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Abstract: Living systems display a variety of situations in which non-equilibrium fluctuations
couple to certain protein functions yielding astonishing results. Here we study the bacterial channel
OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known
to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional
structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport.
Our calculations show that remarkably high voltages would be necessary to observe the actual
transport of ions against their concentration gradient. The reasons behind this are the mild selectivity
of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of
membrane cells (random telegraph noise and thermal noise).
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1. Introduction

Energy-transduction processes occurring in biosystems display astonishing high efficiencies that
could be partially explained considering the contribution of non-equilibrium fluctuations [1]. Ratchet
mechanisms take advantage of functional anisotropies to bias the response of the system to external
fluctuations and produce a net flux of energy [2]. In the case of nanochannels, asymmetric conduction
has been shown to be a particularly effective ratchet [3–5]. Thus, when the electric voltage across the
membrane fluctuates (due to chemical reactions out of equilibrium or stochastic opening and closing
of membrane channels) [6], a net flow of ions (the so-called stochastic pumping or Brownian pumping)
could appear without the expenditure of metabolic energy due to the current rectification [3,7].

In a recent study, we showed that OmpF porin, a non-specific channel located in the outer
membrane of Escherichia coli (E. coli) [8,9], may perform as a molecular ratchet in conditions designed
to mimic acidic stress on bacteria [7]. Using asymmetrically charged lipid bilayers and realistic pH
gradients we demonstrated that zero-average electric potentials similar to those actually measured in
E. coli [10] may yield electrical pumping of ions against an external concentration gradient. Interestingly,
this uphill transport obtained in the OmpF channel is directional: depending on the orientation of the
concentration gradient, the system can pump either cations or anions from the diluted solution to the
concentrated one [7].

The theoretical study of fluctuation-driven transport in OmpF is complicated by the fact that we
deal with a wide mesoscopic channel allowing the simultaneous transport of water molecules and
salt cations and anions. Furthermore, at extreme pH conditions, protons or hydroxyls also contribute
themselves to the measured current, changing the permeation pathways of salt ions [11]. Accordingly,
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the relative contribution of each ion to the total current (the channel selectivity) cannot be easily
anticipated because of the coupling between electrostatic and diffusional effects arising from the
different diffusivities of ions [11]. Here we address this question using the three-dimensional (3D)
structure of the channel available at the Protein Data Bank (code 2OMF). We calculate the ion fluxes
through the channel using the three-dimensional Poisson–Nernst–Planck (PNP-3D) model and taking
into account the salt ions (K+, Cl−) and also protons and hydroxyls (H+, OH−).

In principle, the transport of ions against their concentration gradient is attained when the
superimposed fluctuating potential is high enough to reverse the direction of the current that is
originated by the concentration gradient itself. However, in non-ideally selective channels such as
OmpF the reversal of the current could be due not only to the uphill transport of counterions but
also to the downhill transport of coions [7,12]. By means of the PNP-3D formalism, we evaluate the
individual current carried by each ion under different zero-mean oscillating voltages and discuss the
conditions requested to obtain the actual transport of ions against their concentration gradient. We
underscore the idea that due to the multiionic character of the channel, the actual uphill transport
requires considerably larger potentials than those needed to just reverse the direction of the current.

2. Materials and Methods

2.1. Theoretical Calculations

The so-called Poisson–Nernst–Planck equations (PNP) are mean-field phenomenological
equations that describe ion transport through ionic channels [13–15]. The Poisson equation relates
the position-dependent electric charge density to the electrostatic potential of the system, while the
contribution from the ions in solution is estimated using the equilibrium Boltzmann equation. Finally,
the non-equilibrium ionic fluxes are calculated using the Nernst-Planck equations. The channel fixed
charge is obtained by using the University of Houston Brownian Dynamics (UHBD) code [16,17] to
calculate the apparent pKa of the channel residues at the particular pH configuration of our study,
using the three-dimensional structure of the OmpF channel (Protein Data Bank code: 2OMF) as
obtained from X-ray analysis [18]. A more detailed description of the method employed can be found
in [11], including the implementation of H+ and OH− ions into the system. The numerical solution
of the system equations has been obtained using FiPy [19], a solver of partial differential equations
written in Python [20], as described in detail elsewhere [11]. The existence of a charged membrane
was simulated adding a small charged region, 5 Å wide, at one of the channel sides, over the ion
inaccessible membrane region. The charge was adjusted to mimic a surface charge of about 1 negative
elementary charge every 44.2 Å2 (approximately the area per lipid for dipalmitoyl phosphatidylcholine
(DPPS) lipid [21]).

2.2. Experimental Methods

Wild-type OmpF, kindly provided by Dr. S. M. Bezrukov (NICHD, NIH, Bethesda, MD, USA),
was isolated and purified from an E. coli culture. Planar membranes were formed by the apposition
of monolayers across orifices with diameters of 70–100 µm on a 15-µm-thick Teflon partition using
diphytanoyl phosphatidylcholine (DPhPC) or diphytanoyl phosphatidylserine (DPhPS). The orifices
were pre-treated with a 1% solution of hexadecane in pentane. An electric potential was applied using
Ag/AgCl electrodes in 2 M KCl, 1.5% agarose bridges assembled within standard 250 mL pipette
tips. The potential was defined as positive when it was higher on the side of the protein addition
(the cis side of the membrane chamber), whereas the trans side was set to ground. An Axopatch 200B
amplifier (Molecular Devices, Sunnyvale, CA, USA) in the voltage-clamp mode was used to measure
the current and applied potential. The signal was digitalized at 50 kHz sampling frequency after
10 kHz 8-pole in-line Bessel filtering. The chamber and the head stage were isolated from external
noise sources with a double metal screen (Amuneal Manufacturing Corp., Philadelphia, PA, USA).
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The pH was adjusted by adding HCl or KOH and controlled during the experiments with a GLP22 pH
meter (Crison, Barcelona, Spain). Measurements were obtained at T = (23 ± 1.5) ◦C.

3. Results and Discussion

3.1. The Importance of Membrane Charge Asymmetry

The mechanisms by which E. coli can survive inside the stomach under considerable acidic
stress (pH 2~3) are still under debate [22–26]. In particular, the role of the outer membrane and
its constituents remains mostly unexplored. The existing literature focuses on how proton influx is
reduced by changes in membrane fluidity [10], albeit the possible changes in the membrane charge are
not examined in detail. Recent experimental studies mentioned before highlight the crucial role of lipid
charges on OmpF channel conductance [7], providing the current rectification required for the ratchet
mechanism. We tackle this issue by considering that because of the acidic stress, the outer membrane
could become asymmetrically charged. We represent this situation by using negatively charged lipids
in the inner side kept at neutral pH and neutral lipids in the outer monolayer facing an acidic solution
(representing the titration of the lipid polar heads at low pH [27]). Although this is a convenient
minimal model to explore the role of electrostatic interactions, we are aware that this is a major
simplification. In fact, the outer membrane of E. coli is a heterogeneous mixture of lipopolysaccharides
(LPS) and phospholipids [28] that differs significantly from plasma membranes [29]. The outer leaflet
is almost exclusively comprised of LPS, which are a very effective barrier for the spontaneous diffusion
of lipophilic compounds due to the low fluidity of the LPS hydrocarbon domain and the strong lateral
interactions between LPS molecules [28]. The inner leaflet is a mixture of cardiolipin and phospholipids
(PG and PE) so that charged lipids are in a similar proportion to that found in endoplasmatic reticulum
membranes [28,29].

Figure 1 shows that asymmetric conduction can be achieved in symmetrical neutral membranes
(PC||PC, Figure 1a) and asymmetrically charged membranes (PC||PS, Figure 1b) when there is a
realistic pH gradient across the channel. The PNP-3D model calculations show a good agreement
not only with the experimental recordings shown in the inset of each figure but also with previous
experimental studies [12,30]. In neutral membranes (Figure 1a), both the total current and the current
carried by the prevailing counterions (Cl− ions in this case) are asymmetric. Figure 1b shows the
importance of membrane charges. In asymmetrical membranes, the current rectification is slightly
higher, but the major change is that now the current is dominated by cations, in contrast to the results
shown in Figure 1a. This change in the channel selectivity can be crucial for the acid resistance
mechanisms of the bacteria, requiring a precise control of positively charged protons [10].
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Figure 1. (a) Calculated current-voltage (I-V) curve of OmpF channel in the 3||7 configuration for
symmetrical neutral membranes PC||PC; (b) Calculated current-voltage (I-V) curve of OmpF channel
in the pH 3||7 configuration for asymmetrical membranes PC||PS. KCl concentration is 25||25 mM.
The insets show a representative experimental I-V curve of OmpF single channel at the same conditions
as that of the main figure.
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The calculations provide new insights about the structural origin of current rectification. Figure 2a
compares the electrostatic potential across the OmpF channel for uncharged (left) and asymmetrically
charged membrane (right). When the membrane is neutral, the titration of acidic residues in the
channel mouth facing the acidic solution creates an inhomogeneous charge distribution yielding an
overall positive potential, that is, the channel is anion-selective as shown in Figure 1a. Contrariwise,
when negative charges are placed in the membrane facing the neutral solution, the balance changes
and now the electrostatic potential in the system is more negative, meaning that the channel prefers
positive ions as depicted in Figure 1b. Of note, the membrane charge not only regulates the electrostatic
potential in the corresponding channel mouth, but it affects the whole system. From the PNP system of
equations we also obtained three-dimensional diagrams displaying the trajectories of ions through the
channel. Figure 2b displays an example of this complete 3D view for a monomer, at the same conditions
as in Figure 1b (KCl 25||25 mM, neutral||negative membrane, pH 3||7) and no applied voltage.
Remarkably, protons flow down the pH gradient, inducing the flow of salt ions (Cl− and H+ from left
to right and K+ from right to left) in order to fulfill electroneutrality requirements. The importance
of membrane charges is graphically demonstrated by the way in which the cation streamlines bend
at the pore exit trying to approach to the negatively charged lipid heads. Figure 2b demonstrates as
well that K+ and Cl− ions follow well-separated screw-like trajectories when crossing the channel [31],
a characteristic mechanism of some bacterial porins that is not lost despite the large pH gradients
used in our study [11]. This peculiarity is also suggested in the electrostatic maps around the central
constriction of the channel in Figure 2a.
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Figure 2. (a) Electrostatic potential in kT/e units across OmpF for an uncharged membrane (PC||PC,
left) and an asymmetrically charged membrane (PC||PS, right); (b) 3D ion current paths along the
OmpF channel (in grey) for an asymmetrically charged membrane (PC||PS). Ions are represented as
streamlines to show the paths followed on average by each ion, not taking into account the flux values.
Figures were obtained from PNP-3D calculations and represented using Mayavi, a Python-based
program for 3D representation. The conditions used were KCl 25||25 mM, pH 3||7, and no applied
electrostatic potential through the system.

3.2. Structural Basis of Ion Pumping

The distinctive feature of large β-barrel channels such as OmpF with respect to Na-channels,
K channels or Cl channels is that they do not transport a unique chemical species, but allow the
simultaneous transport of all of them present in the solution [32]. Hence, when a salt concentration
gradient is imposed, both anions and cations flow from the concentrated to the diluted side of the
membrane but contribute differently to the overall current as imposed by the channel selectivity.
Figure 3a shows structure-based calculations of the I-V curve considering a salt gradient ccis > ctrans

and the asymmetrically charged membrane. We can observe that the channel is selective to cations,
in excellent agreement with the electrophysiological recordings, which are shown in the inset of the
figure [7]. Notably, the existence of a concentration gradient restrains the ability of the channel to
rectify the current, but the I-V curve still displays a significant asymmetry for the total and K+ current.
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Figure 3b shows the concentration profile of K+ and Cl− ions in the pH and concentration
conditions of Figure 3a, but at two different polarities: +200 and −200 mV. Positive voltages promote
the downhill transport of K+ while hindering the transport of Cl− ions that could hardly reach the
diluted side. In contrast, negative voltages permit the downhill transport of Cl−, but at the same time
provide a dominant current of K+ that does not differ much from that found at positive voltages.
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concentration ratio r = 10 (KCl 250||25 mM) and asymmetrical membranes PC||PS. The inset shows
an experimental I-V curve at the same conditions as in the main figure; (b) Concentration profiles for
potassium and chloride ions across the OmpF channel (in gray) under an applied potential of +200 mV
and −200 mV, as indicated. The conditions used for the calculations are the same as in (a).

To evaluate if the asymmetry observed in Figure 3 may lead to an actual pumping of counterions
(cations in this case), we used different types of zero-mean fluctuation potentials. The oscillating voltage
signals that appear in living cells may come from dissipative processes yielding thermal noise [2]
but could also have other origins, such as the stochastic opening and closing of membrane channels
in the membrane or the occurrence of non-equilibrium chemical reactions. Typically, these later
signals are simulated using random telegraph noise (RTN) with different voltage distributions [33,34].
In particular, we used voltages fluctuating between two extreme values and also following a Gaussian
and a random distribution. Figure 4 (left panel) shows these input signals and the outputs obtained,
based on the I-V curve of Figure 3a.

Numerically solving the PNP system of equations allows us to obtain separately the current
output of each ion, as shown in the left panels of Figure 4. In all cases, we consider that the output
signal is the slave of the input one, as shown in the corresponding experimental situations [7]. As could
be expected from the cationic selectivity displayed in Figure 3, the total current and the current
carried by cations are pretty similar, although Itotal is always larger at negative values thanks to the
contribution of anions. This is clearly seen in the right panel of Figure 4, where the voltage and current
distributions are displayed. The distributions of current are biased, reflecting the asymmetry of the
output signals, which may imply an eventual pumping of cations.

The qualitative message of Figure 4 is appealing but a quantitative analysis is desirable. A more
convenient way of probing the pumping of ions is calculating the average currents for both the total
current and the current carried by each ion, as shown in Figure 5 for each signal.

The average total current turns from positive at low potentials to negative at high potentials,
for all signals displayed. As mentioned before, this means that the superimposed fluctuating potential
is high enough to outweigh the current originated by the concentration gradient. However, due to
the multiionic character of the channel, one may wonder whether the change in the average current is
enough to assure the electrical pumping of ions [12]. In the case of Cl− ions, their average current is
always negative, which indicates that these ions always flow downhill (i.e., from the concentrated to the
diluted solution) regardless the magnitude of the applied voltage. However, the behavior of K+ ions is
completely different: they display a positive average current (<IK> > 0) at low potentials that turns into
a negative current when the applied voltage is high enough. That is, they present an uphill transport
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at sufficiently high potentials. Interestingly, the voltage at which <IK> < 0 depends on the type of
signal, indicating that some signals are more efficient than others. Among those analyzed here, the
most efficient is that operating at constant V. This could be the signal found when voltage oscillations
come from the flickering of a unique type of membrane pore operating between well-defined current
states [6]. For these conditions, the actual pumping would occur at moderate voltage values around
100−150 mV. Such a voltage configuration may not be the most probable one, having in mind that in
the cell membrane there is actually a wide variety of diverse membrane channels that furthermore
usually display several subconductance states [9]. Voltage configurations depicting more realistic
fluctuations (Gaussian or randomly distributed ones) require considerably higher voltages to obtain
<IK> < 0. A potential larger than 250 mV seems unlikely to appear in the bacterial membrane (voltage
fluctuations are typically between −100 mV and +100 mV [10]), but we do not aim to establish a
quantitative connection between the situation in vivo and the mechanism depicted here. We are aware
that in vitro experiments and in silico calculations shown here provide only a qualitative picture that,
although appealing, could differ from the actual one. On the other side, the conclusions of Figure 5
are not limited to RTN, but they can be extended to white noise or thermal noise. For the sake of
simplicity, here we use a triangular-shaped signal (see Figure 6) which gives essentially the same
average as any random signal. Again, the distributed voltage means a lower efficiency of the pumping
mechanism so that voltages around 300 mV are required to obtain a transport of K+ against their
concentration gradient.
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In summary, our calculations show that the voltage requested to obtain the uphill transport
of counterions is significantly increased by the poor selectivity of the pore allowing the downhill
transport of coions. Furthermore, the oscillating signals characteristic of membrane cells (RTN and
thermal noise) display relatively low efficiencies so that remarkably high voltages, at the limit of what
could be realistic, would be necessary to observe actual electrical pumping of ions from the diluted
side to a more concentrated one. Our analysis is limited to certain types of signals but there could be
other processes contributing to the channel dynamics that facilitate the pumping process. It has been
shown that the permeation of ions could be enhanced by transient fluctuations in the channel shape.
Such so-called “breathing” motions may play a key role in channel gating as voltage sensors [35–37].
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33. Fuliński, A.; Grzywna, Z.; Mellor, I.; Siwy, Z.; Usherwood, P. Non-Markovian character of ionic current
fluctuations in membrane channels. Phys. Rev. E 1998, 58, 919–924. [CrossRef]

34. Xie, T.D.; Marszalek, P.; Chen, Y.D.; Tsong, T.Y. Recognition and processing of randomly fluctuating electric
signals by Na,K-ATPase. Biophys. J. 1994, 67, 1247–1251. [CrossRef]

35. Danelon, C.; Nestorovich, E.M.; Winterhalter, M.; Ceccarelli, M.; Bezrukov, S.M. Interaction of zwitterionic
penicillins with the OmpF channel facilitates their translocation. Biophys. J. 2006, 90, 1617–1627. [CrossRef]
[PubMed]

36. Rui, H.; Il Lee, K.; Pastor, R.W.; Im, W. Molecular dynamics studies of ion permeation in VDAC. Biophys. J.
2011, 100, 602–610. [CrossRef] [PubMed]

37. Shrivastava, I.H.; Sansom, M.S. Simulations of ion permeation through a potassium channel: Molecular
dynamics of KcsA in a phospholipid bilayer. Biophys. J. 2000, 78, 557–570. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1099/00221287-143-4-1175
http://www.ncbi.nlm.nih.gov/pubmed/9141680
http://www.ncbi.nlm.nih.gov/pubmed/10388702
http://dx.doi.org/10.1016/0301-4622(76)80013-0
http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003
http://www.ncbi.nlm.nih.gov/pubmed/2580220
http://dx.doi.org/10.1038/nrm2330
http://www.ncbi.nlm.nih.gov/pubmed/18216768
http://dx.doi.org/10.1021/jp063204w
http://www.ncbi.nlm.nih.gov/pubmed/17048946
http://dx.doi.org/10.1016/S0022-2836(02)00380-7
http://dx.doi.org/10.1039/C0IB00048E
http://www.ncbi.nlm.nih.gov/pubmed/21132209
http://dx.doi.org/10.1103/PhysRevE.58.919
http://dx.doi.org/10.1016/S0006-3495(94)80594-6
http://dx.doi.org/10.1529/biophysj.105.075192
http://www.ncbi.nlm.nih.gov/pubmed/16339889
http://dx.doi.org/10.1016/j.bpj.2010.12.3711
http://www.ncbi.nlm.nih.gov/pubmed/21281574
http://dx.doi.org/10.1016/S0006-3495(00)76616-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Theoretical Calculations 
	Experimental Methods 

	Results and Discussion 
	The Importance of Membrane Charge Asymmetry 
	Structural Basis of Ion Pumping 


