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Abstract: Generalized signcryption (GSC) can adaptively work as an encryption scheme, a signature
scheme or a signcryption scheme with only one algorithm. It is more suitable for the storage
constrained setting. In this paper, motivated by Paterson–Schuldt’s scheme, based on bilinear pairing,
we first proposed an identity based generalized signcryption (IDGSC) scheme in the standard model.
To the best of our knowledge, it is the first scheme that is proven secure in the standard model.
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1. Introduction

Confidentiality, integrity, non-repudiation and authentication are the important requirements for
many cryptographic applications. A traditional approach to achieve these requirements simultaneously
is to sign-then-encrypt or encrypt-then-sign. To enhance efficiency, Zheng [1] proposed the concept
of signcryption in 1997. The main idea of this primitive is to perform signature and encryption
simultaneously in a logical step. Compared with traditional methods [2], signcryption reduces the
computational costs and communication overheads. Since then, many public key signcryption schemes
have been proposed [3–5].

In 1984, Shamir [6] first proposed the idea of identity-based (ID-based) public key cryptography
(ID-PKC) to simplify key management procedures of traditional certificate-based public key cryptography.
The main idea of ID-PKC is that the user’s public key can be calculated directly from his/her identity
such as email addresses rather than being extracted from a certificate issued by a certificate authority
(CA). Private keys are generated for the users by a trusted third party, called a Private Key Generator
(PKG) using some master key related to the global parameters for the system. The direct derivation
of public keys in ID-PKC eliminates the need for certificates and some of the problems associated
with them. The first identity based signature scheme was given by Shamir [6], but the first identity
based encryption scheme was presented by Boneh and Fanklin [7] in 2001. The first identity based
signcryption scheme was proposed by Malone Lee [8] in 2002, and they also gave the security model
for signcryption in identity based settings. Since then, many identity based signcryption schemes have
been proposed [9–17].

The signcryption scheme was used in these application environments, which need simultaneous
confidentiality and authenticity. However, it is not all application environments requiring both
confidentiality and authenticity. If only one of the two functionalities is required, then the
signcryption scheme is not efficient. To achieve this, we can use an encryption/signature scheme.
However, in the low bandwidth environment, we have to afford to use three different cryptographic
algorithms—encryption, signature and signcryption—to achieve confidentiality and authenticity
separately or simultaneously. In 2006, to decrease implementation complexity, Han et al. [18] proposed
the concept of generalized signcryption, which can work as an encryption scheme or a signature
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scheme or a signcryption scheme as required. They also proposed a concert construction based on the
Elliptic Curve Digital Signature Algorithm (ECDSA) . Wang et al. [19] gave the security model of a
generalized signcryption scheme and modified the scheme proposed in [18]. In 2008, Lal et al. [20]
presented the first identity based generalized signcryption (IDGSC) scheme. However, Yu et al. [21]
showed that the security model in [20] is not complete. They modified the security model and gave a
new scheme that is secure in this model. In 2011, Kushwah et al. [22] simplified the security model for
IDGSC and proposed an efficient scheme.

Provable security is the basic requirement for ID-based generalized signcryption schemes.
The security of all of the schemes [20–22] described above was only proven secure in the random oracle
model. The random oracle model was introduced by Bellare and Rogaway in [23]. The model is a
formal model in analyzing cryptographic schemes, where a hash function is considered as a black box
that contains a random function. Although the model is efficient and useful, it has received a lot of
criticism that the proofs in the random oracle model are not proven. Canetti et al. [24] have shown that
security in the random oracle model does not imply security in the real world, in that a scheme can be
secure in the random oracle model and yet be broken without violating any particular intractability
assumption, and without breaking the underlying hash functions.

Therefore, to design a provable secure ID-based generalized signcryption scheme in the standard
model (without random oracles) remains an open and interesting research problem.

In this paper, we first proposed an ID-based generalized signcryption scheme in the standard
model. Using the Paterson–Schuldt scheme [25], we give a concrete scheme. We also prove its semantic
security under the hardness of the Decisional Bilinear Diffie–Hellman problem and its unforgeability
under the computational Diffie–Hellman assumption.

2. Preliminaries

In this section, we briefly review the basic concepts on bilinear pairings and some related
complexity assumptions.

2.1. Bilinear Pairings

Let G1 and G2 be two multiplicative cyclic groups of prime order q and let g be a generator of G1.
The map e : G1 ×G1 → G2 is said to be an admissible bilinear pairing with the following properties:

• Bilinearity: For all u, v ∈ G1, and a, b ∈ Zq, e(ua, vb) = e(u, v)ab.
• Non-degeneracy: e(g, g) 6= 1.
• Computability: There exists an efficient algorithm to compute e(u, v) for all u, v ∈ G1.

We note that the modified Weil and Tate pairings associated with supersingular elliptic curves are
examples of such admissible pairings.

2.2. Complexity Assumptions

2.2.1. Decisional Bilinear Diffie–Hellman (DBDH) Problem

Given g, ga, gb, gc ∈ G1, for unknown a, b, c ∈ Z∗q and Z ∈ G2, decide whether Z = e(g, g)abc.
Defining the advantage ε of a polynomial algorithm A against the DBDH problem is

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, Z) = 1]| ≥ ε,

where the probability is over the randomly chosen a, b, c and the random bits consumed by A.

Definition 1. The (t, ε) DBDH assumption holds if no t-time adversary has at least ε advantage in solving the
DBDH problem.



Entropy 2017, 19, 121 3 of 15

2.2.2. Computational Diffie–Hellman (CDH) Problem

Given g, ga, gb ∈ G1, for unknown a, b ∈ Z∗q , compute gab.
The success probability δ of a polynomial algorithm A in solving the CDH problem is denoted as

SuccCDH
A = Pr[A(g, ga, gb) = gab, ] ≥ δ

where the probability is over the randomly chosen a, b and the random bits consumed by A.

Definition 2. The (t, δ) CDH assumption holds if no t-time adversary has at least δ in solving the
CDH problem.

3. Formal Model of Identity-Based Generalized Signcryption Schemes

3.1. Generic Scheme

An identity based generalized signcryption scheme consists of the following four algorithms:

• Setup: Given a security parameter k, the private key generator (PKG) generates system parameters
params and a master key s. params is made public while s is kept secret.

• Extract: Given an identity ID, the PKG computes the corresponding private key dID and transmits
it to the ID via a secure channel.

• Generalized Signcrypt: Given the sender’s identity IDA and private key dA, the receiver’s identity
IDB and a message m, the sender outputs the ciphertext σ.

• Generalized Unsigncrypt: Given the sender’s identity IDA, the receiver’s identity IDB and private
key dB and the ciphertext σ, the receiver with identity IDB outputs m or the symbol ⊥ if σ is an
invalid ciphertext under IDA and IDB.

There is no special sender (or receiver) when we encrypt (or sign) a message using IDGSC.
We denote the absence of sender (or receiver) by IDΦ. If IDB = IDΦ, the IDGSC scheme becomes
a signature scheme and output of the IDGSC is a signature of sender IDA on the message m.
If IDA = IDΦ, the IDGSC scheme becomes an encryption scheme and output of the IDGSC is merely
an encryption of message m for receiver IDB. If IDA 6= IDΦ and IDB 6= IDΦ, then IDGSC works as
the signcryption scheme and output of IDGSC is the signcryption of message m for sender IDA and
receiver IDB. Thus, the IDGSC scheme works in three models via signcryption mode, encryption
mode and signature mode.

3.2. Security Model

According to Yu et al.’s scheme [21], the abilities of an adversary are formally modeled by queries
issued by adversities. Each adversary may issue the following queries:

• Private-Key-Extract: The adversary submits an identity, and the challenger responds with the
private key of that identity.
• Sign: The adversary submits a sender’s identity and a message, and the challenger responds

with the signature of the signer on the message.
• Verify: The adversary submits a signer’s identity and a message/signature pair, and the challenger

responds with 1 if the signature is accepted and 0 otherwise.
• Encrypt: The adversary submits a receiver’s identity and a message, and the challenger responds

with the ciphertext on this message for the receiver.
• Decrypt: The adversary submits a receiver’s identity and a ciphertext, and the challenger decrypts

the ciphertext under the private key of the receiver and returns the corresponding plaintext.
• Signcrypt: The adversary submits a sender’s and receiver’s identities and a message, and the

challenger responds with the ciphertext under the sender’s private key and the receiver’s
public key.
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• Unsigncrypt: The adversary submits a ciphertext and a receiver’s identity, and the challenger
decrypts the ciphertext under the private key of the receiver and verifies that the resulting
decryption is a valid message/signature pair under the public key of the decrypted identity.
Then, the challenger returns the message.

The identity based generalized signcryption can work in three modes: encryption mode, signature
mode and signcryption mode, denoted IDGSC-EN, IDGSC-SG and IDGSC-SC, respectively.

For the confidentiality, we define the following two games (Game 1 and Game 2) under IDGSC-EN
and IDGSC-SC, respectively.

Game 1. Indistinguishability (IND)-(IDGSC-EN)-CCA2 Secure

Consider the following game played between a challenger C and an adversary A.

• Initial: The challenger C takes security parameters k and runs the Setup algorithm to generate
system parameters params and the master key s. C sends params to A and keeps s secret.

• Phase 1: The adversary A can perform a polynomially bounded number of seven above types of
queries. These queries may be made adaptively, i.e., each query may depend on the answers to
the previous queries.

• Challenge: The adversary A decides when Phase 1 ends, and chooses two equal length plaintexts
m0, m1 and two identities IDA = IDΦ, IDB 6= IDΦ on which to be challenged. The identity IDB
should not appear in any private key extract queries in Phase 1. C chooses randomly a bit b,
encrypts mb and then sends the ciphertext σ to A.

• Phase 2: The adversary Amakes a polynomial number of queries adaptively again as in Phase 1
with the restriction that it cannot make private key extract queries on IDB and cannot make an
unsigncrypt query on σ.

• Guess: The adversary A produces a bit b′ and wins the game if b′ = b.

The advantage ofA is defined as AdvIND−CCA2
IDGSC−EN(A) = |2 Pr[b′ = b]− 1|, where Pr[b′ = b] denotes

the probability that b′ = b.

Definition 3 (Confidentiality-IDGSC-EN). An IDGSC scheme is said to have the indistinguishability against
chosen adaptive ciphertext attacks (IND-(IDGSC-EN)-CCA2) or semantic security if no polynomially bounded
adversary has a non-negligible advantage in Game 1.

Game 2. IND-(IDGSC-SC)-CCA2 Secure

Consider the following game played between a challenger C and an adversary A.

• Initial: The challenger C takes security parameters k and runs the Setup algorithm to generate
system parameters params and the master key s. C sends params to A and keeps s secret.

• Phase 1: The adversary A can perform a polynomially bounded number of the seven types
of queries above. These queries may be made adaptively, i.e., each query may depend on the
answers to the previous queries.

• Challenge: The adversary A decides when phase 1 ends, chooses two equal length plaintexts m0,
m1 and two identities IDA 6= IDΦ, IDB 6= IDΦ on which to be challenged. The identity IDB
should not appear in any private key extract queries in Phase 1. C chooses randomly a bit b,
encrypts mb and then sends the ciphertext σ to A.

• Phase 2: The adversary Amakes a polynomial number of queries adaptively again as in Phase 1
with the restriction that it cannot make private key extract queries on IDB and cannot make an
unsigncrypt query on σ.

• Guess: The adversary A produces a bit b′ and wins the game if b′ = b.

The advantage ofA is defined as AdvIND−CCA2
IDGSC−SC (A) = |2 Pr[b′ = b]− 1|, where Pr[b′ = b] denotes

the probability that b′ = b.
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Definition 4 (Confidentiality-IDGSC-SC). An IDGSC scheme is said to have the indistinguishability against
adaptive chosen ciphertext attacks (IND-(IDGSC-SC)-CCA2) or semantic security if no polynomially bounded
adversary has a non-negligible advantage in Game 2.

For the unforgeability, we define the following two games (Game 3 and Game 4) under IDGSC-SG
and IDGSC-SC, respectively.

Game 3. EF-(IBGSC-SG)-Adaptive Chosen Message Attack (ACMA) Secure

Consider the following game played between a challenger C and an adversary A.

• Initial: The challenger C runs the Setup algorithm with a security parameter k and obtains system
parameters params and the master secret key s. C sends params to A.
• Queries: The adversary A performs a polynomially bounded number of queries adaptively just

like in Game 1.
• Forgery: Finally, the adversary A produces two identities IDA 6= IDΦ, IDB = IDΦ and a

ciphertext (signature) σ. The adversary wins the game if IDA 6= IDΦ; σ was a valid ciphertext
(signature) on m, IDA; no private key extract query was made on IDA; σ did not result from
signature query on m, IDA.

The advantage of A is defined as AdvEF−ACMA
IDGSC−SG(A) = Pr[Awins].

Definition 5 (Unforgeability-IDGSC-SG). An IDGSC scheme is said to have the existential unforgeability
against chosen adaptive message attacks (EF-(IDGSC-SG)-ACMA) if no polynomially bounded adversary has a
non-negligible advantage in Game 3.

Game 4. EF-(IDGSC-SC)-ACMA Secure

Consider the following game played between a challenger C and an adversary A.

• Initial: The challenger C runs the Setup algorithm with a security parameter k and obtains system
parameters params and the master secret key s. C sends params to A.
• Queries: The adversary A performs a polynomially bounded number of queries adaptively just

like in Game 1.
• Forgery: Finally, the adversary A produces a new tuple (σ, IDA, IDB). Let m be the result

of unsigncryption σ under the private key of IDB. The adversary wins the game if IDA 6=
IDΦ, IDB 6= IDΦ; no private key extract query was made on IDA; σ is a valid signature under
m, IDA; (σ, IDA, IDB) was not output by a signcrypt query.

The advantage of A is defined as AdvEF−ACMA
IDGSC−SC(A) = Pr[Awins].

Definition 6 (Unforgeability-IDGSC-SC). An IDGSC scheme is said to have the existential unforgeability
against chosen adaptive message attacks (EF-(IDGSC-SC)-ACMA) if no polynomially bounded adversary has a
non-negligible advantage in Game 4.

4. The Proposed Scheme

Our IDGSC scheme is described as the following algorithms.

• Setup: Given a security parameter k, the PKG chooses groups G1 and G2 of prime order q,
a generator g of G1, a admissible bilinear pairing e : G1 × G1 → G2, and hash functions
H : {0, 1}∗ → {0, 1}l and Hm : {0, 1}∗ → {0, 1}nm . The PKG chooses a random value
α ∈ Z∗q , computes g1 = gα and selects g2 ∈ G1. Furthermore, the PKG computes
z = e(g1, g2) and picks u′, m′ ∈ G1 and vectors u = {ui}, m = {mi} of length nu and
nm, respectively, whose entries are random elements from G1. The system parameters are
params = {G1, G2, e, p, g, g1, g2, H, Hm, z, u′, m′, u, m} and the master secret key gα

2 .
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Let f (ID) be a special function, where ID ∈ {0, 1}nu . If identity is vacant, that is ID = IDΦ,
f (ID) = 0, otherwise f (ID) = 1.

• Extract: Let ID be a bit string of length nu, representing an identity and let ID[i] be the i-th bit of
ID. Define UID ⊂ {1, 2, · · ·, nu} to be the set of indices i such that ID[i] = 1. A private key dID
for identity ID is generated as follows. The PKG picks rID ∈ Z∗q and computes

dID = (dID1, dID2) =

(
gα

2(u
′ ∏

i∈UID

ui)
rID , grID

)
.

Therefore, the sender with identity IDA and the receiver with identity IDB private keys are

dA = (dA1, dA2) =

(
gα

2(u
′ ∏

i∈UA

ui)
rA , grA

)
,

dB = (dB1, dB2) =

(
gα

2(u
′ ∏

i∈UB

ui)
rB , grB

)
.

• Generalized Signcrypt: Suppose the sender A with identity IDA wants to send a message
m ∈ {0, 1}l to the receiver B with identity IDB, A picks randomly r ∈ Z∗q and does the following:

1. Compute σ1 = gr.
2. Compute w = zr f (IDB).
3. Compute c = m⊕ H(w).
4. Compute σ2 = (dA2)

f (IDA).
5. Compute σ3 = (u′ ∏

i∈UB

ui)
r f (IDB).

6. Compute π = Hm(m, σ1, σ2, σ3, w). Here π is an nm bit string and π[j] denotes the j-th bit of
π, and M ⊂ {1, 2, · · ·, nm} denotes the set of j for which π[j] = 1.

7. Compute σ4 = (dA1)
f (IDA) · σ3 · (m′ ∏

j∈M
mj)

r.

The ciphertext is σ = (σ1, σ2, σ3, σ4, c).
• Generalized Unsigncrypt: When receiving σ, the receiver with identity IDB follows the steps below:

1. Compute f (IDB).
2. Compute w = e(dB1, σ

f (IDB)
1 ) · e(dB2, σ3)

−1.
3. Compute m = c⊕ H(w).
4. Compute π = Hm(m, σ1, σ2, σ3, w) and generate the corresponding set M, the set of all j for

which π[j] = 1.
5. Accepted the message if and only if the following equality holds:

e(σ4, g) = e(g2, g1)
f (IDA)e(u′ ∏

i∈UA

ui, σ2)e(u′ ∏
i∈UB

ui, σ1)
f (IDB)e(m′ ∏

j∈M
mj, σ1).

Remark 1. Our Setup, Extract algorithm in our scheme is from the existing work, i.e., Paterson–Schuldt’s
scheme [25]. However, our Setup algorithm has some differences from [25], and we added some parameters: H
and Hm. Other algorithms such as Generalized Signcrypt and Generalized Unsigncrypt are new designs.

5. Analysis

5.1. Correctness

e
(

dB1,σ
f (IDB)
1

)
e(dB2,σ3)

=

e

(
gα

2 (u
′ ∏

i∈UB
ui)

rB ,gr f (IDB)

)

e

(
grB ,(u′ ∏

i∈UB
ui)

r f (IDB)

) =

e(gα
2 ,gr f (IDB))e

(
(u′ ∏

i∈UB
ui)

rB ,gr f (IDB)

)

e

(
grB ,(u′ ∏

i∈UB
ui)

r f (IDB)

) = e(g1, g2)
r f (IDB)
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e(σ4, g) = e((gα f (IDA)
2 · (u′ ∏

i∈UA

ui)
rA f (IDA) · (u′ ∏

i∈UB

ui)
r f (IDB) · (m′ ∏

j∈M
mj)

r, g))

= e(gα f (IDA)
2 , g)e((u′ ∏

i∈UA

ui)
rA f (IDA), g))e(((u′ ∏

i∈UB

ui)
r f (IDB), g))e(((m′ ∏

j∈M
mj)

r, g))

= e(g2, g1)
f (IDA)e(u′ ∏

i∈UA

ui, grA f (IDA))e(u′ ∏
i∈UB

ui, gr f (IDB))e(m′ ∏
j∈M

mj, gr)

= e(g2, g1)
f (IDA)e(u′ ∏

i∈UA

ui, σ2)e(u′ ∏
i∈UB

ui, σ1)
f (IDB)e(m′ ∏

j∈M
mj, σ1).

There are three cases to be considered.

Case 1. In the IDGSC-SC Model

In this case, there is IDA 6= IDΦ, IDB 6= IDΦ, so f (IDA) = f (IDB) = 1. The generalized
signcryption scheme in signcryption model is as follows:

• Signcrypt:

1. Compute σ1 = gr.
2. Compute w = zr.
3. Compute c = m⊕ H(w).
4. Compute σ2 = dA2.
5. Compute σ3 = (u′ ∏

i∈UB

ui)
r.

6. Compute π = Hm(m, σ1, σ2, σ3, w). Here π is an nm bit string and π[j] denotes the j-th bit of
π, and M ⊂ {1, 2, · · ·, nm} denotes the set of j for which π[j] = 1.

7. Compute σ4 = dA1 · σ3 · (m′ ∏
j∈M

mj)
r.

The ciphertext is σ = (σ1, σ2, σ3, σ4, c).
• Unsigncrypt:

1. Compute w = e(dB1, σ1) · e(dB2, σ3)
−1.

2. Compute m = c⊕ H(w).
3. Compute π = Hm(m, σ1, σ2, σ3, w) and generate the corresponding set M, the set of all j for

which π[j] = 1.
4. Accepted the message if and only if the following equality holds:

e(σ4, g) = e(g2, g1)e(u′ ∏
i∈UA

ui, σ2)e(u′ ∏
i∈UB

ui, σ1)e(m′ ∏
j∈M

mj, σ1).

Case 2. In the IDGSC-SG Model

In this case, there is IDA 6= IDΦ, IDB = IDΦ, so f (IDA) = 1, f (IDB) = 0. The generalized
signcryption scheme in the signature model is as follows:

• Sign:

1. Compute σ1 = gr.
2. Compute w = zr f (IDB) = 1.
3. Compute c = m⊕ H(w).
4. Compute σ2 = (dA2)

f (IDA) = dA2.
5. Compute σ3 = (u′ ∏

i∈UB

ui)
r f (IDB) = 1.

6. Compute π = Hm(m, σ1, σ2, σ3, w). Here π is an nm bit string and π[j] denotes the j-th bit of
π , and M ⊂ {1, 2, · · ·, nm} denotes the set of j for which π[j] = 1.

7. Compute σ4 = dA1 · σ3 · (m′ ∏
j∈M

mj)
r.

The signature is σ = (σ1, σ2, σ3, σ4, c⊕ H(w)) = (σ1, σ2, σ3, σ4, m).
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• Verify:

1. Compute π = Hm(m, σ1, σ2, σ3, w) and generate the corresponding set M, the set of all j for
which π[j] = 1.

2. Accepted the signature if and only if the following equality holds:

e(σ4, g) = e(g2, g1)e(u′ ∏
i∈UA

ui, σ2)e(u′ ∏
i∈UB

ui, σ1)e(m′ ∏
j∈M

mj, σ1).

Case 3. In the IDGSC-EN Model

In this case, there is IDA = IDΦ, IDB 6= IDΦ, so f (IDA) = 0, f (IDB) = 1. The generalized
signcryption scheme in the encryption model as follows:

• Encrypt:

1. Compute σ1 = gr.
2. Compute w = zr f (IDB) = zr.
3. Compute c = m⊕ H(w).
4. Compute σ2 = (dA2)

f (IDA) = 1.
5. Compute σ3 = (u′ ∏

i∈UB

ui)
r f (IDB) = (u′ ∏

i∈UB

ui)
r.

6. Compute π = Hm(m, σ1, σ2, σ3, w). Here π is an nm bit string and π[j] denotes the j-th bit of
π[j], and M ⊂ {1, 2, · · ·, nm} denotes the set of j for which π[j] = 1.

7. Compute σ4 = (dA1)
f (IDA) · σ3 · (m′ ∏

j∈M
mj)

r = (u′ ∏
i∈UB

ui)
r · (m′ ∏

j∈M
mj)

r.

The ciphertext is σ = (σ1, σ2, σ3, σ4, c).
• Decrypt:

1. Compute w = e(dB1, σ1) · e(dB2, σ3)
−1.

2. Compute m = c⊕ H(w).
3. Compute π = Hm(M, σ1, σ2, σ3, w) and generate the corresponding set M, the set of all j for

which π[j] = 1.
4. Accepted the message if and only if the following equality holds:

e(σ4, g) = e(u′ ∏
i∈UB

ui, σ1)e(m′ ∏
j∈M

mj, σ1).

5.2. Security Proof

Theorem 1. (Confidentiality in the IDGSC-EN model) Assume there is an adversary IND (IBGSC-EN) CCA2
A that is able to distinguish two valid ciphertexts during the defined in Game 1 with an advantage ε when
running in a time t, then there exists an algorithm D that can break Waters’ identity based encryption scheme in
a time t′ = t with an advantage ε′ = ε.

Proof. When the IDGSC scheme works as an encryption scheme, it is a actually the identity based
encryption proposed by Waters [26] and one-time signature. Owing to the theorem proposed by
Canetti et al. [27], this scheme is secure against the normal adaptive chosen-ciphertext attack. Considering
the signcrypt/unsigncrypt query, the adversary cannot transform the target encryption ciphertext into
a valid signcryption ciphertext. This conclusion is based on the EF-ACMA security of PS. So IDGSC
scheme in encryption model is IND-CCA2 secure. Thus, the theorem follows.

Theorem 2. (Confidentiality in the IDGSC-SC model). Assume there is an adversary IND (IDGSC-SC) CCA2
A that is able to distinguish two valid ciphertexts during the defined in Game 2 with an advantage ε when running
in a time t and making at most qk private key extract queries, qs sign queries, qv verify queries, qe encrypt queries,
qd decrypt queries, qsc signcrypt queries and qus unsigncrypt queries. Then, there exists a distinguisher that can
solve an instance of the DBDH problem in a time t′ = t + (5qk + 2qs + 4qe + 4qsc)te + (4qd + 7qus + 4qv)tp

with an advantage ε′ = ε
8(qk+qd+qs+qsc+qus)(nu+1)qsc(nm+1) , where te denotes the time of an exponentiation in

G1 and tp denotes the time of a pairing in (G1, G2).
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Proof. Assume that there is a polynomially bounded adversary A that is able to break the semantic
security of our scheme. Then, there exists a distinguisher D that can decide whether Z = e(g, g)abc or
not with a non-negligible advantage when receiving a random instance g, ga, gb, gc, Z. D runs A as the
subroutine and acts as the challenger in Game 2 and interacts with A as described below.

• Initial. D chooses randomly as follows:

1. Two integers 0 6 lu 6 q and 0 6 lm 6 q.
2. Two integers 0 6 ku 6 nu and 0 6 km 6 nm ( lu(nu + 1) < q, lm(nm + 1) < q).
3. An integer x′ ∈ Zlu and nu-dimensional vector (x1, · · ·, xnu) ∈ Zlu .
4. An integer y′ ∈ Zlm and nm-dimensional vector (y1, · · ·, ynm) ∈ Zlm .
5. An integer z′ ∈ Zq and nu-dimensional vector (z1, · · ·, znu) ∈ Zq.
6. An integer ω′ ∈ Zq and nm-dimensional vector (ω1, · · ·, ωnm) ∈ Zq.

To make the notation easy to follow, we define four functions:

F(ID) = x′ + ∑
i∈U

xi − luku, J(ID) = z′ + ∑
i∈U

zi,

K(M) = y′ + ∑
i∈M

yi − lmkm, L(M) = ω′ + ∑
i∈M

ωi.

D sets system parameters as follows:

1. g1 = ga and g2 = gb.
2. u′ = g−luku+x′

2 gz′ and ui = gxi
2 gzi (1 6 i 6 nu), which means that, for any identity ID,

we have u′ ∏
i∈UID

ui = gF(ID)
2 gJ(ID).

3. m′ = g−lmkm+y′
2 gω′ and mi = gyi

2 gωi (1 6 i 6 nm), which means that, for any π, we have

m′ ∏
i∈M

mi = gK(π)
2 gL(π).

Finally, D returns all parameters to A. We can see that all distributions are identical to that in the
real world.

• Phase 1. D answers the queries as follows:

– Private key extract queries: When the adversary A issues a private key extract query on an
identity ID, D acts as follows:

1. If F(ID) = 0 mod lu, D aborts and reports failure.
2. If F(ID) 6= 0 mod lu, D can construct a private key by picking a random rID ∈ Z∗q and

computing:

dID = (dID1, dID2) = (g
− J(ID)

F(ID)

1 (gF(ID)
2 gJ(ID))rID , g

− 1
F(ID)

1 grID ).
– Encrypt queries: At any time, the adversaryA can perform an encrypt query on a plaintext m

for the receiver IDB, and D runs the encrypt algorithm in the encryption model to answer
A’s query.

– Decrypt queries: At any time, the adversary A can perform a decrypt query on a ciphertext σ

for the receiver IDB, and D acts as follows:

1. If F(IDB) = 0 mod lu, D aborts and reports failure.
2. If F(IDB) 6= 0 mod lu, D first obtains the private key for IDB as he does in response

to the private key extract query, and then runs a decrypt algorithm in the encryption
model to answer A’s query.

– Sign queries: At any time, the adversary A can perform a sign query on a message m for the
sender IDA, D acts as follows:

1. If F(IDA) = 0 mod lu, D aborts and reports failure.
2. If F(IDA) 6= 0 mod lu, D first obtains the private key for IDA as he does in response to

the private key extract query, and then runs a sign algorithm in the signature model to
answer A’s query.
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– Verify queries: At any time, the adversary A can perform a verify query on a
message/signature pair (m, σ) for the sender IDA, and D runs a verify algorithm in the
signature model to answer A’s query.

– Signcrypt queries: At any time, the adversary A can perform a signcrypt query on a plaintext
m for the sender identity IDA and the receiver identity IDB, and D acts as follows:

1. If F(IDA) = 0 mod lu, D aborts and reports failure.
2. If F(IDA) 6= 0 mod lu, D first obtains the private key for IDA as he does in response to

the private key extract query, and then runs the signcrypt algorithm in the signcryption
model to answer A’s query.

– Unsigncrypt queries: At any time, the adversary A can perform an unsigncrypt query on a
ciphertext σ for the sender identity IDA and the receiver identity IDB, andD acts as follows:

1. If F(IDB) = 0 mod lu, D aborts and reports failure.
2. If F(IDB) 6= 0 mod lu, D first obtains the private key for IDB as he does in response

to the private key extract query, and then runs the unsigncrypt algorithm in the
signcryption model to answer A’s query.

• Challenge. After a polynomially bounded number of queries, the adversaryA ID∗A, ID∗B on which
he wishes to be challenged. Note that D fails if A has made a private key extract query on ID∗B
during Phase 1. Then,A submits two messages m0, m1 ∈ {0, 1}l and ID∗A, ID∗B toD. D will abort
if F(ID∗B) 6= 0 mod lu. Otherwise, D flips a fair binary coin γ ∈ {0, 1} and constructs ciphertext
mγ as follows.

D randomly chooses a number r∗ ∈ Z∗q and computes

π∗γ = H(mγ, gc, g
− 1

F(ID∗A)

1 gID∗A , (gc)J(ID∗B), mγ ⊕ H(Z)).

M∗γ denoted the set of 1 for which π∗γ[j] = 1. If K(M∗γ) 6= 0 mod q, D aborts. Otherwise, D sets
the ciphertext as:

σ∗ =

gc, g
− 1

F(ID∗A)

1 gID∗A , (gc)J(ID∗B), g
− J(ID∗A)

F(ID∗A)

1 (gF(ID∗A)
2 gJ(ID∗A))r∗(gc)J(ID∗B)(gc)L(π∗γ)

 .

• Phase 2. The adversary A then performs a second series of queries which are treated in the same
as Phase 1. It is not allowed to make the private key extract query on ID∗B and an unsigncrypt
query on σ∗ under ID∗B.
• Guess. At the end of the simulations, the adversary A outputs a guess γ′. If γ′ = γ, D answers 1,

indicating that Z = e(g, g)abc; otherwise, D answers 0 to the DBDH problem.

This completes the description of simulation. Analyzing the probability of D not aborting still
needs to be analyzed. D will not abort if all the following conditions are fulfilled:

1. F(ID) 6= 0 mod lu during the private key extract queries.
2. F(IDB) 6= 0 mod lu during the decrypt queries.
3. F(IDA) 6= 0 mod lu during the sign queries.
4. F(IDA) 6= 0 mod lu during the signcrypt queries.
5. F(IDB) 6= 0 mod lu during the unsigncrypt queries.
6. F(ID∗B) = 0 mod q and K(M∗γ) = 0 mod q during the challenge phase.

Let ID1, · · ·, IDqID be the identity appearing in all queries not involving the challenge identity.
Clearly, we will have qID 6 qk + qd + qs + qsc + qus. Define the following events:

Ai : F(IDi) 6= 0 mod lu where i = 1, · · ·, qID.
B : F(ID∗B) = 0 mod q.
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C : K(M∗γ) = 0 mod q.

The success probability of D is Pr[¬abort] = Pr[
qID
Λ

i=1
Ai ∧ B∧C].

The functions F and K are selected independently; therefore, the events (
qID
∧

i=1
Ai ∧ B) and C are

independent. According to lu(nu + 1) < q, it is easy to see that F(u) = 0 mod q⇒ F(u) = 0 mod lu.
Furthermore, this implies that, if F(u) = 0 mod lu, there will be a unique ku with 0 6 ku 6 nu, such
that F(u) = 0 mod q. For the randomness of ku, x′, x1, · · ·, xnu , we have

Pr[B] = Pr[F(ID∗B) = 0 mod q]

= Pr[F(ID∗B) = 0 mod lu] Pr[F(ID∗B) = 0 mod q|F(ID∗B) = 0 mod lu]

= (
1
lu

1
nu + 1

).

On the other hand, for any i, the event Ai and B are independent, so we have

Pr[
qID
∧

i=1
Ai ∧ B] = Pr[B]Pr[

qID
∧

i=1
Ai|B] = Pr[B]

(
1− Pr[

qID
∨

i=1
¬Ai|B]

)
> Pr[B]

(
1−

qID

∑
i=1

Pr[¬Ai|B]
)

=

(
1

lu(nu + 1)

)(
1− qID

lu

)
.

Similarly, we have Pr[C] = Pr[K(M∗γ) = 0 mod q] = 1
lm

1
nm+1 .

Let lu = 2(qk + qd + qs + qsc + qus) and lm = 2qsc. Then, we have

Pr[¬abort] = Pr[
qID
∧

i=1
Ai ∧ B∧C] =

(
1

lu(nu + 1)

)(
1− qID

lu

)(
1
lm

1
nm + 1

)
=

1
8(qk + qd + qs + qsc + qus)(nu + 1)qsc(nm + 1).

If the simulation does not abort, the adversaryAwill win Game 2 with the advantage at least ε. Thus,
D can solve for the DBDH problem instance with the advantage ε′ = ε

8(qk+qd+qs+qsc+qus)(nu+1)qsc(nm+1) .
Algorithm D’s running time is the same as A’s running time plus the time it takes to respond

to qk private key extract queries, qs sign queries, qv verify queries, qe encrypt queries, qd decrypt
queries, qsc signcrypt queries and qus unsigncrypt queries. Each private key extract query requires
five exponentiation operations in G1. Each sign query needs two exponentiation operations in G1. Each
verify query needs four pairing operations in (G1,G2). Each encrypt query needs four exponentiation
operations in G1. Each decrypt query needs four pairing operations in (G1,G2). Each signcrypt
query requires four exponentiation operations in G1. Each unsigncrypt query requires seven pairing
operations in (G1,G2). If we assume each that exponentiation takes time te and each pairing takes
time tp, the total running time is at most t + (5qk + 2qs + 4qe + 4qsc)te + (4qd + 7qus + 4qv)tp. Thus,
the theorem follows.

Theorem 3. (Unforgeability in the IDGSC-SG Model) Assuming that there is an adversary EF (IDGSC-SG)
ACMAA that breaks our scheme with the probability δ when running in a time t, then there exists an algorithm
B that can forge a valid signature of Paterson–Schuldt in a time t′ = t with the probability δ′ = δ.

Proof. When the IDGSC scheme works as a signature scheme, it is actually the identity based signature
proposed by Paterson and Schuldt [25]. This signature scheme itself is EF-ACMA secure. Considering
the signcrypt/unsigncrypt query that is absent in the normal signature scheme, these queries are
useless to the adversary of EF-(IDGSC-SG)-ACMA. The identities of sender and receiver are included
in the signature. Hence, an adversary can break the Paterson and Schuldt scheme if he can break our
scheme in the signature model. Then, the theorem follows.
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Theorem 4. (Unforgeability in the IDGSC-SC Model) Assume that there is an adversary EF (IDGSC-SC)
ACMA A that breaks our scheme with the probability δ when running in a time t and making at most
qk private key extract queries, qs sign queries, qv verify queries, qe encrypt queries, qd decrypt queries, qsc

signcrypt queries and quc unsigncrypt queries. Then, there exists a algorithm B that can solve an instance of
the CDH problem in a time t′ = t + (5qk + 2qs + 4qe + 4qsc)te + (4qd + 7qus + 4qv)tp with the probability
δ′ = δ

16(qk+qd+qs+qsc+qus)2(nu+1)2qsc(nm+1) , where te denotes the time of an exponentiation in G1 and tp denotes
the time of a pairing in (G1,G2).

Proof. Assume that there is a polynomially bounded adversaryA that is able to break the unforgeability
of our scheme. Then, there exists an algorithm B that can compute gab with a non-negligible advantage
when receiving a random CDH problem instance (g, ga, gb). B runs A as the subroutine and acts as the
challenger in Game 4 and interacts with A as described below.

• Initial: B sets the system parameter using the initial phase described in Theorem 1. Note that B
assigns g1 = ga and g2 = gb.

• Queries: A can perform a polynomially bounded number of queries including private key extract
queries, sign queries, verify queries, encrypt queries, decrypt queries, signcrypt queries and
unsigncrypt queries. B answers the adversary A in the same way as that of Theorem 2.

• Forgery: Finally, A outputs a forgery ciphertext σ∗ = (σ∗1 , σ∗2 , σ∗3 , σ∗4 , c∗) on the message m∗ under
the receivers ID∗B and the sender ID∗A such that

1. σ∗ is a valid ciphertext.
2. ID∗A has not been submitted as one of the private key extract queries.
3. m∗ has not been submitted as one of the signcrypt queries under the ID∗A, ID∗B.

Now,B can unsigncrypt σ∗ and obtain m∗ under the ID∗A, ID∗B. B computes π∗ = Hm(m∗, σ∗1 , σ∗2 , σ∗3 , w∗)
and generates M∗, the set of all i for which π∗[j] = 1. If F(ID∗A) 6= 0 mod q, F(ID∗B) 6= 0 mod q and
K(π∗) 6= 0 mod q, Bwill abort. Otherwise, F(ID∗A) = 0 mod q, F(ID∗B) = 0 mod q and K(π∗) = 0 mod q,
B can obtain the following case:

e(σ∗4 , g) = e(g2, g1)e(u′ ∏
i∈U∗A

ui, σ∗2 )e(u
′ ∏

i∈U∗B

ui, σ∗1 )e(m
′ ∏

j∈M∗
mj, σ∗1 )

= e(ga, gb)e(gJ(ID∗A), σ∗2 )e(g
J(ID∗B), σ∗1 )e(g

L(π∗), σ∗1 ).

Thus, we have gab =
σ∗4

(σ∗1 )
J(ID∗B)(σ∗2 )

J(ID∗A)
(σ∗1 )

L(π∗)
, which is the solution to the given CDH problem.

Analogous to Theorem 1, we can obtain that B solves for the CDH problem instance with the
probability δ′ = δ

16(qk+qd+qs+qsc+qus)2(nu+1)2qsc(nm+1) , with time being t′ = t+ (5qk + 2qs + 4qe + 4qsc)te +

(4qd + 7qus + 4qv)tp. Thus, the theorem follows.

5.3. Efficiency

We compare the efficiency and security of our scheme with those of three identity based
generalized signcryption schemes, including Lal et al.’s scheme [20], Yu et al.’s scheme [21] and
Kushwah et al.’s scheme [22]. We denote the modular exponentiation and the pairing computation by
E, P, respectively. Other operations are omitted in the following analysis since their computation cost is
trivial. We consider the pre-computation here and do not take hash function evaluations into account.

To compare the computation cost of related schemes, we compute the execution time of the
cryptographic operations above using MIRACL [28], which is a famous cryptographic library and
has been widely used to implement cryptographic operations in many environments. Our hardware
platform consists of an Intel I7-4770 processor with 3.40 GHz clock frequency, 4 gigabytes memory and
runs the Windows 7 operating system. A bilinear pairing P operation needs 4.211 milliseconds and a
modular exponentiation E operation needs 1.709 milliseconds.
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We summarize the comparisons of the four schemes in Table 1. The Generalized Signcrypt column
and the Generalized Unsigncrypt column demonstrate the computational costs of each identity based
generalized signcryption scheme. The Security Model column specifies the security model that the
schemes rely on, where RO and SM represent Random Oracle and Standard Model, respectively.

Table 1. Comparison of identity based generalized signcryption schemes.

Schemes Generalized Signcrypt Generalized Unsigncrypt Security Model

Lal et al. [20] 6E + 1P = 14.456 ms 3P + 1E = 14.342 ms RO
Yu et al. [21] 4E + 1P = 11.047 ms 3P + 3E = 17.76 ms RO

Kushwah et al. [22] 4E = 6.836 ms 2P + 3E = 13.549 ms RO
Ours 6E = 10.254 ms 5P + 2E = 24.473 ms SM

From Table 1, in Generalized Signcrypt, the computation cost of our scheme is less than Lal et al.’s
scheme [20] and Yu et al.’s scheme [21] and more than Kushwash et al.’s scheme [22]. Our scheme has
slightly higher computation costs than other schemes [20–22] in Generalized Unsigncrypt, whereas
our scheme is proven secure in the standard model. To the best of our knowledge, it is the first
scheme that is proven secure in the standard model. All previous schemes mentioned above have
proven their security on the random oracle model. For some special applications that require very
high security, it is believed that only those schemes that can be proven in the standard model must
be employed. Thus, our scheme is suitable for secure e-mail and electronic commerce, where the
confidentiality and authenticity are simultaneously or separately required to enable a secure and
trustable communication environment.

6. Conclusions

The main purpose of identity based generalized signcryption is to reduce implementation
complexity. According to different application environments, identity based generalized signcryption
can fulfill the function of identity based signature, encryption or signcryption, respectively.
In this paper, we proposed a concrete, ID-based generalized signcryption scheme based on the
Paterson–Schuldt scheme. To the best of our knowledge, this is the first ID-based generalized
signcryption scheme that can be proven secure in the standard model.
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