condition is

actually reached, B‖W satisfies all three orthogonal decomposition conditions which do not involve also
B⊥. Wyner leaves B⊥ undefined and therefore his work cannot satisfy those conditions, but this shows
at least one potential method of computing B‖.

The two starting conditions are:

I
(

B‖W : A, B
)
= I(A : B),

I
(

A : B
∣∣∣B‖W ) = 0.

(A9)

From the second condition it follows that:

I
(

A : B, B‖W
)
= I
(

A : B‖W
)
+ I
(

A : B
∣∣∣B‖W );

I
(

A : B, B‖W
)
= I
(

A : B‖W
)

.
(A10)

Similarly:

I
(

B : A, B‖W
)
= I
(

B : B‖W
)
+ I
(

B : A
∣∣∣B‖W );

I
(

B : A, B‖W
)
= I
(

B : B‖W
)

.
(A11)

Then from the first condition we can derive:

I
(

B‖W : A, B
)

= I(A, B),

= I
(

B : B‖W
)
+ I
(

B‖W : A|B
)

,

= I
(

B : A, B‖W
)
+ I
(

B‖W : A|B
)

,

= I(A : B) + I
(

B : B‖W |A
)
+ I
(

B‖W : A|B
)

,

(A12)

from which follows:

I
(

B : B‖W |A
)
+ I

(
B‖W : A|B

)
= 0; so

I
(

B : B‖W |A
)
= 0,

I
(

B‖W : A|B
)
= 0.

(A13)

Firstly this implies the “non-spuriousness” condition on the last line. Then from combining
Equations (A12) and (A13) with either Equation (A10) or Equation (A11) we find, respectively,

I(A : B) = I
(

A : B‖W
)

,

I(A : B) = I
(

B : B‖W
)

.
(A14)

These are the “parallel” and “parsimony” conditions, concluding the proof.
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Appendix A.8 Use-Case of Estimating Synergy Using the Provided Code

Our code can be run using any Python interface. As an example, suppose that a particular
probability distribution is given of two “input” stochastic variables, each having three possible values.
We generate a random probability distribution as follows:

• from jointpdf import JointProbabilityMatrix
• # randomly generated joint probability mass function p(A,B)
• # of 2 discrete stochastic variables, each having 3 possible values
• p_AB = JointProbabilityMatrix(2,3)

We add a fully redundant (fully correlated) output variable as follows:

• # append a third variable C which is deterministically computed from A and B, i.e., such that I(A,B:C)=H(C)
• p_AB.append_redundant_variables(1)
• p_ABC = p_AB # rename for clarity

Finally we compute the synergistic information Isyn(A, B→ C) with the following command:

• # compute the information synergy that C contains about A and B
• p_ABC.synergistic_information([2], [0,1])

With the jointpdf package it is also easy to marginalize stochastic variables out of a joint
distribution, add variables using various constraints, compute various information-theoretic quantities,
and estimate distributions from data samples. It is implemented for discrete variables only. More
details can be found on its website (https://bitbucket.org/rquax/jointpdf).
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