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Abstract: This paper analyses the citation profiles of researchers in fractional calculus. Different metrics
are used to quantify the dissimilarities between the data, namely the Canberra distance, and the classical
and the generalized (fractional) Jensen–Shannon divergence. The information is then visualized by
means of multidimensional scaling and hierarchical clustering. The mathematical tools and metrics
allow for direct comparison and visualization of researchers based on their relative positioning and
on patterns displayed in two- or three-dimensional maps.
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1. Introduction

Measuring the scientific output of researchers, namely, productivity (quantity) and/or visibility
(impact of citation), is important in many circles, such as universities, journals, funding agencies,
promotion committees and employers [1].

The h-index was proposed in 2005 by the physicist Jorge E. Hirsch to measure the scientific
output of individual researchers [2,3]. A researcher has index h ∈ N if h is the largest number such
that his h most cited publications have at least h citations each. For determining h, we can adopt
a simple procedure. Firstly, we sort the number of citations per publication by decreasing order for
obtaining the citation profile C = φ(k), where k ∈ N represents the rank, and, afterwards, for the array
H = min (φ (k) , k) , we have h = max(H). In practice, h is close to the intersection of C = φ(k) and
C = k. The h-index has a time memory since it captures the accumulation of citations.

In a short period of a few years, Hirsch’s index has been accepted in many fields as a criterion
for establishing rankings [1]. The h-index has the advantage of incorporating both the quantity and
visibility of publications in a single-number criterion [4,5]. Moreover, the index is equally robust to
rarely and frequently cited works [6–8]. The domain of application of the h-index surpassed its original
purpose [1,6,9] and was adopted for measuring collective scientific output [5,10,11], evaluating the
scientific impact of journals [12,13], and quantifying how much work was done in a given topic or
compound [14].

Some authors pointed out several disadvantages of the h-index, noting that, like any
other one-parameter index, it withdraws the multidimensional nature of scientific output [5].
Others identified additional shortcomings [15], namely its inability to differentiate between active
and inactive researchers [16], its sensitivity to long scientific careers [17] and to discipline-dependent
citation profiles [18,19], or its difficulty to reflect the role of co-authorship [20,21]. Those limitations
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led to the proposal of complementary, or alternative, indices to measure scientific output [2,22–24].
Some variations are the g and h2 indices [23,25], which give more weight to highly cited publications;
the e-index that tries to differentiate between researchers with similar h, but different citation
profiles [26]; the hI, norm-index [27] that seeks to include the effects of co-authorship, first dividing
the number of citations by the number of authors of each publication and then calculating the h-index
of the normalized citation counts; the R and AR indices [28], where the first measures the h-core’s
citation intensity, while the second takes the age of publications into account; and the hrat-index [29]
that introduces more granularity on the measure than the original h-index, among others [26,30–32].

Fractional Calculus (FC) generalizes the classical differential operations to non-integer orders [33–35].
The area of FC dates back to the year 1695, with the celebrated correspondence between l’Hôpital
and Leibniz about the meaning, and apparent paradox, of an n-order time derivative of a function,
f (t), dn f (t)

dtn , for n = 1
2 . However, it was only in the last decades that FC was recognized as playing an

important role in modeling and control of many important physical phenomena, and emerged as a key
tool in the area of dynamical systems. Nowadays, the FC community is composed of many researchers
in different scientific fields, namely, mathematics, physics, biology, finance and geophysics [36–41].

In this paper, different metrics are used for processing citation profiles, namely, the Canberra
distance, and the classical and fractional (generalized) Jensen–Shannon divergence. The information
is visualized using multidimensional scaling (MDS) and hierarchical clustering (HC) for comparing
the scientific output of FC researchers. The MDS and HC generate maps of points in two- and
three-dimensional space that represent researchers according to their scientific production. The relative
positioning of the points and the emerging patterns allow for a direct interpretations of the results.

In this line of thought, the paper is organized as follows. Sections 2 and 3 present the dataset
and the mathematical background, respectively. Section 4 processes the data and discusses the results.
Finally, Section 5 draws the main conclusions.

2. The Dataset

We consider 100 researchers in the area of FC from 35 countries. Their geographic origin is
summarized in Table 1. We tackle data from the Thomson Web of Science database (http://apps.
webofknowledge.com/), retrieved on 25 January 2017.

Researchers with identical names and researchers that use different short names in their
publications may pose difficulties in the searching process. For minimizing errors caused by counting
incorrectly the number of publications and/or citations, we adopt a combination of several searching
fields, namely, the author name, address, and affiliation. In the experiments shown in the following
sections, we identify researchers by a two-letter code.

Table 1. Geographic origin and number of Fractional Calculus (FC) researchers considered in this study.

Country Number Country Number Country Number

Algeria 1 Greece 1 Russia 6
Australia 1 Hungary 1 Serbia 2
Austria 1 India 5 Singapore 1
Belgium 1 Iran 2 Slovak Republic 2

Brazil 1 Italy 8 South Africa 1
Bulgaria 2 Japan 1 Spain 7
Canada 3 Jordan 1 Switzerland 1

Chile 1 Mexico 1 Turkey 3
China 4 Netherlands 1 UA Emirates 3
Egypt 2 Poland 4 UK 1
France 6 Portugal 6 USA 13

Germany 5 Romania 1

http://apps.webofknowledge.com/
http://apps.webofknowledge.com/
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The data available allows for determining different indices quantifying scientific output.
Figure 1 depicts the charts that illustrate the h, g, h2 and hI, norm indices for one researcher.
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Figure 1. Graphs illustrating the h, g, h2 and hI, norm indices for one researcher.

In general, the various indices are correlated with each other to some extent. Figure 2 shows the
relationships between the indices h, g, h2 and hI, norm for a group of 100 researchers in FC.
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Figure 2. Graphs illustrating the relationships between the indices h, g, h2 and hI, norm for a group of
100 researchers in FC.
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3. Mathematical Background

This section introduces the mathematical background necessary for processing the data,
namely, the Canberra distance, the classical and fractional Jensen–Shannon divergence, and the
MDS and HC techniques.

3.1. The Canberra Distance

The Canberra distance was proposed, and latter modified, by Lance and Williams [42,43].
Given two points in a K-dimensional space, X = (x1, · · · , xK) and Y = (y1, · · · , yK), the Canberra
distance between X and Y is given by:

CD(X, Y) =
K

∑
k=1

|xk − yk|
|xk|+ |yk|

. (1)

Equation (1) is a metric often used for quantifying data scattered around an origin. The Canberra
distance has several interesting properties, namely, it is unitary when the arguments are of the opposite
sign, biased for measures around the origin, and highly sensitive for values close to zero.

3.2. The Classical and Fractional Jensen–Shannon Divergence

In information theory, the information content of event k with probability of occurrence p(k) is
given by:

I[p(k)] = − ln p(k). (2)

Recently, inspired by FC, the concept of information content of order α ∈ R was proposed
as [44,45]:

Iα [p(k)] = Dα I [p(k)] = − p(k)−α

Γ (α + 1)
[ln p(k) + ψ (1)− ψ (1− α)] , (3)

where Γ(·) and ψ(·) denote the gamma and digamma functions, respectively.
The Jensen–Shannon divergence measures the distance between two probability distributions,

P and Q [46], and represents a symmetrical and smoothed version of the Kullback–Leibler divergence
(or relative entropy), given by:

KLD (P ‖ Q) = ∑
k

p(k) ln
p(k)
q(k)

. (4)

Therefore, we have:

JSD (P ‖ Q) =
1
2
[KLD (P ‖ M) + KLD (Q ‖ M)] , (5)

where M = P+Q
2 is a mixture distribution.

Alternatively, we may write:

JSD (P ‖ Q) =
1
2

[
∑
k

p(k) ln p(k) + ∑
k

q(k) ln q(k)

]
−∑

k
m(k) ln m(k), (6)
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which, using Equation (3), leads to the fractional (generalized) Jensen–Shannon divergence:

JSDα (P ‖ Q) =
1
2 ∑

k
p(k)

{
p(k)−α

Γ (α + 1)
[ln p(k) + ψ (1)− ψ (1− α)]

}
+

1
2 ∑

i
q(k)

{
q(k)−α

Γ (α + 1)
[ln q(k) + ψ (1)− ψ (1− α)]

}
−∑

k
m(k)

{
m(k)−α

Γ (α + 1)
[ln m(k) + ψ (1)− ψ (1− α)]

}
. (7)

For α = 0, we obtain JSD, as defined in Equation (6).

3.3. Multidimensional Scaling

MDS is a computational technique for clustering and visualizing data [47]. In a first phase,
given s items and a measure of dissimilarity, an s× s symmetric matrix, ∆ = [δij], (i, j) = 1, · · · , s,
of item-to-item dissimilarities, is calculated. Matrix ∆ represents the input information for starting
the MDS numerical scheme. The MDS rational is to assign points for representing items in
a multidimensional space and to try to reproduce the measured dissimilarities, δij. In a second
phase, MDS evaluates different configurations for maximizing some fitness function, arriving at a set
of point coordinates (and, therefore, to a symmetric matrix of distances D = [dij] that represent the
reproduced dissimilarities) that best approximates δij. A common fitness function is the raw stress:

S =
[
dij − f (δij)

]2 , (8)

where f (·) indicates some type of transformation.
The MDS interpretation is based on the patterns of points that can be visualized in the map

generated. Therefore, the information retrieval is not based on the point coordinates or the geometrical
form of the clusters, and we can rotate or translate the map because the distances remain identical.

The “quality” of the MDS map can be assessed by means of the stress and Shepard plots.
The stress plot represents S versus the number of dimensions m of the MDS map. The plot S(m) is
a monotonic decreasing chart and the chosen value of m is a compromise between low values of S and
m. The Shepard diagram, for a particular value m, compares dij and δij. A narrow scatter around the
45 degree line represents a good fit between dij and δij.

3.4. Hierarchichal Clustering

Clustering is a data analysis technique [48] that groups similar items. In HC, two possible iterative
strategies generate a hierarchy of clusters, namely, the (i) agglomerative and the (ii) divisive clustering.
With (i), each item starts in its own cluster and the algorithm merges the two most similar clusters
until there is one single cluster. With (ii), all of the items start in a single cluster and the algorithm
removes the “outsiders” from the least cohesive cluster, until each item is in its own cluster. In both
cases, a linkage criterion is required, which is a function of the distances between pairs of items
for quantifying the dissimilarity between clusters. For two clusters, R and S, the distance d(xR, xS)

between items xR ∈ R and xS ∈ S is based on metrics such as the maximum, minimum and average
linkages given by [49]:

dmax (R, S) = max
xR∈R,xS∈S

d (xR, xS) , (9)

dmin (R, S) = min
xR∈R,xS∈S

d (xR, xS) , (10)

dave (R, S) =
1

‖ R ‖‖ S ‖ ∑
xR∈R,xS∈S

d (xR, xS) . (11)
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After using one of the algorithms, the results of HC are presented in a graphical object such as
a dendrogram or a hierarchical tree.

To assess the “quality” of the clustering, the cophenetic correlation (CC) coefficient is used [50].
The CC gives a measure of how well the generated graphical object preserves the original pairwise
distances. If the clustering is successful, the links between items in the graphical object have a strong
correlation with those in the original data set. The closer the CC value to 1, the better the clustering
result. The quality assessment is plotted in a Shepard diagram that compares the original and the
cophenetic distances. As for the MDS, a good clustering leads to a layout of points close to the
45 degree line.

4. Data Analysis and Results

In this section, the Canberra distance and the classical and fractional Jensen–Shannon divergence
are adopted for quantifying dissimilarities between citation profiles of s = 100 researchers in FC.
The dissimilarities are processed by the MDS and HC for generating maps of items, representing
researchers according to their scientific output.

4.1. Comparing and Visualizing Scientific Output by Means of MDS

Given the citation profiles (φi, φj) of researchers i and j, respectively, we first calculate a 100 × 100
symmetric matrix ∆ = [δij], (i, j) = 1, ..., 100, where δij denotes either CD(φi, φj), given in Equation (1),
JSD(φi, φj), defined in Equation (6), or JSDα(φi, φj), as in Equation (7). For CD, the parameter K
represents the length of the larger citation profile of the pair (i, j). The smaller profile has to be filled
with trailing zeroes for obtaining equal length φi and φj vectors. For JSD and JSDα, the probabilities

are approximated by p(k) = φ(k)
∑k φ(k) . The matrix ∆ then feeds the MDS algorithm.

Figures 3–5 depict the three-dimensional maps generated by the MDS with CD, JSD and JSDα

(α = 0.7). The value of α = 0.7 was chosen to obtain good discrimination between items [51].
For all cases, we observe that the points representing researchers form similar patterns, namely, those
on the right-hand side of the charts. Nevertheless, any other possible patterns (in case they exist) are
hidden by the large number of points.

CD (y-component)

100

50

0

-50

-100

HS

500

DB
AB

GK

400

MU

BW

YC

300

CD (x-component)

JT

200

MM
MA

CL

BY

SM
DN

100

LURH

FM

RN

YZ
VTSY

WC

DT

GO

OA

KS

KD

AE

ES
AO

MRRM
BV
GPMFMEMKODPONOGMMVZMPM
IP

RK

CC

ACRGEC

MT

NF

SRDVEOEDRSAMPS
KUKHBKVKYL
MO
FLAA

VB

JG
TH
TF
SD
PLJAKLJH
BAYPYR
KT
JS
JCAT

XY

IB

SS

AL

OR
BMMB

HH

TA

CP

VUCTRY
CI

GJ
MI

JJ

0-100

-100

100

50

0

150

-50C
D

 (
z
-c

o
m

p
o
n
e
n
t)

3D MDS map with CD

Figure 3. The three-dimensional map generated by the multidimensional scaling (MDS) with CD for
100 researchers in FC.
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Figure 4. The three-dimensional map generated by the MDS with JSD for 100 researchers in FC.
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Figure 5. The three-dimensional map generated by the MDS with JSDα, α = 0.7, for 100 researchers in FC.

4.2. Comparing and Visualizing Scientific Output by Means of HC

For an alternative visualization of the results, we use matrix ∆ to feed an HC based on the
successive (agglomerative) clustering and average-linkage method. The HC generates the hierarchical
trees [52,53] shown in Figures 6–8. We can note the emergence of similar patterns for the three metrics
used, which reflect the relative positioning of the FC researchers in terms of their scientific output.
The fractional JSDα has the advantage of producing a better discrimination of the patterns.

In conclusion, the MDS charts and the “trees” are alternative with different characteristics, but lead
to identical conclusions. Moreover, we verify that the approach is robust in the sense that distinct
metrics for quantifying dissimilarities produce charts of the same type. We also tested for profiles in
terms of country, but no relevant conclusions emerged. Nonetheless, in the case of the JSDα, supported
by the tree visualization scheme, we verify the clear existence of clusters. There is no additional data
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available to analyze these clusters further, but an empirical educated estimation points to the effects of
age and scientific subareas of research as the major issues that have influence on the results.
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Figure 6. Hierarchical tree generated by the hierarchical clustering (HC) with CD for 100 researchers in FC.
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Figure 8. Hierarchical tree generated by the HC with JSDα, α = 0.7, for 100 researchers in FC.

5. Conclusions

This paper proposed an approach to compare and visualize the scientific output of researchers in
FC that takes into account the complete citation profiles. We adopted different measures for quantifying
dissimilarities between citation profiles, namely, the Canberra distance and the classical and fractional
Jensen–Shannon divergence. The information was visualized with the MDS and HC techniques.
The charts generated provided a direct interpretation of the results in terms of the relative positioning
of the researchers according to their scientific output. The fractional Jensen–Shannon divergence led to
a superior discrimination of the emerging patterns.
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