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Abstract: We describe a framework to build distances by measuring the tightness of inequalities
and introduce the notion of proper statistical divergences and improper pseudo-divergences. We then
consider the Hölder ordinary and reverse inequalities and present two novel classes of Hölder
divergences and pseudo-divergences that both encapsulate the special case of the Cauchy–Schwarz
divergence. We report closed-form formulas for those statistical dissimilarities when considering
distributions belonging to the same exponential family provided that the natural parameter
space is a cone (e.g., multivariate Gaussians) or affine (e.g., categorical distributions). Those new
classes of Hölder distances are invariant to rescaling and thus do not require distributions to be
normalized. Finally, we show how to compute statistical Hölder centroids with respect to those
divergences and carry out center-based clustering toy experiments on a set of Gaussian distributions
which demonstrate empirically that symmetrized Hölder divergences outperform the symmetric
Cauchy–Schwarz divergence.

Keywords: Hölder inequalities; Hölder divergences; projective divergences; Cauchy–Schwarz
divergence; Hölder escort divergences; skew Bhattacharyya divergences; exponential families;
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1. Introduction: Inequality, Proper Divergence and Improper Pseudo-Divergence

1.1. Statistical Divergences from Inequality Gaps

An inequality [1] is denoted mathematically by lhs ≤ rhs, where lhs and rhs denote respectively
the left-hand-side and right-hand-side of the inequality. One can build dissimilarity measures from
inequalities lhs ≤ rhs by measuring the inequality tightness: For example, we may quantify the
tightness of an inequality by its difference gap:

∆ = rhs− lhs ≥ 0. (1)

When lhs > 0, the inequality tightness can also be gauged by the log-ratio gap:

D = log
(

rhs
lhs

)
= − log

(
lhs
rhs

)
≥ 0. (2)

We may further compose this inequality tightness value measuring non-negative gaps with
a strictly monotonically increasing function f (with f (0) = 0).
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A bi-parametric inequality lhs(p, q) ≤ rhs(p, q) is called proper if it is strict for p 6= q
(i.e., lhs(p, q) < rhs(p, q), ∀p 6= q) and tight if and only if (iff) p = q (i.e., lhs(p, q) = rhs(p, q), ∀p = q).
Thus a proper bi-parametric inequality allows one to define dissimilarities such that D(p, q) = 0 iff
p = q. Such a dissimilarity is called proper. Otherwise, an inequality or dissimilarity is said to be
improper. Note that there are many equivalent words used in the literature instead of (dis-)similarity:
distance (although often assumed to have metric properties; here, we used the notion of distance
as a dissimilarity that may be asymmetric), pseudo-distance, discrimination, proximity, information
deviation, etc.

A statistical dissimilarity between two discrete or continuous distributions p(x) and q(x) on
a support X can thus be defined from inequalities by summing up or taking the integral for the
inequalities instantiated on the observation space X :

∀x ∈ X , Dx(p, q) = rhs(p(x), q(x))− lhs(p(x), q(x))⇒

D(p, q) =

{
∑x∈X

[
rhs(p(x), q(x))− lhs(p(x), q(x))

]
discrete case,∫

X
[
rhs(p(x), q(x))− lhs(p(x), q(x))

]
dx continuous case.

(3)

In such a case, we get a separable divergence by construction. Some non-separable inequalities
induce a non-separable divergence. For example, the renowned Cauchy–Schwarz divergence [2] is not
separable because in the inequality:

∫
X

p(x)q(x)dx ≤

√(∫
X

p(x)2dx
)(∫

X
q(x)2dx

)
, (4)

the rhs is not separable.
Furthermore, a proper dissimilarity is called a divergence in information geometry [3] when it is

C3 (i.e., three times differentiable, thus allowing one to define a metric tensor [4] and a cubic tensor [3]).
Many familiar distances can be reinterpreted as inequality gaps in disguise. For example,

Bregman divergences [5] and Jensen divergences [6] (also called Burbea–Rao divergences [7,8]) can
be reinterpreted as inequality difference gaps and the Cauchy–Schwarz distance [2] as an inequality
log-ratio gap:

Example 1 (Bregman divergence as a Bregman score-induced gap divergence). A proper score
function [9] S(p : q) induces a gap divergence D(p : q) = S(p : q)− S(p : p) ≥ 0. A Bregman divergence [5]
BF(p : q) for a strictly convex and differentiable real-valued generator F(x) is induced by the Bregman score
SF(p : q). Let SF(p : q) = −F(q)− 〈p− q,∇F(q)〉 denote the Bregman proper score minimized for p = q.
Then, the Bregman divergence is a gap divergence: BF(p : q) = SF(p : q)− SF(p : p) ≥ 0. When F is strictly
convex, the Bregman score is proper, and the Bregman divergence is proper.

Example 2 (Cauchy–Schwarz distance as a log-ratio gap divergence). Consider the Cauchy–Schwarz

inequality
∫
X p(x)q(x)dx ≤

√(∫
X p(x)2dx

) (∫
X q(x)2dx

)
. Then, the Cauchy–Schwarz distance [2]

between two continuous distributions is defined by CS(p : q) = − log
∫
X p(x)q(x)dx√

(
∫
X p(x)2dx)(

∫
X q(x)2dx)

≥ 0.

Note that we use the modern notation D(p : q) to emphasize that the divergence is potentially
asymmetric: D(p : q) 6= D(q : p); see [3]. In information theory [10], the older notation “‖” is often
used instead of the “:” that is used in information geometry [3].

To conclude this introduction, let us finally introduce the notion of projective statistical distances.
A statistical distance D(p : q) is said to be projective when it is invariant to scaling of p(x) and q(x),
that is,

D(λp : λ′q) = D(p : q), ∀λ, λ′ > 0. (5)
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The Cauchy–Schwarz distance is a projective divergence. Another example of such a projective
divergence is the parametric γ-divergence [11].

Example 3 (γ-divergence as a projective score-induced gap divergence). The γ-divergence [11,12]
Dγ(p : q) for γ > 0 is projective:

Dγ(p : q) = Sγ(p : q)− Sγ(p : p), with

Sγ(p : q) = − 1
γ(1 + γ)

∫
p(x)q(x)γdx

(
∫

q(x)1+γdx)
γ

1+γ

.

The γ-divergence is related to the proper pseudo-spherical score [11].

The γ-divergences have been proven useful for robust statistical inference [11] in the presence of
heavy outlier contamination. In general, bi-parametric homogeneous inequalities yield corresponding
log-ratio projective divergences: Let lhs(p : q) and rhs(p : q) be homogeneous functions of degree
k ∈ N (i.e., lhs(λp : λ′q) = (λλ′)klhs(p : q) and rhs(λp : λ′q) = (λλ′)krhs(p : q)); then, it comes that:

D(λp : λ′q) = − log
(

lhs(λp:λ′q)
rhs(λp:λ′q)

)
= − log

(
(λλ′)klhs(p:q)
(λλ′)krhs(p:q)

)
= − log

(
lhs(p:q)
rhs(p:q)

)
= D(p : q). (6)

For example, Hölder and Cauchy–Schwarz inequalities are homogeneous inequalities of degree
one that yield projective log-ratio divergences.

There are many works studying classes of (statistical) divergences and their properties.
For example, Zhang [13] studied the relationships between divergences, duality and convex analysis
by defining the class of divergences:

D(α)
F (p : q) =

4
1− α2

(
1− α

2
F(p) +

1 + α

2
F(q)− F

(
1− α

2
p +

1 + α

2
q
))

, α 6= 1, (7)

for a real-valued convex generator function F. Interestingly, this divergence can be interpreted as a gap
divergence derived from the Jensen convex inequality:

1− α

2
F(p) +

1 + α

2
F(q) ≥ F

(
1− α

2
p +

1 + α

2
q
)

. (8)

This work is further extended in [14] where Zhang stresses the two different types of duality in
information geometry: the referential duality and the representational duality (with the study of the
(ρ, τ)-geometry for monotone embeddings).

It is well-known that Rényi divergence generalizes the Kullback–Leibler divergence:
Rényi divergence is induced by Rényi entropy, which generalizes Shannon entropy, while keeping
the important feature of being additive. Another generalization of Shannon entropy is Tsallis entropy,
which is non-additive in general and allows one to define the Tsallis divergence. Both the Rényi
and Tsallis entropies can be unified by the biparametric family of Sharma–Mittal entropies [15],
and the corresponding Sharma–Mittal divergences can be defined. There are many ways to extend the
definitions of Sharma–Mittal divergences. For example, in [16], a generalization of Rényi divergences
is proposed, and its induced geometry is investigated.

1.2. Pseudo-Divergences and the Axiom of Indiscernibility

Consider a broader class of statistical pseudo-divergences based on improper inequalities,
where the tightness of an inequality lhs(p, q) ≤ rhs(p, q) does not imply that p = q. This family
of dissimilarity measures has interesting properties that have not been studied before.
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Formally, statistical pseudo-divergences are defined with respect to density measures p(x) and
q(x) with x ∈ X , whereX denotes the support. By definition, pseudo-divergences satisfy the following
three fundamental properties:

1. Non-negativeness: D(p : q) ≥ 0 for any p(x), q(x);
2. Reachable indiscernibility:

• ∀p(x), there exists q(x), such that D(p : q) = 0,
• ∀q(x), there exists p(x), such that D(p : q) = 0.

3. Positive correlation: if D(p : q) = 0, then (p(x1)− p(x2)) (q(x1)− q(x2)) ≥ 0 for any x1, x2 ∈ X .

As compared to statistical divergence measures, such as the Kullback–Leibler (KL) divergence:

KL(p : q) =
∫
X

p(x) log
p(x)
q(x)

dx, (9)

pseudo-divergences do not require D(p : p) = 0. Instead, any pair of distributions p(x) and q(x)
with D(p : q) = 0 only have to be “positively correlated” such that p(x1) ≤ p(x2) implies q(x1) ≤
q(x2), and vice versa. Any divergence with D(p : q) = 0 ⇒ p(x) = q(x) (law of indiscernibles)
automatically satisfies this weaker condition, and therefore, any divergence belongs to the broader
class of pseudo-divergences. Indeed, if p(x) = q(x), then (p(x1)− p(x2))(q(x1)− q(x2)) = (p(x1)−
p(x2))

2 ≥ 0. However, the converse is not true. As we shall describe in the remainder, the family
of pseudo-divergences is not limited to proper divergence measures. In the remainder, the term
“pseudo-divergence” refers to such divergences that are not proper divergence measures.

We study two novel statistical dissimilarity families: one family of statistical improper
pseudo-divergences and one family of proper statistical divergences. Within the class of
pseudo-divergences, this work concentrates on defining a tri-parametric family of dissimilarities called
Hölder log-ratio gap divergence that we concisely abbreviate as HPD for “Hölder pseudo divergence”
in the remainder. We also study its proper divergence counterpart termed HD for “Hölder divergence”.

1.3. Prior Work and Contributions

The term “Hölder divergence” was first coined in 2014 based on the definition of the Hölder
score [17,18]: The score-induced Hölder divergence D(p : q) is a proper gap divergence that
yields a scale-invariant divergence. Let pa,σ(x) = aσp(σx) for a, σ > 0 be a transformation.
Then, a scale-invariant divergence satisfies D(pa,σ : qa,σ) = κ(a, σ)D(p : q) for a function κ(a, σ) > 0.
This gap divergence is proper since it is based on the so-called Hölder score, but is not projective and
does not include the Cauchy–Schwarz divergence. Due to these differences, the Hölder log-ratio gap
divergence introduced here shall not be confused with the Hölder gap divergence induced by the
Hölder score that relies both on a scalar γ and a function φ(·).

We shall introduce two novel families of log-ratio projective gap divergences based on Hölder
ordinary (or forward) and reverse inequalities that extend the Cauchy–Schwarz divergence, study their
properties and consider as an application clustering Gaussian distributions: We experimentally show
better clustering results when using symmetrized Hölder divergences than using the Cauchy–Schwarz
divergence. To contrast with the “Hölder composite score-induced divergences” of [18], our Hölder
divergences admit closed-form expressions between distributions belonging to the same exponential
families [19] provided that the natural parameter space is a cone or affine.

Our main contributions are summarized as follows:

• Define the tri-parametric family of Hölder improper pseudo-divergences (HPDs) in Section 2
and the bi-parametric family of Hölder proper divergences in Section 3 (HDs) for positive and
probability measures, and study their properties (including their relationships with skewed
Bhattacharyya distances [8] via escort distributions);
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• Report closed-form expressions of those divergences for exponential families when the natural
parameter space is a cone or affine (including, but not limited to the cases of categorical
distributions and multivariate Gaussian distributions) in Section 4;

• Provide approximation techniques to compute those divergences between mixtures based on
log-sum-exp inequalities in Section 4.6;

• Describe a variational center-based clustering technique based on the convex-concave procedure
for computing Hölder centroids, and report our experimental results in Section 5.

1.4. Organization

This paper is organized as follows: Section 2 introduces the definition and properties of Hölder
pseudo-divergences (HPDs). It is followed by Section 3 that describes Hölder proper divergences
(HDs). In Section 4, closed-form expressions for those novel families of divergences are reported for
the categorical, multivariate Gaussian, Bernoulli, Laplace and Wishart distributions. Section 5 defines
Hölder statistical centroids and presents a variational k-means clustering technique: we show
experimentally that using Hölder divergences improves clustering quality over the Cauchy–Schwarz
divergence. Finally, Section 6 concludes this work and hints at further perspectives from the viewpoint
of statistical estimation and manifold learning. In Appendix A, we recall the proof of the ordinary and
reverse Hölder’s inequalities.

2. Hölder Pseudo-Divergence: Definition and Properties

Hölder’s inequality (see [20,21] and Appendix A for a proof) states for positive real-valued
functions p(x) and q(x) defined on the support X that:

∫
X

p(x)q(x)dx ≤
(∫
X

p(x)αdx
) 1

α
(∫
X

q(x)βdx
) 1

β

, (10)

where exponents α and β satisfy αβ > 0, as well as the exponent conjugacy condition: 1
α + 1

β = 1.
In a more general form, Hölder’s inequality holds for any real and complex valued functions. In this
work, we only focus on real positive functions that are densities of positive measures. We also write
β = ᾱ = α

α−1 , meaning that α and β are conjugate Hölder exponents. We check that α > 1 and β > 1.
Hölder inequality holds even if the lhs is infinite (meaning that the integral diverges), since the rhs is
also infinite in that case.

The reverse Hölder inequality holds for conjugate exponents 1
α + 1

β = 1 with αβ < 0 (then
0 < α < 1 and β < 0, or α < 0 and 0 < β < 1):

∫
X

p(x)q(x)dx ≥
(∫
X

p(x)αdx
) 1

α
(∫
X

q(x)βdx
) 1

β

. (11)

Both Hölder’s inequality and the reverse Hölder inequality turn tight when p(x)α ∝ q(x)β

(see proof in Appendix A).

2.1. Definition

Let (X ,F , µ) be a measurable space where µ is the Lebesgue measure, and let Lγ(X , µ) denote
the Lebesgue space of functions that have their γ-th power of absolute value Lebesgue integrable,
for any γ > 0 (when γ ≥ 1, Lγ(X , µ) is a Banach space). We define the following pseudo-divergence:
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Definition 1 (Hölder statistical pseudo-divergence). For conjugate exponents α and β with αβ > 0 and
σ, τ > 0, the Hölder pseudo-divergence (HPD) between two densities p(x) ∈ Lασ(X , µ) and q(x) ∈ Lβτ(X , µ)

of positive measures absolutely continuous with respect to (w.r.t.) µ is defined by the following log-ratio gap:

DH
α,σ,τ(p : q) = − log

 ∫
X p(x)σq(x)τdx(∫

X p(x)ασdx
) 1

α
(∫
X q(x)βτdx

) 1
β

 . (12)

When 0 < α < 1 and β = ᾱ = α
α−1 < 0, or α < 0 and 0 < β < 1, and σ, τ > 0, the reverse HPD is

defined by:

DH
α,σ,τ(p : q) = log

 ∫
X p(x)σq(x)τdx(∫

X p(x)ασdx
) 1

α
(∫
X q(x)βτdx

) 1
β

 . (13)

By Hölder’s inequality and the reverse Hölder inequality, DH
α,σ,τ(p : q) ≥ 0 with DH

α,σ,τ(p : q) = 0

iff p(x)ασ ∝ q(x)βτ or equivalently q(x) ∝ p(x)
ασ
βτ = p(x)

σ
τ (α−1). When α > 1, x

σ
τ (α−1) is

monotonically increasing, and DH
α,σ,τ is indeed a pseudo-divergence. However, the reverse HPD

is not a pseudo-divergence because x
σ
τ (α−1) will be monotonically decreasing if α < 0 or 0 < α < 1.

Therefore, we only consider HPD with α > 1 in the remainder, and leave here the notion of reverse
Hölder divergence for future studies.

When α = β = 2, σ = τ = 1, the HPD becomes the Cauchy–Schwarz divergence CS [22]:

DH
2,1,1(p : q) = CS(p : q) = − log

 ∫
X p(x)q(x)dx(∫

X p(x)2dx
) 1

2
(∫
X q(x)2dx

) 1
2

 , (14)

which has been proven useful to get closed-form divergence formulas between mixtures of exponential
families with conic or affine natural parameter spaces [23].

The Cauchy–Schwarz divergence is proper for probability densities since the Cauchy–Schwarz
inequality becomes an equality iff q(x) = λp(x)

σ
τ (α−1) = λp(x) implying that λ =

∫
X λp(x)dx =∫

X q(x)dx = 1. It is however not proper for positive densities.

Fact 1 (CS is only proper for probability densities). The Cauchy–Schwarz divergence CS(p : q)
is proper for square-integrable probability densities p(x), q(x) ∈ L2(X , µ), but not proper for positive
square-integrable densities.

2.2. Properness and Improperness

In the general case, the divergence DH
α,σ,τ is not even proper for normalized (probability) densities,

not to mention general unnormalized (positive) densities. Indeed, when p(x) = q(x), we have :

DH
α,σ,τ(p : p) = − log

 ∫
p(x)σ+τdx

(
∫

p(x)ασdx)
1
α
(∫

p(x)βτdx
) 1

β

 6= 0 when ασ 6= βτ. (15)

Let us consider the general case. For unnormalized positive distributions p̃(x) and q̃(x) (the tilde
notation stems from the notation of homogeneous coordinates in projective geometry), the inequality
becomes an equality when: p̃(x)ασ ∝ q̃(x)βτ , i.e., p(x)ασ ∝ q(x)βτ , or q(x) ∝ p(x)ασ/ᾱτ = p(x)

σ
τ (α−1).

We can check that DH
α,σ,τ(p : λp

σ
τ (α−1)) = 0 for any λ > 0:

− log

( ∫
p(x)σλτ p(x)σ(α−1)dx

(
∫

p(x)ασdx)
1
α (
∫

λβτ p(x)(α−1)βσdx)
1
β

)
= − log

( ∫
λτ p(x)ασdx

(
∫

p(x)ασdx)
1
α (
∫

λβτ p(x)ασdx)
1
β

)
= 0, (16)

since (α− 1)β = (α− 1)ᾱ = (α− 1) α
α−1 = α.
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Fact 2 (HPD is improper). The Hölder pseudo-divergences are improper statistical distances.

2.3. Reference Duality

In general, Hölder divergences are asymmetric when α 6= β ( 6= 2) or σ 6= τ, but enjoy the
following reference duality [24]:

DH
α,σ,τ(p : q) = DH

β,τ,σ(q : p) = DH
α

α−1 ,τ,σ(q : p). (17)

Fact 3 (Reference duality HPD). The Hölder pseudo-divergences satisfy the reference duality β = ᾱ = α
α−1 :

DH
α,σ,τ(p : q) = DH

β,τ,σ(q : p) = DH
α

α−1 ,τ,σ(q : p).

An arithmetic symmetrization of the HPD yields a symmetric HPD SHα,σ,τ , given by:

SHα,σ,τ(p : q) = SHα,σ,τ(q : p) =
DH

α,σ,τ(p : q) + DH
α,σ,τ(q : p)

2
,

= −1
2

log

 ∫
p(x)σq(x)τdx

∫
p(x)τq(x)σdx

(
∫

p(x)ασdx)
1
α
(∫

p(x)βτdx
) 1

β (
∫

q(x)ασdx)
1
α
(∫

q(x)βτdx
) 1

β

 . (18)

2.4. HPD is a Projective Divergence

In the above definition, densities p(x) and q(x) can either be positive or normalized probability
distributions. Let p̃(x) and q̃(x) denote positive (not necessarily normalized) measures, and w( p̃) =∫
X p̃(x)dx the overall mass so that p(x) = p̃(x)

w( p̃) is the corresponding normalized probability measure.
Then, we check that HPD is a projective divergence [11] since:

DH
α,σ,τ( p̃ : q̃) = DH

α,σ,τ(p : q), (19)

or in general:
DH

α,σ,τ(λp : λ′q) = DH
α,σ,τ(p : q) (20)

for all prescribed constants λ, λ′ > 0. Projective divergences may also be called “angular divergences”
or “cosine divergences”, since they do not depend on the total mass of the density measures.

Fact 4 (HPD is projective). The Hölder pseudo-divergences are projective distances.

2.5. Escort Distributions and Skew Bhattacharyya Divergences

Let us define with respect to the probability measures p(x) ∈ L
1
α (X , µ) and q(x) ∈ L

1
β (X , µ) the

following escort probability distributions [3]:

pE
α (x) =

p(x)
1
α∫

p(x)
1
α dx

, (21)

and

qE
β(x) =

q(x)
1
β∫

q(x)
1
β dx

. (22)

Since HPD is a projective divergence, we compute with respect to the conjugate exponents α and
β the Hölder escort divergence (HED):

DHE
α (p : q) = DH

α,1,1(pE
α : qE

β) = DH
α, 1

α , 1
β
(p : q) = − log

∫
X

p(x)1/αq(x)1/βdx = B1/α(p : q), (23)



Entropy 2017, 19, 122 8 of 28

which turns out to be the familiar skew Bhattacharyya divergence B1/α(p : q); see [8].

Fact 5 (HED as a skew Bhattacharyya divergence). The Hölder escort divergence amounts to a skew
Bhattacharyya divergence: DHE

α (p : q) = B1/α(p : q) for any α > 0.

In particular, the Cauchy–Schwarz escort divergence CSHE(p : q) amounts to the Bhattacharyya
distance [25] B(p : q) = − log

∫
X
√

p(x)q(x)dx:

CSHE(p : q) = DHE
2 (p : q) = DH

2,1,1(pE
2 : qE

2 ) = DH
2, 1

2 , 1
2
(p : q) = B1/2(p : q) = B(p : q). (24)

Observe that the Cauchy–Schwarz escort distributions are the square root density representations [26]
of distributions.

3. Proper Hölder Divergence

3.1. Definition

To get a proper HD between probability distributions p(x) and q(x), we need to have p(x)ασ ∝
q(x)βτ . That is, we have ασ = βτ, or equivalently, we set τ = (α− 1)σ for free prescribed parameters
α > 1 and σ > 0. Alternatively, as we shall consider in the remainder, one may set ασ = βτ = γ

as a free prescribed parameter, which yields σ = γ/α and τ = γ/β. Thus, in general, we define a
bi-parametric family of proper Hölder divergence on probability distributions DH

α,γ.
Let p(x) and q(x) be positive measures in Lγ(X , µ) for a prescribed scalar value γ > 0.

Plugging σ = γ/α and τ = γ/β into the definition of HPD DH
α,σ,τ , we get the following definition:

Definition 2 (Proper Hölder divergence). For conjugate exponents α, β > 0 and γ > 0, the proper Hölder
divergence (HD) between two densities p(x) and q(x) is defined by:

DH
α,γ(p : q) = DH

α, γ
α , γ

β
(p : q) = − log

( ∫
X p(x)γ/αq(x)γ/βdx

(
∫
X p(x)γdx)1/α(

∫
X q(x)γdx)1/β

)
. (25)

Following Hölder’s inequality, we can check that DH
α,γ(p : q) ≥ 0 and DH

α,γ(p : q) = 0 iff
p(x)γ ∝ q(x)γ, i.e., p(x) ∝ q(x) (see Appendix A). If p(x) and q(x) belong to the statistical probability
manifold, then DH

α,γ(p : q) = 0 iff p(x) = q(x) almost everywhere. This says that HD is a proper
divergence for probability measures, and it becomes a pseudo-divergence for positive measures.
Note that we have abused the notation DH to denote both the Hölder pseudo-divergence (with three
subscripts) and the Hölder divergence (with two subscripts).

Similar to HPD, HD is asymmetric when α 6= β with the following reference duality:

DH
α,γ(p : q) = DH

ᾱ,γ(q : p). (26)

HD can be symmetrized as:

SHα,γ(p : q) =
DH

α,γ(p : q) + DH
α,γ(q : p)

2
= −1

2
log

∫
X p(x)γ/αq(x)γ/βdx

∫
X p(x)γ/βq(x)γ/αdx∫

X p(x)γdx
∫
X q(x)γdx

. (27)

Furthermore, one can easily check that HD is a projective divergence.
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For conjugate exponents α, β > 0 and γ > 0, we rewrite the definition of HD as:

DH
α,γ(p : q) = − log

∫
X

(
p(x)γ∫

X p(x)γdx

)1/α (
q(x)γ∫
X q(x)γdx

)1/β

dx,

= − log
(

pE
1/γ(x)

)1/α (
qE

1/γ(x)
)1/β

dx = B 1
α
(pE

1/γ : qE
1/γ).

Therefore, HD can be reinterpreted as the skew Bhattacharyya divergence [8] between the escort
distributions. In particular, when γ = 1, we get:

DH
α,1(p : q) = − log

∫
X

p(x)1/αq(x)1/βdx = B 1
α
(p : q). (28)

Fact 6. The bi-parametric family of statistical Hölder divergences DH
α,γ passes through the one-parametric family

of skew Bhattacharyya divergences when γ = 1.

3.2. Special Case: The Cauchy–Schwarz Divergence

Within the family of Hölder divergence, we set α = β = γ = 2 and get the Cauchy–Schwarz
(CS) divergence.

DH
2,2(p : q) = DH

2,1,1(p : q) = CS(p : q). (29)

Figure 1 displays a diagram of those divergence classes with their inclusion relationships.

Projective divergence

Hölder Pseudo-Divergence DH
α,σ,τ

Hölder Divergence (proper) DH
α,γ

skew Bhattacharyya
Divergence (proper)

B1/α

Cauchy-Schwarz CS
divergence (proper)

Figure 1. Hölder proper divergence (bi-parametric) and Hölder improper pseudo-divergence
(tri-parametric) encompass Cauchy–Schwarz divergence and skew Bhattacharyya divergence.

As stated earlier, notice that the Cauchy–Schwarz inequality

∫
p(x)q(x)dx ≤

√(∫
p(x)2dx

)(∫
p(x)2dx

)
(30)

is not proper as it is an equality when p(x) and q(x) are linearly dependent (i.e., p(x) = λq(x) for
λ > 0). The arguments of the CS divergence are square-integrable real-valued density functions p(x)
and q(x). Thus, the Cauchy–Schwarz divergence is not proper for positive measures, but is proper for
normalized probability distributions, since in this case,

∫
p(x)dx =

∫
λq(x)dx = 1 implies that λ = 1.

3.3. Limit Cases of Hölder Divergences and Statistical Estimation

Let us define the inner product of unnormalized densities as:

〈 p̃(x), q̃(x)〉 =
∫
X

p̃(x)q̃(x)dx (31)
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(for L2(X , µ) integrable functions), and define the Lα norm of densities as ‖ p̃(x)‖α = (
∫
X p̃(x)αdx)1/α

for α ≥ 1. Then, the CS divergence can be concisely written as:

CS( p̃ : q̃) = − log
〈 p̃(x), q̃(x)〉
‖ p̃(x)‖2‖q̃(x)‖2

, (32)

and the Hölder pseudo-divergence is written as:

DH
α,1,1( p̃ : q̃) = − log

〈 p̃(x), q̃(x)〉
‖ p̃(x)‖α‖q̃(x)‖ᾱ

. (33)

When α→ 1+, we have ᾱ = α/(α− 1)→ +∞. Then, it comes that:

lim
α→1+

DH
α,1,1( p̃ : q̃) = − log

〈 p̃(x), q̃(x)〉
‖ p̃(x)‖1‖q̃(x)‖∞

= − log 〈 p̃(x), q̃(x)〉+ log
∫
X

p̃(x)dx + log max
x∈X

q̃(x). (34)

When α→ +∞ and ᾱ→ 1+, we have:

lim
α→+∞

DH
α,1,1( p̃ : q̃) = − log

〈 p̃(x), q̃(x)〉
‖ p̃(x)‖∞‖q̃(x)‖1

= − log 〈 p̃(x), q̃(x)〉+ log max
x∈X

p̃(x) + log
∫
X

q̃(x)dx. (35)

Now, consider a pair of probability densities p(x) and q(x). We have:

lim
α→1+

DH
α,1,1(p : q) = − log 〈p(x), q(x)〉+ max

x∈X
log q(x),

lim
α→+∞

DH
α,1,1(p : q) = − log 〈p(x), q(x)〉+ max

x∈X
log p(x),

CS(p : q) = − log 〈p(x), q(x)〉+ log ‖p(x)‖2 + log ‖q(x)‖2. (36)

In an estimation scenario, p(x) is fixed, and q(x | θ) = qθ(x) is free along a parametric manifold
M; then, minimizing Hölder divergence reduces to:

arg min
θ∈M

lim
α→1+

DH
α,1,1(p : qθ) = arg min

θ∈M

(
− log 〈p(x), qθ(x)〉+ max

x∈X
log qθ(x)

)
,

arg min
θ∈M

lim
α→+∞

DH
α,1,1(p : q) = arg min

θ∈M

(
− log 〈p(x), qθ(x)〉

)
,

arg min
θ∈M

CS(p : q) = arg min
θ∈M

(
− log 〈p(x), qθ(x)〉+ log ‖qθ(x)‖2

)
. (37)

Therefore, when α varies from 1 to +∞, only the regularizer in the minimization problem changes.
In any case, Hölder divergence always has the term − log 〈p(x), q(x)〉, which shares a similar form as
the Bhattacharyya distance [25]:

B(p : q) = − log
∫
X

√
p(x)q(x)dx = − log 〈

√
p(x),

√
q(x)〉. (38)

HPD between p̃(x) and q̃(x) is also closely related to their cosine similarity 〈 p̃(x),q̃(x)〉
‖ p̃(x)‖2‖q̃(x)‖2

.
When α = 2, σ = τ = 1, HPD is exactly the cosine similarity after a non-linear transformation.

4. Closed-Form Expressions of HPD and HD for Conic and Affine Exponential Families

We report closed-form formulas for the HPD and HD between two distributions belonging to the
same exponential family provided that the natural parameter space is a cone or affine. A cone Ω is
a convex domain, such that for P, Q ∈ Ω and any λ > 0, we have P + λQ ∈ Ω. For example, the set of
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positive measures absolutely continuous with a base measure µ is a cone. Recall that an exponential
family [19] has a density function p(x; θ) that can be written canonically as:

p(x; θ) = exp (〈t(x), θ〉 − F(θ) + k(x)) . (39)

In this work, we consider the auxiliary carrier measure term k(x) = 0. The base measure is either
the Lebesgue measure µ or the counting measure µC. A conic or affine exponential family (CAEF) is
an exponential family with the natural parameter space Θ being a cone or affine. The log-normalizer
F(θ) is a strictly convex function also called the cumulant generating function [3].

Lemma 1 (HPD and HD for CAEFs). For distributions p(x; θp) and p(x; θq) belonging to the same exponential
family with conic or affine natural parameter space [23], both the HPD and HD are available in closed-form:

DH
α,σ,τ(p : q) =

1
α

F(ασθp) +
1
β

F(βτθq)− F(σθp + τθq), (40)

DH
α,γ(p : q) =

1
α

F(γθp) +
1
β

F(γθq)− F
(

γ

α
θp +

γ

β
θq

)
. (41)

Proof. Consider k(x) = 0 and a conic or affine natural space Θ (see [23]); then, for all a, b > 0, we have:(∫
p(x)adx

) 1
b

= exp
(

1
b

F(aθp)−
a
b

F(θp)

)
, (42)

since aθp ∈ Θ. Indeed, we have:

(∫
p(x)adx

)1/b
=

(∫
exp (〈aθ, t(x)〉 − aF(θ))dx

)1/b

=

(∫
exp (〈aθ, t(x)〉 − F(aθ) + F(aθ)− aF(θ))dx

)1/b

= exp
(

1
b

F(aθ)− a
b

F(θ)
)∫ exp (〈aθ, t(x)〉 − F(aθ))dx︸ ︷︷ ︸

=1


1/b

.

Similarly, we have for all a, b > 0 (details omitted),∫
p(x)aq(x)bdx = exp(F(aθp + bθq)− aF(θp)− bF(θq)), (43)

since aθp + bθq ∈ Θ. Therefore, we get:

DH
α,σ,τ(p : q) = − log

∫
p(x)σq(x)τdx

(
∫

p(x)ασdx)
1
α
(∫

q(x)βτdx
) 1

β

= −F(σθp + τθq) + F(σθp) + F(τθq) +
1
α

F(ασθp)− F(σθp) +
1
β

F(βτθq)− F(τθq)

=
1
α

F(ασθp) +
1
β

F(βτθq)− F(σθp + τθq) ≥ 0,

DH
α,γ(p : q) = − log

∫
p(x)γ/αq(x)γ/βdx

(
∫

p(x)γdx)
1
α (
∫

q(x)γdx)
1
β

= −F
(

γ

α
θp +

γ

β
θq

)
+

γ

α
F(θp) +

γ

β
F(θq) +

1
α

F(γθp)−
γ

α
F(θp) +

1
β

F(γθq)−
γ

β
F(θq)

=
1
α

F(γθp) +
1
β

F(γθq)− F
(

γ

α
θp +

γ

β
θq

)
≥ 0.
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When 1 > α > 0, we have β = α
α−1 < 0. To get similar results for the reverse Hölder

divergence, we need the natural parameter space to be affine (e.g., isotropic Gaussians or multinomials;
see [27]).

In particular, if p(x) and q(x) belong to the same exponential family so that p(x) =

exp(〈θp, t(x)〉 − F(θp)) and q(x) = exp(〈θq, t(x)〉 − F(θq)), one can easily check that DH
α,1,1(p : q) = 0

iff θq = (α− 1)θp. For HD, we can check that DH
α,γ(p : p) = 0 is proper since 1

α + 1
β = 1.

The following result is straightforward from Lemma 1.

Lemma 2 (Symmetric HPD and HD for CAEFs). For distributions p(x; θp) and p(x; θq) belonging to the
same exponential family with conic or affine natural parameter space [23], the symmetric HPD and HD are
available in closed-form:

SHα,σ,τ(p : q) =
1
2

[
1
α

F(ασθp) +
1
β

F(βτθp) +
1
α

F(ασθq) +
1
β

F(βτθq)− F(σθp + τθq)− F(τθp + σθq)

]
;

SHα,γ(p : q) =
1
2

[
F(γθp) + F(γθq)− F

(
γ

α
θp +

γ

β
θq

)
− F

(
γ

β
θp +

γ

α
θq

)]
.

Remark 1. By reference duality,

SHα,σ,τ(p : q) = SHᾱ,τ,σ(p : q);

SHα,γ(p : q) = SHᾱ,γ(p : q).

Note that the Hölder score-induced divergence [18] does not admit in general closed-form
formulas for exponential families since it relies on a function φ(·) (see Definition 4 of [18]).

Note that CAEF convex log-normalizers satisfy:

1
α

F(αθp) +
1
β

F(βθq) ≥ F(θp + θq). (44)

A necessary condition is that F(λθ) ≥ λF(θ) for λ > 0 (take θp = θ, θq = 0 and F(0) = 0 in the
above equality).

The escort distribution for an exponential family is given by:

pE
α (x; θ) = e

F(θ)
α −F( θ

α )p(x; θ)
1
α . (45)

The Hölder equality holds when p(x)α ∝ q(x)β or p(x)αq(x)−β ∝ 1. For exponential families,
this condition is satisfied when αθp − βθq ∈ Θ. That is, we need to have:

α

(
θp −

1
α− 1

θq

)
∈ Θ. (46)

Thus, we may choose small enough α = 1 + ε > 1 so that the condition is not satisfied for
fixed θp and θq for many exponential distributions. Since multinomials have affine natural space [27],
this condition is always met, but not for non-affine natural parameter spaces like normal distributions.

Notice the following fact:

Fact 7 (Density of a CAEF in Lγ(X , µ)). The density of exponential families with conic or affine natural
parameter space belongs to Lγ(X , µ) for any γ > 0.

Proof. We have
∫
X (exp(〈θ, t(x)〉 − F(θ)))γdµ(x) = eF(γθ)−γF(θ) < ∞ for any γ > 0 provided that γθ

belongs to the natural parameter space. When Θ is a cone or affine, the condition is satisfied.
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Let p̃(x; θ) = exp (〈t(x), θ〉) denote the unnormalized positive exponential family density and
p(x; θ) = p̃(x;θ)

Z(θ) the normalized density with Z(θ) = exp(F(θ)) the partition function. Although HD

is a projective divergence since we have DH
α,σ,τ(p1 : p2) = DH

α,σ,τ( p̃1 : p̃2), observe that the HD value
depends on the log-normalizer F(θ) (since the HD is an integral on the support; see also [12] for
a similar argument with the γ-divergence [11]).

In practice, even when the log-normalizer is computationally intractable, we may still estimate
the HD by Monte Carlo techniques: Indeed, we can sample a distribution p̃(x) either by rejection
sampling [12] or by the Markov chain Monte Carlo (MCMC) Metropolis–Hasting technique: It just
requires to be able to sample a proposal distribution that has the same support.

We shall now instantiate the HPD and HD formulas for several exponential families with conic or
affine natural parameter spaces.

4.1. Case Study: Categorical Distributions

Let p = (p0, · · · , pm) and q = (q0, · · · , qm) be two categorical distributions in the m-dimensional
probability simplex ∆m. We rewrite p in the canonical form of exponential families [19] as:

pi = exp

(
(θp)i − log

(
1 +

m

∑
i=1

exp(θp)i

))
, ∀i ∈ {1, · · · , m}, (47)

with the redundant parameter:

p0 = 1−
m

∑
i=1

pi =
1

1 + ∑m
i=1 exp(θp)i

. (48)

From Equation (47), the convex cumulant generating function has the form F(θ) =

log
(
1 + ∑m

i=1 exp(θp)i
)
. The inverse transformation from p to θ is therefore given by:

θi = log
(

pi
p0

)
, ∀i ∈ {1, · · · , m}. (49)

The natural parameter space Θ is affine (hence conic), and by applying Lemma 1, we get the
following closed-form formula:

DH
α,σ,τ(p : q) =

1
α

log

(
1 +

m

∑
i=1

exp(ασ(θp)i)

)
+

1
β

log

(
1 +

m

∑
i=1

exp(βτ(θq)i)

)

− log

(
1 +

m

∑
i=1

exp(σ(θp)i + τ(θq)i)

)
, (50)

DH
α,γ(p : q) =

1
α

log

(
1 +

m

∑
i=1

exp(γ(θp)i)

)
+

1
β

log

(
1 +

m

∑
i=1

exp(γ(θq)i)

)

− log

(
1 +

m

∑
i=1

exp
(

γ

α
(θp)i +

γ

β
(θq)i

))
. (51)

To get some intuitions, Figure 2 shows the Hölder divergence from a given reference distribution
pr to any categorical distribution (p0, p1, p2) in the 2D probability simplex ∆2. A main observation
is that the Kullback–Leibler (KL) divergence exhibits a barrier near the boundary ∂∆2 with large
values. This is not the case for Hölder divergences: DH

α,1,1(pr : p) does not have a sharp increase
near the boundary (although it still penalizes the corners of ∆2). For example, let p = (0, 1/2, 1/2),
pr = (1/3, 1/3, 1/3), then KL(pr : p) → ∞, but DH

2,1,1(pr : p) =
√

2/3. Another observation is
that the minimum D(pr : p) can be reached at some point p 6= pr (see for example DH

4,1,1(pr : p)



Entropy 2017, 19, 122 14 of 28

in Figure 2b; the bluest area corresponding to the minimum of D(pr : p) is not in the same location as
the reference point).

Consider an HPD ball of center c and prescribed radius r w.r.t. the HPD. Since p(x)α−1 for α 6= 2
does not belong to the probability manifold, but to the positive measure manifold, and since the
distance is projective, we deduce that the displaced ball center c′ of a ball c lying in the probability
manifold can be computed as the intersection of the ray λp(x)α−1 anchored at the origin 0 and passing
through p(x)α−1 with the probability manifold. For the discrete probability simplex ∆, since we have
λ ∑x∈X p(x)α−1 = 1, we deduce that the displaced ball center is at:

c′ =
c

∑x∈X p(x)α−1 (52)

This center is displayed as “•” in Figure 2.
In general, the HPD bisector [28] between two distributions belonging to the same CAEF is

defined by:
1
α
(F(αθ1)− F(αθ2)) = F(θ2 + θ)− F(θ1 + θ). (53)

0

1
D H
4 /3 , 1 , 1 (p r : p ) D H
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0
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4 , 1 (p r : p ) D H
4 , 2 (p r : p ) D H

4 , 5 (p r : p ) D H
4 , 1 0 (p r : p )

0 1
0

1
D H
1 0 , 0 .5 (p r : p )

0 1

D H
1 0 , 1 (p r : p )

0 1

D H
1 0 , 2 (p r : p )

0 1

D H
1 0 , 5 (p r : p )

0 1

D H
1 0 , 1 0 (p r : p )

0.00

0.06

0.12

0.18

0.24

0.30

(a)

Figure 2. Cont.
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0
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2 , 1 , 1 (p r : p ) D H
4 , 1 , 1 (p r : p ) K L (p r : p ) K L (p : p r )

0

1
D H
4 /3 , 0 .5 (p r : p ) D H

4 /3 , 1 (p r : p ) D H
4 /3 , 2 (p r : p ) D H

4 /3 , 5 (p r : p ) D H
4 /3 , 1 0 (p r : p )

0

1
D H
1 .5 , 0 .5 (p r : p ) D H

1 .5 , 1 (p r : p ) D H
1 .5 , 2 (p r : p ) D H

1 .5 , 5 (p r : p ) D H
1 .5 , 1 0 (p r : p )

0

1
D H
2 , 0 .5 (p r : p ) D H

2 , 1 (p r : p ) D H
2 , 2 (p r : p ) D H

2 , 5 (p r : p ) D H
2 , 1 0 (p r : p )

0

1
D H
4 , 0 .5 (p r : p ) D H

4 , 1 (p r : p ) D H
4 , 2 (p r : p ) D H

4 , 5 (p r : p ) D H
4 , 1 0 (p r : p )

0 1
0

1
D H
1 0 , 0 .5 (p r : p )

0 1

D H
1 0 , 1 (p r : p )

0 1

D H
1 0 , 2 (p r : p )
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Figure 2. First row: the Hölder pseudo divergence (HPD) DH
α,1,1(pr : p) for α ∈ {4/3, 2, 4}, KL

divergence and reverse KL divergence. Remaining rows: the HD DH
α,γ(pr : p) for α ∈ {4/3, 1.5, 2, 4, 10}

(from top to bottom) and γ ∈ {0.5, 1, 2, 5, 10} (from left to right). The reference distribution pr is
presented as “?”. The minimizer of DH

α,1,1(pr : p), if different from pr, is presented as “•”. Notice that
DH

2,2 = DH
2,1,1. (a) Reference categorical distribution pr = (1/3, 1/3, 1/3); (b) reference categorical

distribution pr = (1/2, 1/3, 1/6).

4.2. Case Study: Bernoulli Distribution

The Bernoulli distribution is just a special case of the category distribution when the number
of categories is two (i.e., m = 1). To be consistent with the previous section, we rewrite a Bernoulli
distribution p = (p0, p1) in the canonical form:

p1 = exp
(
θp − log

(
1 + exp(θp)

))
=

exp(θp)

1 + exp(θp)
, (54)

so that:
p0 =

1
1 + exp(θp)

. (55)
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Then, the cumulant generating function becomes F(θp) = log
(
1 + exp(θp)

)
. By Lemma 1,

DH
α,σ,τ(p : q) =

1
α

log
(
1 + exp(ασθp)

)
+

1
β

log
(
1 + exp(βτθq)

)
− log

(
1 + exp(σθp + τθq)

)
, (56)

DH
α,γ(p : q) =

1
α

log
(
1 + exp(γθp)

)
+

1
β

log
(
1 + exp(γθq)

)
− log

(
1 + exp

(
γ

α
θp +

γ

β
θq

))
. (57)

4.3. Case Study: MultiVariate Normal Distributions

Let us now instantiate the formulas for multivariate normals (Gaussian distributions). We have
the log-normalizer F(θ) expressed using the usual parameters as [15]:

F(θ) = F(µ(θ), Σ(θ)) =
1
2

log(2π)d|Σ|+ 1
2

µ>Σ−1µ. (58)

Since:
θ = (Σ−1µ,−1

2
Σ−1) = (v, M), µ = −1

2
M−1v, Σ = −1

2
M−1. (59)

It follows that:

θp + θq = θp+q = (vp + vq, Mp + Mq) =

(
Σ−1

p µp + Σ−1
q µq,−1

2
Σ−1

p −
1
2

Σ−1
q

)
. (60)

Therefore, we have:

µp+q = (Σ−1
p + Σ−1

q )−1(Σ−1
p µp + Σ−1

q µq), Σp+q = (Σ−1
p + Σ−1

q )−1 (61)

We thus get the following closed-form formula for p ∼ N(µp, Σp) and q ∼ N(µq, Σq):

DH
α,σ,τ(N(µp, Σp) : N(µq, Σq)) =

1
2α

log
∣∣∣∣Σp

ασ

∣∣∣∣+ σ

2
µ>p Σ−1

p µp +
1

2β
log
∣∣∣∣Σq

βτ

∣∣∣∣+ τ

2
µ>q Σ−1

q µq

+
1
2

log
∣∣∣σΣ−1

p + τΣ−1
q

∣∣∣− 1
2
(σΣ−1

p µp + τΣ−1
q µq)

>(σΣ−1
p + τΣ−1

q )−1(σΣ−1
p µp + τΣ−1

q µq);

DH
α,γ(N(µp, Σp) : N(µq, Σq)) =

1
2α

log
∣∣∣∣Σp

γ

∣∣∣∣+ γ

2α
µ>p Σ−1

p µp +
1

2β
log
∣∣∣∣Σq

γ

∣∣∣∣+ γ

2β
µ>q Σ−1

q µq

+
1
2

log
∣∣∣∣γα Σ−1

p +
γ

β
Σ−1

q

∣∣∣∣− 1
2

(
γ

α
Σ−1

p µp +
γ

β
Σ−1

q µq

)> (γ

α
Σ−1

p +
γ

β
Σ−1

q

)−1 (γ

α
Σ−1

p µp +
γ

β
Σ−1

q µq

)
.

Figure 3 shows HPD and HD for univariate Gaussian distributions as compared to the KL
divergence. Again, HPD and HD have more tolerance for distributions near the boundary σ = 0,
which is in contrast to the (reverse) KL divergence.
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Figure 3. First row: DH
α,1,1(pr : p), where pr is the standard Gaussian distribution and α ∈ {4/3, 2, 4}

compared to the KL divergence. The rest of the rows: DH
α,γ(pr : p) for α ∈ {4/3, 1.5, 2, 4, 10} (from top

to bottom) and γ ∈ {0.5, 1, 2, 5, 10} (from left to right). Notice that DH
2,2 = DH

2,1,1. The coordinate system
is formed by µ (mean) and σ (standard deviation).

4.4. Case Study: Zero-Centered Laplace Distribution

The zero-centered Laplace distribution is defined on the support (−∞, ∞) with the pdf:

p(x; s) =
1
2s

exp
(
−|x|

s

)
= exp

(
−|x|

s
− log(2s)

)
. (62)
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We have θ = − 1
s , F(θ) = log(− 2

θ ). Therefore, it comes that:

DH
α,σ,τ(p : q) =

1
α

log
(
− 2

ασθp

)
+

1
β

log
(
− 2

βτθq

)
− log

(
− 2

σθp + τθq

)
=

1
α

log
( sp

ασ

)
+

1
β

log
(

sq

βτ

)
+ log

(
σ

sp
+

τ

sq

)
, (63)

DH
α,γ(p : q) =

1
α

log
(
− 2

γθp

)
+

1
β

log
(
− 2

γθq

)
− log

(
− 2

γ
α θp +

γ
β θq

)

=
1
α

log sp +
1
β

log sq + log
(

1
αsp

+
1

βsp

)
. (64)

In this special case, DH
α,γ(p : q) does not vary with γ.

4.5. Case Study: Wishart Distribution

The Wishart distribution is defined on the d× d positive definite cone with the density:

p(X; n, S) =
|X| n−d−1

2 exp
(
− 1

2 tr(S−1X)
)

2
nd
2 |S| n2 Γd

( n
2
) , (65)

where n > d− 1 is the degree of freedom and S � 0 is a positive-definite scale matrix. We rewrite it in
the canonical form:

p(X; n, S) = exp
(
−1

2
tr(S−1X) +

n− d− 1
2

log |X| − nd
2

log 2− n
2

log |S| − log Γd

(n
2

))
. (66)

We can see that θ = (θ1, θ2), θ1 = − 1
2 S−1, θ2 = n−d−1

2 , and:

F(θ) =
nd
2

log 2 +
n
2

log |S|+ log Γd

(n
2

)
= (θ2 +

d + 1
2

)d log 2 + (θ2 +
d + 1

2
) log

∣∣∣∣− 1
2
(θ1)−1

∣∣∣∣+ log Γd

(
θ2 +

d + 1
2

)
. (67)

The resulting DH
α,σ,τ(p : q) and DH

α,γ(p : q) are straightforward from the above expression of F(θ)
and Lemma 1. We will omit these tedious expressions for brevity.

4.6. Approximating Hölder Projective Divergences for Statistical Mixtures

Given two finite mixture models m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

j=1 w′j p
′
j(x), we derive

analytic bounds of their Hölder divergences. When only an approximation is needed, one may
compute Hölder divergences based on Monte Carlo stochastic sampling.

Let us assume that all mixture components are in an exponential family [19], so that pi(x) =

p(x; θi) = exp(〈θi, t(x)〉 − F(θi)) and p′j(x) = p(x; θ′j) = exp(〈θ′j, t(x)〉 − F(θ′j)) are densities (w.r.t. the
Lebesgue measure µ).

Without loss of generality, we only consider the pseudo Hölder divergence DH
α,1,1. We rewrite it in

the form:

DH
α,1,1(m : m′) = − log

∫
X

m(x)m′(x)dx +
1
α

log
∫
X

m(x)αdx +
1
β

log
∫
X

m′(x)βdx. (68)
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To compute the first term, we observe that a product of mixtures is also a mixture:

∫
X

m(x)m′(x)dx =
k

∑
i=1

k′

∑
j=1

wiw′j
∫
X

pi(x)p′j(x)dx

=
k

∑
i=1

k′

∑
j=1

wiw′j
∫
X

exp
(
〈θi + θ′j, t(x)〉 − F(θi)− F(θ′j)

)
dx

=
k

∑
i=1

k′

∑
j=1

wiw′j exp
(

F(θi + θ′j)− F(θi)− F(θ′j)
)

, (69)

which can be computed in O(kk′) time.
The second and third terms in Equation (68) are not straightforward to calculate and shall be

bounded. Based on computational geometry, we adopt the log-sum-exp bounding technique of [29]
and divide the support X into L pieces of elementary intervals X =

⊎ L
l=1 Il . In each interval Il ,

the indices:
δl = arg max

i
wi pi(x) and εl = arg min

i
wi pi(x) (70)

represent the unique dominating component and the dominated component. Then, we bound as follows:

max
{∫

Il

kαwα
εl

pεl (x)αdx,
∫

Il

wα
δl

pδl (x)αdx
}
≤
∫

Il

m(x)αdx ≤
∫

Il

kαwα
δl

pδl (x)αdx. (71)

All terms on the lhs and rhs of Equation (71) can be computed exactly by noticing that:∫
I

pi(x)αdx =
∫

I
exp(〈αθi, t(x)〉 − αF(θi)) = exp(F(αθi)− αF(θi))

∫
I

p(x; αθi)dx. (72)

When αθ ∈ Θ where Θ denotes the natural parameter space, the integral
∫

I p(x; αθi)dx converges;
see [29] for further details.

Then, the bounds of
∫
X m(x)αdx can be obtained by summing the bounds in Equation (71) over

all elementary intervals. Thus, DH
α,1,1(m : m′) can be both lower and upper bounded.

5. Hölder Centroids and Center-Based Clustering

We study the application of HPD and HD for clustering distributions [30], specially clustering
Gaussian distributions [31–33], which have been used in sound processing [31], sensor network [32],
statistical debugging [32], quadratic invariants of switched systems [34], etc. Other potential applications
of HD may include nonnegative matrix factorization [35], and clustering von Mises–Fisher [36,37]
(log-normalizer expressed using Bessel functions).

5.1. Hölder Centroids

We study center-based clustering of a finite set of distributions belonging to the same exponential
family. By a slight abuse of notation, we shall write DH

α,σ,τ(θ : θ′) instead of DH
α,σ,τ(pθ : pθ′). Given a list

of distributions belonging to the same conic exponential family with natural parameters {θ1, · · · , θn}
and their associated positive weights {w1, · · · , wn} with ∑n

i=1 wi = 1, consider their centroids based
on HPD and HD as follows:

Cα({θi, wi}) = arg min
C

n

∑
i=1

wiDH
α,1,1(θi : C), (73)

Cα,γ({θi, wi}) = arg min
C

n

∑
i=1

wiDH
α,γ(θi : C). (74)



Entropy 2017, 19, 122 20 of 28

By an abuse of notation, C denotes both the HPD centroid and HD centroid. When the context
is clear, the parameters in parentheses can be omitted so that these centroids are simply denoted as
Cα and Cα,γ. Both of them are defined as the right-sided centroids. The corresponding left-handed
centroids are obtained according to reference duality, i.e.,

Cᾱ = arg min
C

n

∑
i=1

wiDH
α,1,1(C : θi), (75)

Cᾱ,γ = arg min
C

n

∑
i=1

wiDH
α,γ(C : θi). (76)

By Lemma 1, these centroids can be obtained for distributions belonging to the same exponential
family as follows:

Cα = arg min
C

[
1
β

F(βC)−
n

∑
i=1

wiF(θi + C)

]
, (77)

Cα,γ = arg min
C

[
1
β

F(γC)−
n

∑
i=1

wiF
(

γ

α
θi +

γ

β
C
)]

. (78)

Let γ = α; we get:

Cα,α({θi, wi}) = arg min
C

[
1
β

F(αC)−
n

∑
i=1

wiF
(

θi +
α

β
C
)]

=
β

α
Cα =

1
α− 1

Cα({θi, wi}), (79)

meaning that the HPD centroid is just a special case of HD centroid up to a scaling transformation in
the natural parameters space. Let γ = β; we get:

Cα,β({θi, wi}) = arg minC

[
1
β F(βC)−∑n

i=1 wiF
(

β
α θi + C

)]
= Cα

({
β
α θi, wi

})
= Cα

({
1

α−1 θi, wi

})
. (80)

Let us consider the general HD centroid Cα,γ. Since F is convex, the minimization energy is the

sum of a convex function 1
β F(γC) with a concave function −∑n

i=1 wiF
(

γ
α θi +

γ
β C
)

. We can therefore
use the concave-convex procedure (CCCP) [8] that optimizes the difference of convex programs (DCPs):
We start with C0

α,γ = ∑n
i=1 wiθi (the barycenter, belonging to Θ) and then update:

Ct+1
α,γ =

1
γ
(∇F)−1

(
n

∑
i=1

wi∇F
(

γ

α
θi +

γ

β
Ct

α,γ

))
(81)

for t = 0, 1, · · · until convergence. This can be done by noting that η = ∇F(θ) are the dual parameters
that are also known as the expectation parameters (or moment parameters). Therefore,∇F and (∇F)−1

can be computed through Legendre transformations between the natural parameter space and the
dual parameter space.

This iterative optimization is guaranteed to converge to a local minimum, with a main advantage
of bypassing the learning rate parameter of gradient descent algorithms. Since F is strictly convex,
∇F is monotonous, and the rhs expression can be interpreted as a multi-dimensional quasi-arithmetic
mean. In fact, it is a barycenter on unnormalized weights scaled by β = ᾱ.

For exponential families, the symmetric HPD centroid is:

Oα = arg min
O

n

∑
i=1

wiSHα,1,1(θi : O) = arg min
O

[
1

2α
F(αO) +

1
2β

F(βO)−
n

∑
i=1

wiF(θi + O)

]
. (82)

In this case, the CCCP update rule is not in closed form because we cannot easily inverse the sum
of gradients (but when α = β, the two terms collapse, so the CS centroid can be calculated using CCCP).
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Nevertheless, we can implement the reciprocal operation numerically. Interestingly, the symmetric
HD centroid can be solved by CCCP! It amounts to solving:

Oα,γ = arg min
O

n

∑
i=1

wiSHα,γ(θi : O)

= arg min
O

[
F(γO)−

n

∑
i=1

wi

(
F
(

γ

α
θi +

γ

β
O
)
+ F

(
γ

β
θi +

γ

α
O
))]

. (83)

One can apply CCCP to iteratively update the centroid based on:

Ot+1
α,γ =

1
γ
(∇F)−1

[
n

∑
i=1

wi

(
1
β
∇F

(
γ

α
θi +

γ

β
Ot

α,γ

)
+

1
α
∇F

(
γ

β
θi +

γ

α
Ot

α,γ

))]
. (84)

Notice the similarity with the updating procedure of Ct
α,γ.

Once the centroid, say Oα,γ, has been computed, we calculate the associated Hölder information:

n

∑
i=1

wiSHα,γ(θi : Oα,γ), (85)

which generalizes the notion of variance and Bregman information [5] to the case of Hölder distances.

5.2. Clustering Based on Symmetric Hölder Divergences

Given a set of fixed densities {p1, · · · , pn}, we can perform variational k-means [6] with respect
to the Hölder divergence to minimize the cost function:

E(O1, · · · , OL, l1, · · · , ln) =
n

∑
i=1

SHα,γ(pi : Oli ), (86)

where O1, · · · , OL are the cluster centers and li ∈ {1, · · · , L} is the cluster label of pi. The algorithm is
given by Algorithm 1. Notice that one does not need to wait for the CCCP iterations to converge. It only
has to improve the cost function E before updating the assignment. We have implemented the
algorithm based on the symmetric HD. One can easily modify it based on HPD and other variants.

Algorithm 1: Hölder variational k-means.
Input: A list of probability distributions p1, · · · , pn; number of clusters L; α > 1; γ > 0
Output: A clustering scheme pi → {1, · · · , L}, ∀i ∈ {1, · · · , n}

1 Randomly pick L distributions as the cluster centers {Ol}L
l=1

2 while not converged do
3 for i = 1, . . . , n do
4 Assign li = arg minl SHα,γ(pi : Ol)

5 for l = 1, . . . , L do
/* Variational k-means: Carry CCCP iterations until the current center

improves the former cluster Hölder information */
6 Compute the centroid Ol = arg minO ∑i:li=l SHα,γ(pi : O)

7 return {li}n
i=1

We made a toy dataset generator, which can randomly generate n 2D Gaussians that have
an underlying structure of two or three clusters. In the first cluster, the mean of each Gaussian G(µ, Σ)
has the prior distribution µ ∼ G((−2, 0), I); the covariance matrix is obtained by first generating
σ1 ∼ Γ(7, 0.01), σ2 ∼ Γ(7, 0.003), where Γ means a gamma distribution with prescribed shape and scale,
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then rotating the covariance matrix diag(σ1, σ2) so that the resulting Gaussian has a “radial direction”
with respect to the center (−2, 0). The second and third clusters are similar to the first cluster with the
only difference being that their µ’s are centered around (2, 0) and (0, 2

√
3), respectively. See Figure 4

for an intuitive presentation of the toy dataset.
To reduce the number of parameters that has to be tuned, we only investigate the case α = γ.

If we choose α = γ = 2, then SHα,γ becomes the CS divergence, and Algorithm 1 reduces to traditional
CS clustering. From Figure 4, we can observe that the clustering result does vary with the settings
of α and γ. We performed clustering experiments on two different settings of the number of clusters
and two different settings of the sample size. Table 1 shows the clustering accuracy measured by
the percentage of “correctly-clustered” Gaussians, i.e., the output label by clustering algorithms that
coincides with the true label corresponding to the data generating process. The large variance of
the clustering accuracy is because different runs are based on different random datasets using the
same generator. We see that the symmetric Hölder divergence can give significantly better clustering
results as compared to CS clustering. Intuitively, the symmetric Hölder centroid with α and γ close
to one has a smaller variance (see Figure 4); therefore, it can better capture the clustering structure.
This hints that one should consider the general Hölder divergence to replace CS in similar clustering
applications [22,38]. Although one faces the problem of tuning the parameter α and γ, Hölder
divergences can potentially give better results. This is expected because CS is just one particular case
of the class of Hölder divergences.
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Figure 4. Variational k-means clustering results on a toy dataset consisting of a set of 2D Gaussians
organized into two or three clusters. The cluster centroids are represented by contour plots using the
same density levels. (a) α = γ = 1.1 (Hölder clustering); (b) α = γ = 2 (Cauchy–Schwarz clustering);
(c) α = γ = 1.1 (Hölder clustering); (d) α = γ = 2 (Cauchy–Schwarz clustering).
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Table 1. Clustering accuracy of the 2D Gaussian dataset (based on 1000 independent runs). CS,
Cauchy–Schwarz. Bold numbers indicate the best obtained performance.

k (#Clusters) n (#Samples) α = γ = 1.1 α = γ = 1.5 α = γ = 2 (CS) α = γ = 10

2 50 94.5%± 10.5% 89.9%± 13.2% 89.4%± 13.5% 88.9%± 14.0%
100 96.9%± 6.8% 94.3%± 9.9% 93.8%± 10.6% 93.1%± 11.6%

3 50 84.6%± 15.5% 79.3%± 14.8% 79.0%± 14.7% 78.7%± 14.5%
100 89.6%± 13.8% 83.9%± 14.6% 83.1%± 14.5% 82.8%± 14.4%

6. Conclusions and Perspectives

We introduced the notion of pseudo-divergences that generalizes the concept of divergences in
information geometry [3] that are smooth non-metric statistical distances that are not required to obey
the law of the indiscernibles. Pseudo-divergences can be built from inequalities by considering the
inequality difference gap or its log-ratio gap. We then defined two classes of statistical measures based
on Hölder’s ordinary and reverse inequalities: the tri-parametric family of Hölder pseudo-divergences
and the bi-parametric family of Hölder divergences. By construction, the Hölder divergences are proper
divergences between probability densities. Both statistical Hölder distance families are projective
divergences that do not require distributions to be normalized and admit closed-form expressions
when considering exponential families with conic or affine natural parameter space (like multinomials
or multivariate normals). Those two families of distances can be symmetrized and encompass both
the Cauchy–Schwarz divergence and the family of skew Bhattacharyya divergences. Since the
Cauchy–Schwarz divergence is often used in distribution clustering applications [22], we carried
out preliminary experiments demonstrating experimentally that the symmetrized Hölder divergences
improved over the Cauchy–Schwarz divergence for a toy dataset of Gaussians. We briefly touched
upon the use of these novel divergences in statistical estimation theory. These projective Hölder
(pseudo-)divergences are different from the recently introduced compositive scored-induced Hölder
divergences [17,18] that are not projective divergences and do not admit closed-form expressions for
exponential families in general.

We elicited the special role of escort distributions [3] for Hölder divergences in our framework:
Escort distributions transform distributions to allow one:

• To reveal that Hölder pseudo-divergences on escort distributions amount to skew Bhattacharyya
divergences [8],

• To transform the improper Hölder pseudo-divergences into proper Hölder divergences,
and vice versa.

It is interesting to consider other potential applications of Hölder divergences and compare their
efficiency against the reference Cauchy–Schwarz divergence: For example, HD t-SNE (Stochastic
Neighbor Embedding) compared to CS t-SNE [39], HD vector quantization (VQ) compared to CS
VQ [40], HD saliency vs. CS saliency detection in images [41], etc.

Let us conclude with a perspective note on pseudo-divergences, statistical estimators and manifold
learning. Proper divergences have been widely used in statistical estimators to build families
of estimators [42,43]. Similarly, given a prescribed density p0(x), a pseudo-divergence yields
a corresponding estimator by minimizing D(p0 : q) with respect to q(x). However, in this case,
the resulting q(x) is potentially biased and is not guaranteed to recover the optimal input p0(x).
Furthermore, the minimizer of D(p0 : q) may not be unique, i.e., there could be more than one
probability density q(x) yielding D(p0 : q) = 0.

How can pseudo-divergences be useful? We have the following two simple arguments:

• In an estimation scenario, we can usually pre-compute p1(x) 6= p0(x) according to D(p1 : p0) = 0.
Then, the estimation q(x) = arg minq D(p1 : q) will automatically target at p0(x). We call this
technique “pre-aim.”
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For example, given positive measure p(x), we first find p0(x) to satisfy DH
α,1,1(p0 : p) = 0.

We have p0(x) = p(x)
1

α−1 that satisfies this condition. Then, a proper divergence between p(x)
and q(x) can be obtained by aiming q(x) towards p0(x). For conjugate exponents α and β,

DH
α,1,1(p0 : q) = − log

∫
X p0(x)q(x)dx(∫

X p0(x)αdx
)1/α (∫

X q(x)βdx
)1/β

= − log

∫
X p(x)

1
α−1 q(x)dx(∫

X p(x)
α

α−1 dx
)1/α (∫

X q(x)βdx
)1/β

= − log

∫
X p(x)

β
α q(x)dx(∫

X p(x)βdx
)1/α (∫

X q(x)βdx
)1/β

= DH
α,β(p : q). (87)

This means that the pre-aim technique of HPD is equivalent to HD DH
α,γ when we set γ = β.

As an alternative implementation of pre-aim, since DH
α,1,1(p : pα−1) = 0, a proper divergence

between p(x) and q(x) can be constructed by measuring:

DH
α,1,1(q : pα−1) = − log

∫
X p(x)

α
β q(x)dx(∫

X q(x)αdx
)1/α (∫

X p(x)αdx
)1/β

= DH
β,α(p : q), (88)

turning out again to belong to the class of HD.

In practice, HD as a bi-parametric family may be less used than HPD with pre-aim because of
the difficulty in choosing the parameter γ and because that HD has a slightly more complicated
expression. The family of HD connecting CS divergence with skew Bhattacharyya divergence [8]
is nevertheless of theoretical importance.

• In manifold learning [44–47], it is an essential topic to align two category distributions p0(x)
and q(x) corresponding respectively to the input and output [47], both for learning and
for performance evaluation. In this case, the dimensionality of the statistical manifold that
encompasses p0(x) and q(x) is so high that to preserve monotonically p0(x) in the resulting q(x)
is already a difficult non-linear optimization and could be sufficient for the application, while
preserving perfectly the input p0(x) is not so meaningful because of the input noise. It is then
much easier to define pseudo-divergences using inequalities which do not necessarily need to
be proper with potentially more choices. On the other hand, projective divergences including
Hölder divergences introduced in this work are more meaningful in manifold learning than
KL divergence (which is widely used) because they give scale invariance of the probability
densities, meaning that one can define positive similarities then directly align these similarities,
which is guaranteed to be equivalent to aligning the corresponding distributions. This could
potentially give unified perspectives in between the two approaches of similarity-based manifold
learning [46] and the probabilistic approach [44].

Hölder-type inequalities have been generalized to sets [48] instead of pairs of objects and to
positive functional spaces, as well [49]. We also note that some divergences like Csiszár f -divergences
enjoy themselves Hölder-type inequalities [50].

We expect that these two novel parametric Hölder classes of statistical divergences and
pseudo-divergences open up new insights and applications in statistics and information sciences.
Furthermore, the framework to build divergences or pseudo-divergences from proper or improper
biparametric inequalities [1] offers novel classes of divergences to study.

Reproducible source code is available online [51].
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Abbreviations

DHS
α Hölder proper non-projective Scored-induced divergence [18]

DH
α,σ,τ Hölder improper projective pseudo-divergence (new)

DH
α,γ Hölder proper projective divergence (new)

DHE
α Hölder proper projective escort divergence (new)

KL Kullback-Leibler divergence [10]
CS Cauchy–Schwarz divergence [2]
B Bhattacharyya distance [25]
B 1

α
skew Bhattacharyya distance [8]

Dγ γ-divergence (score-induced) [11]
pE

α , qE
β escort distributions

α, β Hölder conjugate pair of exponents: 1
α + 1

β = 1

ᾱ, β Hölder conjugate exponent: ᾱ = β = α
α−1

θp, θq natural parameters of exponential family distributions
X support of distributions
µ Lebesgue measure
Lγ(X , µ) Lebesgue space of functions f such that

∫
X | f (x)|γdx < ∞

Appendix A. Proof of Hölder Ordinary and Reverse Inequalities

We extend the proof ([52], p. 78) to prove both the (ordinary or forward) Hölder inequality and
the reverse Hölder inequality.

Proof. First, let us observe that− log(x) is strictly convex on (0,+∞) since (− log(x))′′ = 1
x2 . It follows

that for 0 < a < 1 that:

− log(ax1 + (1− a)x2) ≤ −a log(x1)− (1− a) log(x2), (A1)

where the equality holds iff x1 = x2.
Conversely, when a < 0 or a > 1, we have:

− log(ax1 + (1− a)x2) ≥ −a log(x1)− (1− a) log(x2), (A2)

where the equality holds iff x1 = x2.
Equivalently, we can write these two inequalities as follows:{

xa
1x1−a

2 ≤ ax1 + (1− a)x2 (if 0 < a < 1);
xa

1x1−a
2 ≥ ax1 + (1− a)x2 (if a < 0 or a > 1),

(A3)

both of them are tight iff x1 = x2.
Let P and Q be positive measures with Radon–Nikodym densities p(x) > 0 and q(x) > 0 be

positive densities with respect to the reference Lebesgue measure µ. The densities are strictly greater
than zero on the support X . Plugging:

a =
1
α

, 1− a =
1
β

, x1 =
p(x)α∫

X p(x)αdx
, x2 =

q(x)β∫
X q(x)βdx

, (A4)
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into Equation (A3), we get:
p(x)

(
∫
X p(x)αdx)

1/α

q(x)

(
∫
X q(x)βdx)

1/β ≤ 1
α

p(x)α∫
p(x)αdx + 1

β
q(x)β∫
q(x)βdx

if α > 0 and β > 0,

p(x)

(
∫
X p(x)αdx)

1/α

q(x)

(
∫
X q(x)βdx)

1/β ≥ 1
α

p(x)α∫
p(x)αdx + 1

β
q(x)β∫
q(x)βdx

if α < 0 or β < 0.
(A5)

Assume that p(x) in Lα(X , µ) and q(x) in Lβ(X , µ), so that both
∫
X p(x)αdx and

∫
X q(x)βdx

converge. Integrate both sides on X to get:
∫
X p(x)q(x)dx

(
∫
X p(x)αdx)

1/α
(
∫
X q(x)βdx)

1/β ≤ 1 if α > 0 and β > 0,∫
X p(x)q(x)dx

(
∫
X p(x)αdx)

1/α
(
∫
X q(x)βdx)

1/β ≥ 1 if α < 0 or β < 0.
(A6)

The necessary and sufficient condition for equality is that:

p(x)α∫
X p(x)αdx

=
q(x)β∫
X q(x)βdx

, (A7)

almost everywhere. That is, there exists a positive constant λ > 0, such that:

p(x)α = λq(x)β, λ > 0, almost everywhere. (A8)

The Hölder conjugate exponents α and β satisfies 1
α + 1

β = 1. That is, β = α
α−1 . Thus, when α < 0,

we necessarily have β > 0, and vice versa.
We can unify these two straight and reverse Hölder inequalities into a single inequality by

considering the sign of αβ = α2

α−1 : We get the general Hölder inequality:

sign(αβ)

∫
X p(x)q(x)dx(∫

X p(x)αdx
)1/α (∫

X q(x)βdx
)1/β

≥ sign(αβ). (A9)

When α = β = 2, the Hölder inequality becomes the Cauchy–Schwarz inequality:

∫
X

p(x)q(x)dx ≤

√(∫
X

p(x)2dx
)(∫

X
q(x)2dx

)
. (A10)

Historically, Cauchy stated the discrete sum inequality in 1821, while Schwarz reported the
integral form of the inequality in 1888.
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