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Abstract: A variant of continuous nonequilibrium thermodynamic theory based on the postulate
of the scale invariance of the local relation between generalized fluxes and forces is proposed here.
This single postulate replaces the assumptions on local equilibrium and on the known relation
between thermodynamic fluxes and forces, which are widely used in classical nonequilibrium
thermodynamics. It is shown here that such a modification not only makes it possible to deductively
obtain the main results of classical linear nonequilibrium thermodynamics, but also provides evidence
for a number of statements for a nonlinear case (the maximum entropy production principle,
the macroscopic reversibility principle, and generalized reciprocity relations) that are under discussion
in the literature.
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1. Introduction

Classical nonequilibrium thermodynamics is an important field of modern physics that was
developed for more than a century [1–5]. It is fundamentally based on thermodynamics and statistical
physics (including kinetic theory and theory of random processes) and is widely applied in biophysics,
geophysics, chemistry, economics, etc. The basic concept of classical nonequilibrium thermodynamics
is the local equilibrium concept, i.e., the assumption that a nonequilibrium system can be treated
as a system consisting of a large number of macroscopic volume elements, where thermodynamic
equilibrium is established in a time much smaller than that in the entire system (a necessary condition
for local equilibrium in the system is a Maxwellian velocity distribution of molecules in the volume
under consideration). This assumption allows for the use of equilibrium thermodynamic variables
such as temperature and entropy, as well as the laws of thermodynamics (primarily, the first and
second laws) to describe the evolution of the nonequilibrium system. In particular, with the use
of the relation between the local entropy and thermodynamic parameters, entropy production in
the nonequilibrium system σ (σ ≥ 0) can be introduced as ∑

i
(xi ji) (the sum of the products of

thermodynamic fluxes ji and forces xi) [1–5]. One of the most important goals of nonequilibrium
thermodynamics is to determine the relation between fluxes and forces because this allows for the
representation of energy, momentum, and mass transport equations in a closed form. This relation can
be determined either by analyzing experimental data or by postulating a certain variational principle.
Both approaches go back to Lars Onsager. He formulated the relation between fluxes and forces
in the form xj = ∑

i
(lij ji), lij = lji (where lij are the kinetic coefficients), which underlies so-called

linear nonequilibrium thermodynamics. This section of classical nonequilibrium thermodynamics is
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currently most developed and was considered in numerous works (see, e.g., [1,2]). At the same time,
the current development of science and technology reveals the insufficiency of linear nonequilibrium
thermodynamics at least in two points. First, in a number of problems (e.g., in rheology), relations
between fluxes and forces are nonlinear [5–8]; second, according to [5], the local equilibrium concept is
too crude or even invalid for a number of fast processes, for the free molecular flow of a gas, etc.

The above facts indicate the necessity of both the evolution development of classical
nonequilibrium thermodynamics by its extension to a nonlinear case (without the rejection of the
local equilibrium concept; see, e.g., [6–9]) and the more significant reformulation of nonequilibrium
classical thermodynamics such as the rejection of the local equilibrium concept, an increase in the
number of variables determining a nonequilibrium process as compared to the equilibrium case, etc.
(see e.g., [5]). Many of these approaches are interesting, have been developed, and have advantages and
disadvantages, which have been extensively discussed in literature (see e.g., [5]). Interesting statements
that the maximum entropy production principle [6–10], generalized reciprocity relations [10–14],
and macroscopic reversibility condition [13–15] are valid for the case of a nonlinear dependence of
thermodynamic fluxes on forces.

It is noteworthy that most of the proposed new theories, on one hand, borrow a number of results
of classical nonequilibrium thermodynamics and, on the other hand, add new hypotheses. The fractions
of the former and the latter are determined by the intuition of authors or proposed applications of
a theory. As a result of such “combination”, new theories have no generality and justification of
foundations/consequences inherent in classical nonequilibrium thermodynamics completely based
on the fundamental foundation of equilibrium thermodynamics. In view of this circumstance, it is
reasonable to formulate nonequilibrium thermodynamics on new foundations without the inclusion of
postulates/results of classical nonequilibrium (equilibrium) thermodynamics (in particular, without the
local equilibrium concept and the specification of the explicit form for the relation between fluxes and
forces). The most important requirement to such a theory is the possibility of obtaining all known main
results of linear and nonlinear nonequilibrium thermodynamics, new predictions, and applications.
A variant of such a theory is proposed in this work.

Before the presentation of the foundations of the theory, we discuss the following item, which
is very important for this work, but is insufficiently presented in the literature (we here clarify and
illustrate in more detail the ideas proposed in [16,17]). We consider the simplest problem of heat transfer
in a solid. The assumption of local equilibrium is usually used in this case. As a result, each element
under consideration can be associated with a certain equilibrium temperature T and a certain kinetic
coefficient (related to the thermal conductivity) lq. In this case, the heat flux density jq for an arbitrary

local volume element of a substance is related to the gradient of the temperature∇T as jq = − lq
T2∇T [2].

The proportionality coefficient in this linear relation between the flux and thermodynamic force
depends only on the equilibrium characteristics of the element under consideration. This relation
can be used, e.g., to determine the total steady-state heat flux jq,in in a rod with the length d and
temperatures at the ends T1 and T2. Integration over the length of the rod under the simplest
assumption of the temperature independence of lq yields jq,in =

lq
T1T2d (T1− T2). In this integral relation,

the heat flux is related to the temperature difference (thermodynamic force) through the quantities
characterizing the rod as a whole. This relation is obviously nonlocal in the space, although it was
obtained with the use of the relation based on the assumption of local equilibrium. In the presented
example, both local and nonlocal relations between the flux and force are linear. However, more
complex cases often appear. We consider for example the simplest chemical reaction B→ C. According
to the main empirical law of chemical kinetics, the flux (reaction rate) jr,in and force (chemical affinity)
µB − µC (µB and µC are the dimensionless chemical potentials of the substances B and C, respectively)
are related as jr,in = kC(exp(µB − µC)− 1), where the coefficient kC depends on the nonequilibrium
concentration of one of the components. It is well known (see, e.g., [1,2,17,18]) that such a nonlinear
relation can be theoretically obtained by integrating the linear relation jr = lr(x) ∂µ

∂x (where µ is the
chemical potential and lr is a coefficient) along the reaction path x (from µB to µC). It is also well
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known that typical chemical reactions occur under the conditions where the Maxwellian distribution
for reacting molecules has been reached; for this reason, it is accepted that local thermodynamic
equilibrium in the system under study is established and the entropy balance is calculated with
equilibrium functions [1,2,4]. At the same time, according to the above presentation, by analogy
with the considered heat transfer problem, the relation for the reaction rate jr,in can be considered as
nonlocal, whereas the relation for jr can be treated as local. The examples considered above clearly
illustrate the following important points. First, local relations between thermodynamic forces and
fluxes depend only on local equilibrium parameters, whereas the other characteristics of the system
(including nonequilibrium) appear only in nonlocal relations. Second, nonlocal relations can be
obtained by the corresponding integration of local relations and, in this respect, nonlocal relations are
secondary and less important for the foundation of nonequilibrium thermodynamics. In the case of
small thermodynamic forces (e.g., the gradient of the temperature or the chemical potential), nonlocal
relations are often reduced to local linear ones. Third, classical nonlinear chemical kinetics follows
from linear and local (in the reaction path space) relations between fluxes and forces.

In this work, we do not analyze relations existing in nonlocal systems [19], but study the
most fundamental problems of the generalization of classical nonequilibrium thermodynamics and
the determination of possible nonlinear local relations between fluxes and forces. Consequently,
the criticism of the results of this work in terms of the known properties of nonlocal systems,
particularly chemical systems (as in [10,13,20]), is incorrect.

2. Foundations of the Theory

We consider a small macroscopic volume of a nonequilibrium system at a certain time instant and
introduce a dissipation function D characterizing an increase in the entropy in this volume because of
a nonequilibrium process. By definition, it is obvious that D ≥ 0. We use the following assumptions:

(i) Let D be a product of a cause of nonequilibrium (or a generalized force) Xi and a response
to this nonequilibrium (or a generalized flux) Ji. Since the system can include several, generally
independent Xi (and Ji) values, then D = ∑

i
Xi Ji. Such a symmetric representation of D can be justified

by two reasons: (a) any nonequilibrium process appears (i.e., D 6= 0) only in the presence of a cause
Xi 6= 0 (deviation/perturbation of equilibrium in the system) and response (reaction of the system)
Ji 6= 0; (b) the notions of the cause and response are often relative, because it is sometimes difficult
to determine what the real cause of nonequilibrium is and what the response is (e.g., in classical
nonequilibrium thermodynamics, a thermodynamic flux can generate a thermodynamic force and
vice versa).

(ii) A relation between Xi and Jj exists and has the form Xi = F({Jj}), where F({Jj}) is a function
generally of all fluxes Jj existing in the system under consideration. (This condition can be replaced
by Jj = F−1({Xi}) if the variable X is for some reasons more preferable than J. Below, we operate
in the space of generalized fluxes, but this circumstance is not fundamental, and all results of the
work can be reformulated in the space of generalized forces.) It is supposed that generalized fluxes
constitute an independent complete set, which completely determines the nonequilibrium problem
under study. Correspondingly, Xi is independent of any variables characterizing deviation from
equilibrium other than Jj. The same is true for D. For convenience, all variables that are not related
to nonequilibrium including the dimensional kinetic and equilibrium thermodynamic coefficients
(characteristics) of a material in the system under consideration (e.g., temperature, density, thermal
conductivity coefficient, diffusion coefficient, etc.), as well as dimensional constants (e.g., the Planck
and Boltzmann constants), are included in Xi and Jj. As a result, the functions Xi = F({Jj}) and D = D({Jj})
can include, in addition to the set {Jj}, only a set of dimensionless (numerical) constants {Lij}.
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(iii) Let the relation D = D({Jj}) be scale invariant (or, equivalently, Xi = F({Jj}) be scale invariant);
i.e., D({λJj}) = λnD({Jj}), where n is the exponent (degree) of homogeneity and λ is any real number.
We postulate that D({Jj}) is a homogeneous symmetric polynomial of the form

Dm = ∑
r,l,..,p=1

Lαr ...γp Jαr
r Jβl

l . . . J
γp
p ,

αr + βl + . . . + γp = k,
(1)

where k, m, r, l, ... , p, αr, βl , . . . , γp are nonnegative integers, n = k/m. For each particular local
nonequilibrium system, Equation (1) is certainly defined (with a given number of terms and definite
values k, m, Lαr ...γp , etc.). However, at a significant change in the conditions of existence of the
system under consideration, the complexity of this expression can change (e.g., the number of
generalized fluxes describing the system is changed) and, as a result, the form of the dissipation
function becomes different.

Some reasons for the form of Equation (1) are as follows. A polynomial of positive degree was
chosen because it is the only elementary homogeneous function satisfying the condition J = 0⇒ D = 0
(see assumption (i)). The condition that all fluxes should generally be equivalent in the possible
contribution to dissipation requires the symmetry of the polynomial. The choice of integer k, ...,
αr, βl , . . . , γp results in a finite number of terms in Equation (1). This property can either be considered
as a simplifying assumption or be explained by the fact that dissipation (or any its power) in a real
nonequilibrium system cannot be the infinite sum of different combinations of generalized fluxes.

Equation (1) is the basic postulate of the theory considered here. An additional reason clarifying
and, in a certain sense, justifying the choice of Equation (1) is based on the dimensional analysis [21,22].
Indeed, dissipation D under consideration is completely characterized by the set {Jj} of the main
(primary) variables Jj. These quantities are determined in different independent measurements
and, as a result, constitute the entire set of primary dimensional units for the description of D [23].
Consequently, the number of quantities significant for the problem of the relation between D and {Jj}
differs from the number of primary quantities by unity. However, according to the π theorem [21,22],
the relation between D and {Jj} in this case necessarily has the form of Equation (1) [24]. We note that the
dimension of fluxes [Jj] in this case is [D]1/n (where [D] is the dimension of the dissipation function).

According to Equation (1), there is a wide variety of possible relations between dissipation
functions and fluxes. A particular form of D in a certain problem can be theoretically limited
considerably by means of, e.g., the analysis of the symmetry of the system (an example is the Landau
theory of phase transitions based on the analysis of the expression for the free energy whose form
can be written exclusively on the basis of symmetry reasons). The degree of homogeneity of D is
determined by the internal structure of the system (e.g., in the case of a disperse system, by the
characteristic sizes and density, as well as by the distribution of the disperse phase and its anisotropy).
The dissipation function as a function of fluxes (heat, mass, etc.) in a nonequilibrium system can
always be determined from measurements because there are methods of indirect measurements of the
entropy and its variation.

The variant proposed above for constructing nonequilibrium thermodynamics is a generalization
of classical nonequilibrium thermodynamics. Indeed, thermodynamic forces {xi}, fluxes {ji} and local
entropy production σ, which constitute a certainly defined set in the case of classical nonequilibrium
thermodynamics, are particular cases of the introduced quantities {Xi}, {Ji}, and D (it is noteworthy that
the bilinear form is not postulated in classical nonequilibrium thermodynamics, but is a consequence
of the local equilibrium assumption, the second law of thermodynamics, and conservation laws
such as mass, momentum, and total energy). In classical nonequilibrium thermodynamics, any local
thermodynamic force xi can be expressed in terms of a basis set {ji}. The set {ji} is complete; therefore,
local thermodynamic forces depend only on thermodynamic fluxes [25], rather than on any other
quantities (two examples illustrating this are presented in the Introduction). A particular consequence
of this property is the requirement of the scale invariance of the local relation between fluxes and
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forces in classical nonequilibrium thermodynamics; otherwise, new variables (scales) appear beyond
the set {ji}.

The relation between entropy production and thermodynamic fluxes in linear nonequilibrium
thermodynamics (which is the most developed and widely used variant of classical nonequilibrium
thermodynamics) corresponds to Equation (1) with m = 1 and k = 2. Applications of thermodynamics
to various problems include examples of the use of homogeneous dissipation functions differing
from a quadratic function accepted in linear thermodynamics. We present the four simplest examples
illustrating the proposed generalized dependence given by Equation (1):

(i) When studying the hydrodynamics of nonlinear viscous fluids in steady-state shearing flows both
experimentally and theoretically, the Ostwald–de Waele power-law model is widely used [26].
This model applied, in particular, to a flow in a pipe gives the dependence of the flux j1 on
the pressure gradient along the axis of the pipe x1 in the form (see, e.g., [26]) j ∝ x1

1/γ and,
correspondingly, the dissipation function in the form D ∝ j1(γ+1). The exponent γ characterizes
the degree of the non-Newtonian behavior of a material (for pseudoplastics, 0 < γ < 1; for dilatant
fluids, γ > 1; and for Newtonian fluids, γ = 1).

(ii) To describe the rheological properties of solids, the model of a Newtonian body is often used
(a cylinder filled with a viscous fluid, where a piston with holes moves). The rheological law
relating the stress x2 and the rate of the inelastic strain j2 has the form j2 ∝ x2

1/3 and the dissipation
function is D ∝ j24 [6,7].

(iii) To describe a turbulent flow of a Newtonian fluid in a pipe, the Blasius empirical model is widely
used [27]; according to this model, the dependence of the flux of the fluid (volume flow rate) j3 on
the pressure gradient along the axis of the a pipe x3 has the form j3 ∝ x3

1/(2−γ) and the dissipation
function is D ∝ j3(3−γ), where γ ≈ 0.25.

(iv) When describing experimental data on the solidification of melts of various substances under
kinetically limited conditions, it was found that the crystal growth rate (heat flux) j4 as a function
of supercooling x4 is well described by the dependence j4 ∝ x4

γ (D ∝ j4(γ+1)/γ), where γ ranges
from 1 to 2 depending on a substance and the presence and type of inclusions on its surface
(size and number of growth steps, dislocations, etc.) [28].

We present the above examples of nonlinear relations between fluxes and forces containing
only one force (flux) in order to avoid lengthy expressions (correspondingly, the dissipation function
includes only one term). The appearance of a large number of terms without the breaking of the
homogeneity of the dissipation function is possible in the presented problems for two reasons. The first
reason is the conservation of one thermodynamic force x, but this force is now multidimensional,
rather than one-dimensional. An example is a flow of nonlinear viscous anisotropic fluids in a uniform
medium or nonlinear viscous isotropic fluids in an anisotropic medium or in the field of gyroscopic
forces. Anisotropy is responsible for the mutual influence of different spatial components of forces.
The second reason is a simple increase in the number of thermodynamic forces with the same tensor
dimension in the nonlinear system. An example is a relative rapid solidification of a melt in the
presence of both supercooling and impurity concentration gradients. For the cases most interesting
for applications, usually, the presence of several terms in the homogeneous polynomial dissipation
function is due simultaneously to the first and second mentioned reasons. The theory proposed in this
work can be useful just for these complex cases. We again emphasize that only local relations (systems)
are considered in this paper. Complex compound systems (which in essence constitute a discrete case of
nonlocal systems) can be usually decomposed into simpler independent subsystems each characterized
by a homogeneous dissipation function generally with an individual degree of homogeneity.

Thus, introduced nonequilibrium thermodynamics is applicable both for the cases where linear
nonequilibrium thermodynamics is valid and for the cases where the linearity of local relations
between fluxes and forces are violated. However, now, the generalized forces, fluxes, and dissipation
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function can be more general and have no direct analogs in classical nonequilibrium thermodynamics
(because we do not use the local equilibrium assumption).

3. Consequences of the Theory

Below, we present a number of the most important consequences of the above postulates.
For brevity, generalized forces and fluxes are called below forces and fluxes, respectively.

1. The response of the system to appearing nonequilibrium can be generally both positive and
negative, depending on the choice of the reference system of the physical parameters associated with
a flux. All fluxes in {Jj} are independent and can vary in a wide range; consequently, the choice of
special conditions (preparation of nonequilibrium systems) can ensure the absence of a certain flux.
Therefore, the conditions of the existence and nonnegativity of D for both positive and negative fluxes
are the evenness of k and the oddness of m.

We present below examples of the simplest possible relations between D and Ji in the form of
Equation (1) with m = 1.

If the system contains one flux, then

D = L2J2, k = 2 (2a)

D = L4J4, k = 4 (2b)

D = L6J6, k = 6 (2c)

etc.
If the system contains two fluxes, then

D = L20 J2
1 + L02 J2

2 + L11 J1 J2, k = 2 (3a)

D = L40 J4
1 + L04 J4

2 + L31 J3
1 J2 + L13 J1 J3

2 + L22 J2
1 J2

2 , k = 4 (3b)

etc.
If the system contains three fluxes, then

D = L200 J2
1 + L020 J2

2 + L002 J2
3 + L110 J1 J2 + L101 J1 J3 + L011 J2 J3, k = 2 (4a)

D = L400 J4
1 + L040 J4

2 + L004 J4
3+

+L310 J3
1 J2 + L301 J3

1 J3 + L130 J1 J3
2 + L103 J1 J3

3 + L031 J3
2 J3 + L013 J2 J3

3+

+L220 J2
1 J2

2 + L202 J2
1 J2

3 + L022 J2
2 J2

3+

+L211 J2
1 J2 J3 + L121 J1 J2

2 J3 + L112 J1 J2 J2
3 , k = 4

(4b)

etc.
2. Since D is a homogeneous function, according to the Euler theorem,

D(Ji) =
1
n∑

i

(
∂D(Ji)

∂Ji
Ji

)
. (5)

However, according to the first assumption, D(Ji) = ∑
i

Xi(Ji)Ji; hence,

Xi(Ji) =
1
n

∂D(Ji)

∂Ji
(6)

or, in view of Equation (5):
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Xi(Ji) =
D(Ji)

∑
i

(
∂D(Ji)

∂Ji
Ji

) ∂D(Ji)

∂Ji
. (7)

Equations (6) and (7) make it possible to determine the relation between Xi and Ji from the known
function D(Ji). Such relations are called orthogonality relations [6,7,9].

As is well known [6,7,9], in classical nonequilibrium thermodynamics with local entropy
production in a nonequilibrium process specified by Equations (2a), (3a), or (4a), Equation (6) provides
linear relations between fluxes and forces. If the entropy production in the nonequilibrium process
has a more complex form (e.g., Equations (2b,c), (3b), or (4b)), Equation (6) provides nonlinear
relations between fluxes and forces. Thus, Consequences 1 and 2 make it possible not only to obtain
standard relations of classical linear nonequilibrium thermodynamics, but also to significantly limit
and to explicitly represent the entire set of possible relations between fluxes and forces in the local
nonlinear case.

3. It is easy to show (see, e.g., [9]) that, according to Equation (6),

∂

∂Jj

[
D
(

Jj
)
− µ

(
D
(

Jj
)
−∑

i
Xi Ji

)]
X

= 0 (8)

where µ = n/(n − 1) and differentiation with respect to fluxes is performed at constant forces.
Equation (8) is equivalent to the statement that, if the thermodynamic forces Xi are preset, then the

true thermodynamic fluxes Ji satisfying the side condition D = ∑
i

Xi Ji correspond to the necessary

condition of an extremum for the dissipation function D(J). At fixed (limited) forces and for a positive
and limited function D(J), the extremum of D(J) can be only a maximum [6,7,9]. Thus, the relation
between fluxes and forces corresponds to the maximum dissipation in the nonequilibrium system.
In classical nonequilibrium thermodynamics, this statement is known as the maximum entropy
production principle (or Ziegler’s principle) [6,7,9].

4. According to the first consequence (the evenness of k), as well as to Equations (1) and (6), it is
obvious that

D(J1, J2, . . . ) = D(−J1, −J2, . . . ) or Xi(J) = −Xi(−J). (9)

This relation is sometimes called Meixner’s macroscopic reversibility principle [13–15].
5. Using Equation (6), we obtain

∂Xi(J)
∂Jj

=
1
n

∂2D(J)
∂Ji∂Jj

or, using Equation (6) again, we arrive at the final expression

∂Xi(J)
∂Jj

=
∂Xj(J)

∂Ji
. (10)

This relation is known in the literature on nonlinear nonequilibrium thermodynamics as the
generalized reciprocal relation (Gyarmati–Li generalization) [10–14]. It generalizes the known Onsager
reciprocal relation to the nonlinear case.

6. Above, the corollaries of the theory advanced herein, which were previously proposed in the
literature as corollaries of other approaches or as hypotheses, are described. As is seen, our approach
allows for their reproduction and generalization. We shall now discuss an important peculiarity of the
approach hereof. This peculiarity may prove to be extremely promising for applications and has no
previous analogs. For example, let a system have one force and one flux. Then Dm = LJk and, based
on Equation (6), X = LJ(k−m)/m. Let k < m, then the dependence between the thermodynamic flux and
the thermodynamic force becomes inversely proportional. Thus, the thermodynamic force grows
as the thermodynamic flux decreases; with the flux tending to zero, the force tends to an infinitely
large value (it shall be noted that, in this case, dissipation function equals zero). Such an exotic
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relation between flux and force observed for a specific set of model parameters (in our example, k < m)
may prove to be very important for a number of systems where classical thermodynamics (and thus,
classical non-equilibrium thermodynamics based on the concept of local equilibrium) is inapplicable.
This is a class of systems that have no thermodynamic equilibrium. Such systems are represented,
for instance, by macroscopic systems with extremely long-range interaction forces or by nano- and
microsystems with short-range interaction forces but occasionally subjected to rather strong external
effects. Cosmology (e.g., the Big Bang theory and the Black Hole theory) may become a crucial and
the most promising field of application of the example at hand. Further investigation of possible
exotic variants of the theory proposed herein (in particular, cases with multiple fluxes and forces) is
very interesting and will form the subject of future publications. It is important to emphasize that
the general nature of the theory hereof makes it possible to consider such particular exotic cases that
are significant for a number of applications. For specific model parameters, results of our theory are
reduced to traditional classical results. Thus, for the considered example, if k > m, corollaries of the
theory are the same as the traditional ones: with the decrease of force, flux decreases too.

4. Conclusions

The proposed approach to the construction of local nonequilibrium thermodynamics replaces
the concept of local equilibrium and assumptions of possible relations between fluxes and forces by
the postulate of the scale invariance of such a relation. This makes it possible both to obtain known
results of classical linear nonequilibrium thermodynamics and to justify in a new fashion a number
of important hypotheses discussed in nonlinear nonequilibrium thermodynamics. The proposed
replacement of the local equilibrium hypothesis significantly expands the region of applicability of the
results primarily because of a larger freedom in the choice of fluxes and forces as compared to the local
equilibrium case. This allows for the analysis of nonlinear local systems for which thermodynamics has
often been applied, but not with its total capabilities (because of difficulties with the postulate of local
equilibrium). Numerous such systems exist both in various engineering applications (materials science,
metallurgy, electronics, etc.) and in astrophysics, geophysics, biophysics, etc. The proposed technique
can be promising in fields of science where the dissipation function can be introduced, but it is
very difficult to introduce the notion of local equilibrium and many thermodynamic characteristics
(e.g., temperature) [29]. Such fields of science are primarily cosmology, economics, psychology
(particularly cognitive), and sociology. The generalized forces and fluxes, i.e., causes and responses,
as well as relations between them, introduced in this work can be very productive for nonlinear, poorly
thermodynamically formalized, very complex (e.g., with emergent properties) systems studied in
these sciences.

The reported approach to the generalization of classical nonequilibrium thermodynamics requires
a further analysis and development, especially in the following directions.

(i) Postulates underlying the developed theory are not exclusive and might not be the most optimal.
They should be further improved and possibly replaced (e.g., the theory can be based on
some consequences obtained in this work, e.g., the maximum dissipation principle instead
of scale invariance). The proposed scale invariant form of the dissipation function allows for the
forecasting of possible nonlinear local relations between fluxes and forces, but these relations,
as well as the form of the dissipation function, require further theoretical justification and analysis,
especially to reveal the limitations of the approach under development.

(ii) It is important to compare the developed theory with other generalizations of nonequilibrium
thermodynamics, particularly with extended irreversible thermodynamics.
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