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Abstract: We propose a Cellular Automata (CA) model in which three ubiquitous and relevant
processes in nature are present, namely, spatial competition, distinction between dynamically stronger
and weaker agents and the existence of an inner resistance to changes in the actual state Sn (=−1,0,+1)
of each CA lattice cell n (which we call inertia). Considering ensembles of initial lattices, we study
the average properties of the CA final stationary configuration structures resulting from the system
time evolution. Assuming the inertia a (proper) control parameter, we identify qualitative changes
in the CA spatial patterns resembling usual phase transitions. Interestingly, some of the observed
features may be associated with continuous transitions (critical phenomena). However, certain
quantities seem to present jumps, typical of discontinuous transitions. We argue that these apparent
contradictory findings can be attributed to the inertia parameter’s discrete character. Along the work,
we also briefly discuss a few potential applications for the present CA formulation.

Keywords: cellular automata; spatial-temporal patterns; complexity; phase transitions; emergent
behavior; phase segregation; ecotones

1. Introduction

Spatial-temporal pattern structures are ubiquitous [1,2], especially in biological and human
phenomena [3–6]. They commonly originate from (nonlinear) driving forces acting locally on the
elements of a spatially-extended system. Often, this type of global emergent behavior cannot be
“guessed” simply from a direct qualitative inspection of the interactions between the individual
constituents (i.e., at the microscopic level). The full dynamics, the macroscopic description [6], can
be understood only as a collective effect. Such a scenario frames what is frequently termed in the
literature complex systems.

Likewise, phase transitions do constitute an extremely relevant class of processes. In particular,
the so-called critical phenomena lead to a very rich range of distinct comportment [7,8]. Briefly, not
too close to a critical point λc, the system microscopic organization varies continuously with a given
control parameter λ (for instance, temperature, chemical potential, etc.), maintaining a certain main
characteristic, e.g., a non-null magnetization or some degree of ordered aggregation, quantified by a
macroscopic order parameter Γ. However, by crossing λc (with Γ(λc) usually vanishing), the system
qualitatively changes, going through a phase transition, e.g., becoming non-magnetic or complete
disordered. Moreover, around the critical point [7], there is the development of infinite correlation
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lengths and the rise of universal features (like detail-independent critical exponents). A non-trivial
association between complexity and criticality is generally believed to exist [9].

The wide purpose of Cellular Automata (CA) (the acronym CA will mean either Cellular
Automaton or its plural form Cellular Automata; which one is actually being used should be clear
from each sentence’s specific context) models [10,11] couples very well with the idea of emergent
complexity. From a pure computational (algorithmic) point of view, CA is an extremely versatile
framework: in principle CA would be able to realize an universal Turing machine [12–14], hence to
perform complete general information processing. Thus, putting aside the controversial discussion
if CA could (or not) describe any natural process [15], the fact is that CA are extremely useful in
simulating distinct complex systems [16]. For example, the quite hard task of mimicking life and/or
live organisms (individually or collectively) was the initial motivation for John von Neumann, with
the help of Stanislaw Ulam, to propose CA in the 1940s, an approach reborn in the 1970s, in part due
to the general interest in the John H. Conway’s “Game of Life” CA. Nowadays, CA have become a
frequently employed theoretical tool in biological and ecological studies (refer, e.g., to [17–19]).

The key aspects underlying CA can be summarized as the following. Suppose we cross-grade the
system pertinent configurational (spatial, phase, etc.) space, portraying it in terms of cells (or elements).
Then, to each cell n = 1, . . . , N, we can ascribe a state variable Sn(t) (function of a discrete time
t = 0, 1, 2, . . .), whose numerical (usually also discrete) values indicate, say, particles’ density, pigment
color, action states (active/inactive, life/death, infected/non-infected), energy content, etc. As the
system dynamically evolves [20], the set {Sn(t)} may give rise to intricate tile-like arrangements.
This can be so even though at the elements’ level, the local responses to the interactions are simple.
In this way, the full CA behavior reflects global complexity [21].

Due to the CA inherent discrete formulation, contrary to the already mentioned close connection
between CA and complex systems, it may be much more difficult to establish an appropriate link
between deterministic CA and phase transitions. This is particularly true with respect to continuous
transitions, i.e., critical phenomena (for probabilistic CA, phase transitions are more easily observed;
see, for instance, [22,23]). Actually, in most CA constructions, there are no “good” λ’s, which could play
the role of control parameters (eventually, they might exist, but then demanding certain restrictions to
act as such, like requiring the number of possible states S to be very high [24]).

Recently, a deterministic CA with a new ingredient, inertia, has been proposed [25]. The original
goal in [25] was to find a minimal, not dedicated model capable of describing the basic aspects of
ecotones [26–28]: zones between geographic regions of distinct biomes. In such transition areas, there
is the coexistence of groups of species coming from different ecosystems. In many concrete situations,
it is still not completely understood how less fitted (e.g., to the nearby biomes conditions) exogenous
animals and plants can survive [29,30]. They eventually would perish in a more homogeneous
environment if competing with the same stronger (better adapted) local endogenic species [31,32].
To address the problem, some of us have introduced an intrinsic (in opposition to certain probabilistic
proposals in the literature; see, e.g., [33–35]) resistance, the inertia I, to the system’s natural rules of
evolution [25]. As a consequence, depending on In (which assumes discrete values), it becomes more
difficult for the interactions to change the state Sn of each cell n. By playing with the initial conditions
and the In distribution, it is possible to generate spatial patterns of meta-communities qualitatively
similar to those in ecotones [21,26–28].

In the present contribution, we shall explore CA with inertia in very general terms, showing
that I can act as a proper control parameter. Considering analysis procedures typical from statistical
physics, we study the evolution of ensembles of CA with different random initial configurations.
We thus are able to characterize average properties for the CA final spatial patterns’ structures, clearly
identifying behavior similar to phase transitions. Although, because of their discrete nature, CA
cannot lead to “true” critical phenomena, certain features of usual continuous phase transitions can
be observed as we change {In}. In fact, by assuming different distribution of inertia values among
the CA cells, we observe distinct and intricate heterogeneities in the emergence of spatial patterns.
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Intriguingly, for certain quantities, we even can see indications of discontinuous phase transitions.
These apparent contradictory results eventually can be explained in terms of the finite character of the
CA model and the discreteness of the inertia parameter I. Along the work, potential applications for
our model are also briefly mentioned. Finally, in the last discussion and conclusion section, we make
final considerations about the rise of phase transitions in CA and the important role, in this regard,
represented by inertia-like quantities (using ecotones as an illustration).

2. The Model: CA with Inertia

2.1. Basic Definitions

In our CA construction, the space is represented by a square lattice of N × N elements (or cells).
At the discrete time t (= 0, 1, 2, . . .), the state of cell (i, j) (hereafter labeled n (= 1, 2, . . . , N × N)) is
given by Sn(t), whose possible numerical values are −1, 0 and +1. We assume that only cells in the
(active) states +1 and −1 have the eventual power of altering the S’s of their neighbors. Therefore,
the state 0 is neutral in terms of any competition dynamics. We consider a further internal parameter
associated with each cell n, In, which is an integer between zero and eight. We call such a quantity
“inertia” since it characterizes the cells’ intrinsic resistance to changes in their actual state values. In the
more general case, In could be a function of time, but for our purposes, here, we restrict the analysis
only to time-independent I’s.

At time t, let us define Vn(t) = V(+)
n (t) − V(−)

n (t), with V(S)
n (t) the population of the state

S (=–1, 0,+1) in the neighborhood of n. The cell n has Nn = 8, 5, 3 contiguous neighbors if it is,
respectively, in the bulk, border or corner of the square lattice (we are supposing hard wall boundary
conditions (HWBD)). This is known as Moore’s neighborhood of radius one. We assume HWBD
because many systems that potentially can be described by our model (like the already mentioned
ecotones landscape, as well as fragmentation patterns in ecosystems [36]) require limited boundaries
as their spatial arena. The time evolution of each Sn(t) follows from two deterministic rules:

(i) The inertial rule: If In < |Vn(t)| the dynamical rule below is applied, otherwise Sn(t + 1) = Sn(t),
i.e., the state of n remains unchanged.

(ii) The dynamical rule: Sn(t + 1) = sign[Vn(t)], with sign[x] the signal of x.

Two aspects of (i)–(ii) should be highlighted. First, any neighbor of n in the state 0 does not
contribute to make Vn(t) 6= 0, a necessary condition to change Sn (if Vn(t) = 0, the dynamical rule (ii)
is not applied). Therefore, cells in state 0 cannot modify their neighborhoods. Second, cells in the active
state S (either −1 or +1) belonging to the neighborhood of n can alter Sn 6= S only if V(S)

n −V(−S)
n is

greater than the cell n resistance to switch (given by the inertia parameter In).
From now on, by ‘one step’ of evolution (t → t + 1), we will mean that we have considered

Rules (i)–(ii) for all of the N×N elements in the CA lattice, obtaining the full set {Sn(t + 1)} from {Sn(t)}.
To characterize certain system features, we define two groups of quantities calculated at each

time t. The first relates to the population of a state S, given by pS(t). For our N× N lattice, the total
population is p = N× N = p−(t) + p0(t) + p+(t). The second represents the degree of clusterization
of the CA lattice spatial pattern, either of the whole system, c, or only of the cells in state S, cS.
The clusterization measures the amount of “agglomeration” of the CA elements, i.e., the number
and size of clusters formed by cells in the same state. For their definition, suppose Smajor the state

corresponding to Max{V(−1)
n (t); V(0)

n (t); V(+1)
n (t)} (obviously, making sense only if there is a unique

most populated state). If there is a Smajor, we set N (Smajor)
n (t) = V

(Smajor)
n (t), otherwise N (Smajor)

n (t) = 0.
Then, c(t) and cS(t) read:

c(t) =
1
p ∑

n
[c]n(t), cS(t) =

1
pS(t)

∑
n
[cS]n(t), (1)
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with:

[c]n(t) = N (Smajor)
n (t)/Nn,

[cS]n(t) = [c]n(t) if S = Sn(t) = Smajor and 0 otherwise. (2)

In Equation (2), [c]n is the local clusterization around the site n regardless of the state of n. On the
other hand, [cS]n estimates the accumulation of the state S around a cell n if such a cell is also in the state
S. These functions have been proven very useful in typifying certain spatial patterns in biology [25].
However, as we have explicitly verified, the use of other methods (like Hoshen–Kopelman [37]) to
gauge the CA degree of clusterization yields the same qualitative results obtained in the present work.

Finally, we specify a third parameter, τ, representing the the minimal number of full iterations
(i.e., the number of time steps; see above) for a specific initial lattice to reach a stationary configuration.
In other words, for t > τ, the CA remains unchanged for any further application of the evolution rules.
As we are going to discuss, only in relatively few cases we will not have a finite τ for the CA initial
lattices considered.

2.2. A Statistical Physics-Like Analysis: Averaging over Ensembles of Initial Configurations

Since we shall identify typical properties of the proposed CA, we assume a statistical physics
point of view and consider ensembles of initial configurations for the CA lattice. Then, we calculate
the quantities described in Section 2.1 by performing averages over a large number of time evolved
lattices (from such ensembles), obtaining “mean characteristics” of the system.

To standardize the analysis, we always take lattices having initially p+(0) ≥ p−(0) and the
same fixed number of elements in the 0 state, with p0(0) being equal to the integer closest to N2/3.
Unless otherwise explicitly mentioned, we set N = 22 (a value already large enough to illustrate
the CA main aspects and also allowing relatively fast simulations). We commonly generate about
NL ∼ 7× 104 lattices (in the numerically harder cases NL ∼ 3.5× 104), resulting in very good means
for any situation studied. For N = 22 (total population p = 484 and p0(0) = 161), we discuss
two distinct ensembles of lattices: (a) one where p+(0) is homogeneously distributed in the range
162 ≤ p+(0) ≤ 182; and (b) another in which the clusterization c+(0) is homogeneously distributed in
the interval 0.12 ≤ c+(0) ≤ 0.22. (we observe that such an interval, appropriate for our purposes here,
is consistent with p+(0) > p−(0) (but hard to meet for p+(0)� p−(0)), also allowing one to generate
a large number of replicas for each c+(0) value).

Observing these restrictions, the spatial distribution of initial states in the cells is random.
We mention that comparatively few initial CA lattices either are not able to converge to a final

stationary structure or may take a too long time to do so. Thus, from all of the initial lattices created,
we have used only those with τ ≤ 200 (typically corresponding to 97%–99% of NL). In the Appendix
A, we give simple examples of end patterns that are not stationary because they oscillate between very
similar (but not the same) configurations.

Our procedure is therefore: (a) to dynamically evolve each replica in the ensembles according to
Rules (i)–(ii) until achieving a steady condition, and then; (b) to perform the pertinent averages over
the resulting CA configurations.

3. Results

In Section 3, we use the following notational convention. Since any q(t) will be a constant for
t ≥ τ, the final stationary value of q(t ≥ τ) will be denoted simply as q. Furthermore, any quantity q
should be understood as the resulting average over the corresponding ensemble.
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3.1. CA with Zero Inertia

We start by briefly presenting conventional results for a CA without inertia (In = I = 0, ∀ n),
the most usual context in the literature. This case will serve as a reference to discuss the behavior of
CA with I 6= 0.

First, we note that as expected (so, we do not show any plot for such situation here), the final
population and clusterization of elements in the +1 state increase fairly linearly with the initial value
of the +1 population, p+(0). This linearity comes from the fact that the average distribution of a state
S in the neighborhood of a cell n is f S ∼ pS/p. If pS increases, f S increases accordingly. Since the
dynamical “pressure” to change the state of n to an active S goes with f S, it follows that the final
number of elements in state S is basically proportional to pS(0).

An interesting behavior emerges when we calculate p+ and c+ as a function of c+(0). Examples
are shown in Figures 1 and 2. Observe that both p+ and c+ decrease with increasing c+(0), so c+(0)
plays an inverse role to that of p+(0). This is apparently counter-intuitive: one could expect higher
initial agglomerations of an active S (acting as compact “source” regions at t = 0) to enhance the
spread of S throughout the lattice, leading to a dominance of S over the other states.

To comprehend the above, it is important to recall that the parameter cS(0), examined alone, in
principle gives just the average degree of agglomeration of a particular S, but not any detailed
information about the spatial distribution of the S cells across the whole lattice. However,
the construction of ensembles with the c+(0)’s in the range of values used here results only in mild
variations of ∆ = p+(0)− p−(0). Hence, in this case, a higher c+(0) necessarily implies that the +1
cells are more localized in specific regions of the CA lattice. On the opposite, lower c+(0)’s yield more
uniformly distributed +1 along it. Thus, around the initially localized +1 clusters (whose sizes increase
and number decreases with an increasing in c+(0)), certainly there is a tendency for the growth of
+1. However, in the remainder of the lattice, −1 is mostly competing with the neutral state 0, so very
quickly, −1 will dominate. As a consequence, the more concentrated is +1 originally, the higher the
final overall preeminence of −1, explaining the trends in Figures 1 and 2.

0.12 0.14 0.16 0.18 0.2 0.22

c
+
(0)

292

296

300

304

308

p
+

Figure 1. Final (i.e., after reaching the stationary configuration) mean population p+ as a function
of the initial clusterization c+(0) for the CA model without inertia. For each c+(0), p+ is obtained
as an average over an ensemble of NL initial lattices (all having the same c+(0) value, but different
p+(0)’s; see the main text). Even then, the curve p+ × c+(0) fluctuates around a decreasing linear
trend represented by the dashed line (the best linear fit). By further generating for each c+(0) a number
NS ∼ 300 of ensembles (of NL replicas in each), one obtains a good straight line p+ × c+(0) with a
well-defined slope θ (see Sections 3.2 and 3.3.3).
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0.884

0.888

0.892

0.896
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+

Figure 2. The same as in Figure 1, but for c+ × c+(0).

We finish this brief analysis of the I = 0 case considering how τ changes with p+(0) and c+(0).
From simulations, one finds that τ increases with p+(0) and decreases with c+(0) (recall that we
are assuming an interval for p+(0), such that ∆ is not too large). Regarding p+(0), if originally
∆ = 0 with both ±1 states equally dispersed, rapidly, there will be a situation of equilibrium between
them, leading to shorter τ’s. If ∆ > 0, typically at the stationary condition (t ≥ τ), p+ − p− > ∆.
Nonetheless, this relative gain of p+ will require slightly longer times to be achieved as p+(0)
moderately increases. On the other hand, high c+(0) means that the +1 cells are agglomerated
in certain regions of the lattice (see the previous discussion). Therefore, quickly, these regions
will be populated by +1 and the others by the −1, resulting in an expeditious convergence to the
stationary configuration.

3.2. CA with Homogeneous Inertia

The simplest (homogeneous) case of a CA with inertia is that in which In = I constant ∀ n
(1 ≤ I ≤ 8). Note that the extreme value I = 8 leads to no dynamics (i.e., τ = 0) once the evolution
rules (with I = 8) cannot modify the system, because any cell has at most eight first neighbors.

First, consider p+ and c+ in terms of p+(0). Similar to I = 0 in Section 3.1, on average, a rather
linear dependence of p+ on p+(0) is observed. Furthermore, as expected, when I > 0, both the
magnitude of p+, as well as the slopes of the resulting straight lines p+ × p+(0) decrease steadily with
increasing I. This reflects the natural fact that the cells tend to remain in their initial state for higher I’s,
producing a final pattern, which does not substantially differ from the initial one. Likewise, on average,
c+ displays a linear variation with p+(0). However, differently from p+, the angular coefficient of
the c+ × p+(0) straight line does not display a simple monotonic behavior with I. This is clear in
Figure 3a, where we plot the slope (i.e., the angle θ (in degrees)) of the straight line c+ × p+(0) as a
function of I. There is a clear peak for θ: for I ≤ 4 the (positive) correlation between p+(0), and c+
increases with I, whereas when I > 4, such a correlation decreases with I. To understand such a result,
which indicates some sort of dynamical transition, we recall that when I 6= 0, only a neighborhood
of n with I + 1 or more cells in the same active S 6= Sn would be able to eventually alter Sn. Then, as
I grows, the system evolution becomes more sensitive to the initial population because high values
of p+(0) (and, consequently, larger +1 state concentrations) are fundamental to trigger state changes.
Nevertheless, when I > 4 and if p+(0) is not overwhelming, c+ starts to decouple from p+(0) since
the dynamics passes to be strongly controlled by the cells’ internal resistance, and only huge initial
clusterization of +1 (not the case for p+(0) not very large) could significantly modify the CA lattice
original configuration.
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Figure 3. The slope, angle θ in degrees (circles), of the straight lines corresponding to (a) c+ × p+(0)
and (b) p+ × c+(0) (for the calculation details, see the caption of Figure 1) as a function of the inertia I.
The dotted line is just a guide for the eye.

Second, we observe that even stronger evidence of transition is given by the behavior of p+ versus
c+(0). The slopes (again, the corresponding straight lines’ angles θ) are shown in Figure 3b. Similarly
to the I = 0 case in Section 3.1, for I ≤ 3, one finds that p+ decreases with increasing c+(0) (negative θ).
Therefore, the mechanism relating c+(0) with p+ discussed in Section 3.1 is still dominant if the inertia
is low. However, when I ≥ 4, the final p+ increases with c+(0). Indeed, then, only very aggregated
+1’s around a cell n (of high inertia) will have the ability to modify Sn. Further, in such a context of
greater I’s, the more randomly-distributed population of −1’s across the lattice barely will increase
(contrasting with the dynamics of the equivalent situation, but with I = 0 in Section 3.1).

Third, regarding c+ × c+(0), for the 0 ≤ I < 3, interval, c+ displays only a weak dependence on
c+(0), with the magnitude of c+ slightly decreasing as I increases (see the explanation in Section 3.1).
For I ≥ 3, the cells’ enhanced resistance induces a stronger correlation between c+ and c+(0), so that
higher final will demand higher initial clusterizations. This is so because for large inertia, changes in a
given Sn 6= S are possible only if n is in the vicinity of a large cluster of the active S. As a consequence,
an active state S will spread out only if “supported” by already existing clusters of S.

Lastly, the cells tend to remain in their original states as the inertia grows. Therefore, the number
of accessible intermediary configurations until stationarity usually reduces with I, shortening τ. As an
illustration, in Figure 4, we show a typical CA evolution. We consider the same initial lattice, for
which c+(0) = 0.169864 and p+(0) = 172 and different I’s. The black, white and grey colors represent,
respectively, states +1, 0 and −1. In this particular example, when I = 0, τ = 9 iteration steps are
necessary to achieve the steady condition. For the other I’s, we have: τ = 7 for I = 1, 2; τ = 6 for
I = 3; and τ = 2 for I = 4, 5. In the first six cases, the final CA patterns are all distinct from each other.
For I ≥ 6, the initial configuration cannot be changed from the evolution rules.

Some other discussed features of the present CA system can also be identified in Figure 4.
For instance, we see that the final clusterization becomes strongly correlated to the initial clusterization
for high I’s. However, perhaps the most interesting property observed in Figure 4 is that the number
of cells in the neutral (or dynamically passive) S = 0 state in the final configuration increases with I.
In this particular example, when I = 0, all the initial 0 elements are transformed into the active ±1
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states. However, as I increases, a fraction of the initial 0 cells are able to survive up to the stationary
configuration, with p0 growing with I (obviously p0 = p0(0) for I = 8).

Figure 4. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+(0) = 0.169864)
for increasing inertia I values. Each t corresponds to a full iterated time step (t = 0 is the initial lattice).
The black, white and gray colors represent, respectively, the +1, 0 and −1 states. For this particular
case, the initial configuration cannot be changed by the CA rules (i)–(ii) when I ≥ 6.

Thus, it is clear that the presence of an internal resistance variable, inertia, is essential for the
endurance of states that are dynamically neutral (or somehow “fragile”) during the time evolution.
This property has been used to model ecotones (i.e., biome transition regions) in a previous work [25].
Nonetheless, here, we shall briefly mention a further potential application for our CA formulation.
As nicely put in [38], the phenomenon of frustration is a very common behavior in complex systems,
arising when a local minimum of energy cannot be achieved due to opposite force mechanisms.
For example, three 1/2-spins located at the vertices of a triangle cannot simultaneously be at the lowest
energy level if their mutual interaction is antiferromagnetic. Frustration-induced phase transitions
have already been described by CA [39], but through stochastic implementations (briefly, we define
two deterministic set of rules, R1 and R2, and at each time t, choose probabilistically one of them to be
applied to the CA elements). In magnetic lattices displaying frustration, if the coupling extends over
larger neighborhoods and the interactions are anisotropic, the system may develop regions of regular
ordering, separated by irregular lines of frustrated magnets [40]. With a proper extension of the rules
in Section 2.1, the evolution of our deterministic CA with inertia can simulate the formation of such
regions, where the state 0 could then represent the frustrated magnets (this is presently an ongoing
study) (cf., in Figure 4, see the configurations for I = 2 at t = 7 and I = 3 at t = 6).

3.3. CA with Inertia Following Spatial Patterns

So far, we have discussed the case of the same inertia value for the whole CA lattice. However,
one can imagine complete arbitrary distributions of inertia among the CA cells, conceivably leading to
very diverse and rich dynamics. Therefore, just to give a flavor of more general possibilities, we next
consider three relatively simple illustrative examples, which we call Patterns I, II and III for the inertia
spatial distribution.
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3.3.1. Pattern I: Regional Block Distribution of Inertia

The inertia Pattern I is depicted in Figure 5. There are in total nine regional blocks of inertia, each
having a fixed value of I = 0, 1, . . . , 8. Successive adjacent horizontal blocks (from the top-left to the
bottom-right) have I incremented by one unit.

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

Figure 5. The Pattern I spatial distribution of inertia.

Qualitatively, the dependence of p+ and c+ on p+(0) is similar to that for homogeneous constant
I’s. There is a linear positive correlation of these quantities with the initial +1 population, so that p+
and c+ grow linearly with p+(0). Furthermore, p+ decreases with increasing c+(0), which is the trend
in Section 3.2 for I small. On the other hand, Figure 6 shows that (up to fluctuations, cf. Figures 1 and 2)
c+ tends to increase with c+(0). This is the case in Section 3.2, but only for greater I’s. Such results
point to an interesting propensity for gradual block-like inertia distributions. The behavior of p+ is
always more strongly determined by the lower I’s, whereas c+ as a function of c+(0) (p+(0)) is more
influenced by the higher (lower) I’s. Regarding τ, in the ranges considered for the initial conditions,
the inertia Pattern I is akin to I = 0, with larger p+(0)’s (c+(0)’s) giving rise to longer (shorter) τ’s.
Nevertheless, there is an important difference: the average number of iterations is usually lower for
Pattern I than for I = 0. This is so because regions with high I quickly converge to a local stationary
configuration, thus slightly decreasing τ compared to CA without inertia (Section 3.1).
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Figure 6. Similar to Figure 2, but for the spatial distribution of inertia given by Pattern I.
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Figure 7 shows a typical time evolution of a CA with the inertia Pattern I (in this example, τ = 6).
Observe that the cells belonging to blocks with low inertia are able to form clusters of active ±1 states
(only very few cells in the 0 state survive). In contrast, elements in the blocks with higher inertia are
more evenly distributed among the three possible S values. In such blocks, there is no prevalence of a
major state, and the final p0 increases as I (regionally) increases.

Figure 7. Evolution until stationarity (here, τ = 6) of the same initial lattice (of p+(0) = 172 and
c+(0) = 0.16531) with the inertia Pattern I. The color convention is the same as in Figure 4.

CA are very useful to model phase separation processes [41], e.g., as occurring in binary
mixtures [42]. In this regard, we observe that the blocks in Figure 7, where S = ±1 have become very
clusterized (for t ≥ 6), could be interpreted as the regions of the final segregated phases. On the other
hand, certain lattice areas do not allow a strong domination by a single type of state (say, representing
a specific molecule). Therefore, a cluster distribution of inertia acts like a heterogeneous medium for
the distinct states (or particles) diffusion, thus engendering complex morphological partition [43].

3.3.2. Pattern II: A Unique Central Region with a Non-Null Constant Inertia

The inertia spatial Pattern II is represented in Figure 8. Just the elements of a central square block
B have non-null inertia (In = i 6= 0 for any n in B and In = 0 otherwise). Note that the number of
I = 0 neighbors to the B border (corners) cells is three (five). Thus, usually, i ≥ 5 would lead to no
dynamics for the B elements in the case of a random distribution of states for the initial CA lattice.
Therefore, here, we only assume i = 1, 2, 3, 4.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 i i i i i i i i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8. The Pattern II spatial distribution of inertia.

This kind of inertia pattern is interesting to test how an initial compact group with a certain
opposition to changes (but with a random distribution of S’s) can influence the full system evolution.
For applications of CA to problems where there are resistant agents or refractory periods, during
which there is no response to external signals from certain elements, see, e.g., models of resistance to
market innovations [33] and rippling arrangements in biological cells [44].
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A first distinct feature of Pattern II (with respect to the case of I = 0 everywhere, i.e., i = 0) is
that the number of replicas in the ensembles (Section 2.2), which does not converge to stationarity,
slightly decreases (increases) when i = 1 (i > 1). It can be understood as the following. For null
inertia, there are some lattices that oscillate between few final, similar, but not equal, configurations
(Appendix A). For Pattern II with i ≥ 1, a certain number Ne(i) of these oscillations are eliminated (see
Appendix A), and the corresponding lattices stabilize. For i = 1 (still a low inertia value), unless for
these eliminations, other aspects of the CA dynamics are not drastically altered. However, for greater
i’s, the border cells of B start to act as a contour of fixed S’s, generating a geometric constraint in the
evolution of the remaining lattice cells (especially those in the immediate vicinity of B). Hence, a given
number Nc(i) of initial lattices will not converge to a steady condition due to the appearance of border
oscillating structures (see the discussion in the Appendix A) around B. For higher i’s, Nc(i)/Ne(i) > 1,
if B is big enough, the situation here. As a consequence, compared to Section 3.1, the average τ for
Pattern II very mildly increases (decreases) if i = 1 (i ≥ 2). In fact, for i = 1, the extra lattices (Ne(1)),
which are now included in the calculations, often have their individual τ’s longer than the average τ

in Section 3.1. For i ≥ 2, the block B generally converges more rapidly to a steady configuration, thus
lowering the lattices overall τ.

Qualitatively, the time evolutions of the cells with zero inertia in both Pattern II and I = 0
everywhere are akin. Therefore, Pattern II leads to p+ and c+ with a fair linear growth with p+(0).
Furthermore, p+ and c+ decrease with increasing i, following the same trend of a fixed I for the whole
lattice (Section 3.2). As for p+ and c+ as a function of c+(0), they have the same behavior shown in
Figures 1 and 2, with the values of p+ and c+ decreasing as i increases.

Figure 9 illustrates the dynamics of a specific CA with the inertia Pattern II. Here, τ is 9, 11,
9, 10, 9, respectively, for i equal to 0, 1, 2, 3, 4. From the plots, we observe that basically the
cells in and around B are the most affected by the values of i. The remaining lattice elements
evolve following almost the same sequence of configurations seen in the case without inertia
(Figure 9 first row, in which i = 0). These results contrast with previously-mentioned models in the
literature [33,44], whose resistive elements tend to change the final configuration of the entire system.
The main difference is that the initial states of the B cells (of I = i 6= 0) are randomly distributed.
Hence, they do not share a common S (say, a strong opinion about some specific subject), which in the
long term could influence the global distribution of states, representing voting intention, language,
cultural preferences, etc., and eventually giving rise to phase transition-like phenomena [45]. Actually,
the CA with inertia Pattern II is an appropriate construction to describe systems presenting regions of
homogeneous phases coexisting with regions of very heterogeneous structures (cf., Figure 9).

Figure 9. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+(0) = 0.167878)
with the inertia Pattern II. The inertia values are those for i in the central block B (i = 0 corresponds to
I = 0 everywhere; Section 3.1). The color convention is the same as in Figure 4.
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3.3.3. Pattern III: Non-Null Inertia Initially Only for the Neutral S = 0 State

The S = 0 state is passive under the evolutionary rules described in Section 2.1. Hence, it is
often completely annihilated by the active states when I = 0 everywhere. This is no longer the case if
all of the cells have a same non-null inertia (Section 3.2). However, then one could ask which other
inertia distributions can preserve S = 0. The intuitive answer is to assume that only the elements
starting in the neutral state can withstand changes. To investigate such situation, we finally consider
the inertia Pattern III, where we suppose that initially the cells n at S = 0 (S = ±1) have an inertia
value In = i 6= 0 (In = 0).

Here, again, p+ and c+ depend linearly on p+(0). The p+ and c+ magnitudes strongly decrease
with I, the same trend seen in Section 3.2. Further, the always positive slopes (the angles θ) of the
straight lines p+ × p+(0) and c+ × p+(0) monotonically diminish with I, however with a very mild
variation (especially for c+ × p+(0)) when I < 4. Hence, contrary to Figure 3a, the slope θ of the
c+ × p+(0) curve versus I does not present a peak, which would characterize a qualitative dynamical
change (at least regarding the final +1 clusterization in terms of p+(0)). This distinct behavior from that
in Section 3.2 occurs because initially, only the S = 0 cells (so with I 6= 0) can act like “buffer” elements
to prevent the growth of +1 agglomerations. But dynamically S = 0 is a passive state. Therefore, for I
small, the formation of +1 clusters at the end of the evolution is not so critically dependent on p+(0),
as would be the case if the −1 active state at the beginning had also a non-null inertia.

On the other hand, an important transition is observed when we analyze p+ versus c+(0). For
I ≤ 4 (I ≥ 5), the final p+ decreases (increases) with c+(0). This is illustrated in Figure 10, where one
sees that the slope of p+ × c+(0) versus I has the same behavior of Figure 3b (but notice a different
onset). Such similarity indicates that the strongest influence on the final value of p+ in terms of c+(0)
is played by the susceptibility of neutral elements to become active S = ±1 states (a mechanism that
depends on I) and not due to the competition between +1 and −1 to transform each other.
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Figure 10. The same as in Figure 3b, the slope (angle θ) of the straight line p+ × c+(0) versus I, but for
the inertia Pattern III.

For Pattern III, the average τ drops quickly with increasing I. Indeed, as I grows, the S = 0 cells
tend to become “immune” and then excluded from evolution. With a reduced number of elements
participating in the dynamics, naturally, the convergence to a stationary configuration is quicker.

A typical evolution is illustrated in Figure 11. As I increases, S = 0 can survive until the stationary
configuration is reached, especially if they are located in the borders that divide clusters of the +1 and
−1 states (this is just the mechanism allowing the ecotones’ formation [25]). For larger I’s, the elements
in the zero state are able to distribute equally in all regions of the lattice. As already discussed, once
the S = 0 cells with I 6= 0 play the role of “buffers”, the spatial aggregation of ±1 becomes more
difficult as I gets larger. Nevertheless, the final clusterization degree of ±1 is still considerably higher
when confronted with the case of the same I for all cells (compare, e.g., Figures 4 and 11). This can be
understood from the fact that during the very first time steps, in small regions R where there exists a
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prevalence of S = ±1, it will become easier for S to rapidly dominate R over −S (whose I = 0). Such
“nucleation” guarantees a certain minimum level of clusterization at the end of the evolution process.

Figure 11. Evolution until stationarity of the same initial lattice (of p+(0) = 172 and c+ = 0.169574)
with the inertia Pattern III and distinct values of I. Since initially only the neutral S = 0 has non-null
inertia, even for I = 8, the system needs a finite number of steps to reach a steady configuration.
The color convention is the same as in Figure 4.

4. Discussion and Conclusions

The understanding of the processes involved in spatio-temporal patterns’ formation (especially in
biological systems) is a relatively old [3], but still very fascinating, subject in science. The corresponding
underlying mechanisms are closely related to the idea of emergent behavior in complex systems [46],
as well as to some concepts of critical phenomena [47]. In particular, resistance of some elements to
a specific driving force might be one of the key factors to explain different rich structures observed
in nature [38,42,48,49]. Nevertheless, the investigation of this latter dynamics using CA (especially
deterministic ones) is still not very well explored in the literature.

Here, we have examined a simple CA of straightforward evolution rules. The idea was to
propose a minimalist model displaying phase transition-like behavior rather than to describe a
concrete particular problem (but see below). However, in the CA formulation, we have considered
three very common ingredients in real systems (deterministically implemented): distinction between
dynamically-active (in a way “stronger”) and passive (in a way “weaker”) agents, spatial competition
and inertia, i.e., intrinsic opposition to modifications in the actual CA cells’ states. By assuming distinct
distributions and values for the In’s, we have been able to identify qualitative modifications in the
final stationary configurations of the CA lattice. This clearly demonstrates that such an innate quantity,
inertia, can adjust the emergent spatial patterns resulting from the CA evolution. In fact, the observed
pattern changes with the inertia distribution display a striking resemblance with phase transitions,
indicating a more fundamental reorganization of the CA final steady configurations as a function of a
control parameter, in the present case I.

The first evidence of a macroscopic change in the system, due to the increase of inertia, can be
grasped from a detailed inspection of Figure 4, characterized by well-defined islands (domains) of cells
in the states +1 and −1 when I ≤ 3 (for I = 3, this is not so prominent, but S = ±1 islands still can be
spotted). On the contrary, for I ≥ 4, the domains are practically absent. These qualitative distinctions
points to a phase transition controlled by the inertia. Moreover, the structures in Figure 4 have a
close parallel with ferromagnetic-paramagnetic critical transitions, in which the existence of domains
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with well-defined magnetization is continuously suppressed as the temperature progressively rises.
Figure 3a,b reinforces that the global changes induced by the inertia are related to a phase transition
occurring around 3 ≤ I ≤ 4. Figure 3a shows that the slope of c+ × p+(0) has a peak just in this I
interval, whereas a jump of the slope p+ × c+(0) (Figure 3b) is observed in the same I range. It is
worth mentioning that the curve in Figure 3a could be related to a kind of “susceptibility”, which
usually presents accentuated peaks at the onset of a phase transition [50].

We emphasize that the quantities we have chosen to characterize the transitions, as they should
be, are very sensitive to the actual distribution of the In’s. Indeed, since the inertia is attached to cells,
not to cell states, the CA dynamics is completely determined by the initial lattice and the specific
{In}. In this work, we have made particular options for such distributions. Besides the same I for
all cells (Section 3.2), the inertia Patterns I, II and III were motivated by phenomena associated with,
respectively, segregation of binary mixtures, opinion formation and the existence of buffer-like states
(e.g., important in some condensed matter problems). As an example, for the inertia Pattern III of
Section 3.3.3, for which initially only the cells n with S = 0 have In 6= 0, the slope of c+ × p+(0) as a
function of I no longer displays a peak (although the slope of p+ × c+(0) versus I still presents a jump
(Figure 10), following the same behavior of Figure 3b). Such a distinction, as discussed in Section 3.3.3,
reflects the fact that the final stationary patterns in this latter case tend to have the states ±1 more
clusterized than those in Section 3.2, even for larger I’s.

Surely, a very pertinent question relates to the exact type of transition (either discontinuous or
continuous) we are observing in the present model. We first remark that even for more conventional
statistical physics systems, in different situations, a proper identification is not a trivial or a direct task.
For instance, in some cases, “weak” discontinuous transitions exhibit just small jumps for the order
parameters, becoming hard to distinguish between phase coexistence and critical phenomena [50].
As an illustration, the so-called explosive percolation, in which the transport through a network
occurs discontinuously, is a very peculiar process [51–53]. Although some examples of explosive
percolation initially pointed to discontinuous phase transitions [54]; afterwards, they were revealed to
be continuous [55]. The difficulty of discriminating critical from first-order transitions also appears
in the context of absorbing states (AS), in which three adjacent species are required for producing an
offspring (recall that our CA has also three states, moreover with the possibility of extinction, usually
of S = 0). Distinct works have claimed a discontinuous phase transition for AS systems [56,57], but
it is strongly believed they belong to the same (continuous transition) universality class of the 1D
directed percolation [58,59].

For CA, the situation is not different [60]. Actually, it can be even more tricky. The great distinction
is that in traditional problems, for λ 6= λc, the thermodynamics quantities are usually continuous
and differentiable functions of the control parameter λ. Therefore, in principle, one can study their
analytical properties around λc, so to determine the phase transition character. The big challenge with
CA is that often, one cannot perform such a kind of analysis.

In our case, I is not continuous, but we can change it through a set of distinct values. Taking into
account the discrete (and finite) nature of the lattices, by inspecting the CA patterns for different I’s,
Figures 4 and 11 seem to indicate a continuous phase transition (like a magnetic process). On the other
hand, the leap for the slope of p+ × c+(0) might imply discontinuous phase transitions. However,
observe that this jump can be related to the discreteness of the inertia parameter, masking an eventual
sharp, but still continuous variation of θ. Certainly, further investigations would be desirable.
As a possibility, we recall that we have discussed only the case of time-independent inertia distributions.
The case of In = In(t) could be related, e.g., to seasonal effects in biological environments [4–6]. Then,
by calculating an average I during pertinent time intervals, one can define an effective Ie f f , which
does not need to be an integer, assuming a broader range of values. In this way, the analysis could
be performed with such Ie f f , allowing a better characterization of the phase transition in terms of the
inertia order parameter.
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Along Section 3, we have mentioned different potential applications for this kind of CA
construction, especially concerning biological structures and phase segregation. However, our main
goal has not been to describe a particular situation. Instead, our aim has been to discuss general aspects
of how a CA, a paradigmatic tool in modeling complex systems, can generate distinct spatial-temporal
patterns by fine tuning an inner variable, inertia, directly associated with resistance to changes in the
system microstates (i.e., at the cells’ level [6]). Nevertheless, a few comments about a specific situation
should help to put our results in a more concrete perspective.

In [25], some of us have used a very similar framework to generate typical patterns in ecotones
(see the Introduction section), although not addressing phase transitions. It is important to mention
that actual ecotones have been associated with phase transitions [61,62], in fact to second-order ones,
i.e., to critical phenomena [63]. Thus, in spite of the great simplicity of our CA model, it readily
reproduces two of the most important aspects of ecotones:

(i) The coexistence of alien species (AS) living in the interface region, represented by S = 0, between
two distinct spatial areas corresponding to biomes B1, S = +1 and B2, S = −1 (cf., Figures 4 and 11)
(note that usually, these AS are not able to survive within either B1 or B2).

(ii) Ecotones’ boundary extensions and shapes usually are driven by climate conditions and species
competition [26–28,63]. Such boundaries may or may not arise depending on the strength and
interplay of these factors (say, quantified by a parameter λ). The variation of λ will simply
modify or eventually destroy ecotones. The corresponding transition, as λ varies, appears to be
akin to continuous phase transitions [63]. Again, qualitatively, this is what we observe from the
CA lattices’ time evolution considering distinct values of I (see Figures 4 and 11).

The last point is how to interpret inertia in the present context. The AS would be defeated if
“clashing” against the species just from B1 or just from B2. However, in the intermediate region, both
latter sets of species are not so well adapted as in their original ecosystems. Furthermore, they are
competing with each other. This gives a certain contextual advantage to the AS, allowing them to
survive, but only when there is tension between the active species. The inertia (at least for the AS)
somehow quantifies this emergent (and relative) fitness due to the impairment and competition
between the B1 and B2 species.

Finally, we remark on an interesting observation made by one of the anonymous referees.
A possible distinct version of our CA is to associate inertia with cell states rather than with cells.
In this case, the pattern of inertia would evolve with (and partly determine) the pattern of cell states.
More generally, both approaches could be used in a single system. For example, in a CA describing
the rich dynamics of land use [64], some inertia values could be attached to cells, so as to represent
inherent cell qualities (i.e., heterogeneity in the cell space), while others could be attached to cell states
S, representing the cost of changing S. Such a necessity of a hybrid treatment in certain classes of
problems is discussed, for instance, in [64].

We hope the presented work can motivate future studies relating the concept of inertia to complex
systems and phase transitions.
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Appendix A. Examples of Periodic Oscillating Structures (Not Converging to Steady Configurations)

In the following, we give two examples of end situations (i.e., after enough time steps), which
are not stationary because some small blocks in the CA lattice oscillate between a few different local
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configurations, whereas the rest of the cells remains unchanged. For simplicity, we just illustrate the
case of I = 0 for all of the elements. Furthermore, for a better visualization, we consider N = 30, but
the behavior here is qualitatively the same for other values of N (including N = 22 of Section 3).

In Figure A1a, we show the final oscillating pattern to which a certain typical initial CA lattice
(in the sense of the construction described in Section 2.2) has evolved after a certain number of steps.
We schematically represent in Figure A1b the blocks B (of 25 cells each) indicated in Figure A1a. Note
that if somehow the surrounding of B is fixed, so the B border cells cannot change, then a direct
analysis shows that for I = 0, the evolution Rules (i)–(ii) necessarily make B alternate between the
two displayed structures in Figure A1b. This is the case for any lattice, unless for a localized region
(in the form of B) that has evolved to a stationary condition. On the other hand, setting I = 1 for the
configurations in Figure A1a suffices to “freeze” the B oscillations into the left shape of Figure A1b,
leading thus to a final steady state.

x x

x

x

x x

x

x

(b)

(a)

Figure A1. (a) The two oscillating configurations to which an initial 30× 30 CA lattice (of all elements
with I = 0) has evolved under the (i)–(ii) evolution rules. Here, black, gray and white represent,
respectively, the states +1, −1, and 0. Interestingly, in this case only one cell with S = 0 has remained,
belonging to the indicated blocks B; (b) Schematics of the blocks B (of 25 cells each) responsible for
the oscillatory behavior when I = 0. The four cells marked by x will switch (as illustrated) each time
rule (ii) is applied. I = 1 is large enough to stop the oscillations, driving B to the left structure.

The basic local blocks B resulting in the oscillatory behavior for final CA lattice patterns can have
different shapes. For instance, for the example shown in Figure A2, an initial lattice has evolved to
structures with two of such blocks, which moreover are composed only by S = ±1 states. This contrasts
with B of Figure A1, having a single S = 0 cell in the center. We observe that if for the lattices in
Figure A2 we switch the inertia to I = 1, the blocks in the lattices’ right side will stop oscillating
(stabilizing in their present configurations). However, the blocks in the left side will continue oscillating
into two different structures, but of slightly different forms than the ones in Figure A2.
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Figure A2. Another example of a final non-steady pattern for the CA. Differently from Figure A1,
as indicated now there are two blocks where the oscillations take place. Furthermore, for this case only
the S = ±1 states have survived. The B in the right side of the lattice is an emblematic configuration of
borders oscillating structures.

Lastly, we comment that oscillating structures also exist for I = 1 (as mentioned for the example
of Figure A2). However, from exploratory numerical simulations (with many N’s), we have never seen
similar behavior when I ≥ 2. Therefore, it is an interesting theoretical question if one can have finite
fundamental blocks B in the case of larger than one inertia values.
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