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Abstract:



In this paper, firstly, manifold [image: there is no content] consisting of all [image: there is no content] symmetric positive-definite matrices is introduced based on matrix information geometry; Secondly, the geometrical structures of information submanifold of [image: there is no content] are presented including metric, geodesic and geodesic distance; Thirdly, the information resolution with sensor networks is presented by three classical measurement models based on information submanifold; Finally, the bearing-only tracking by single sensor is introduced by the Fisher information matrix. The preliminary analysis results introduced in this paper indicate that information submanifold is able to offer consistent and more comprehensive means to understand and solve sensor network problems for targets resolution and tracking, which are not easily handled by some conventional analysis methods.
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1. Introduction


As an interesting research area in matrix information geometry, symmetric positive-definite (SPD) matrices offer detailed analysis and comprehensive results by considering them as geometrical objects [1,2,3]. Meanwhile, it also can be found that some applications are related to SPD matrices of real numbers [4,5,6,7]. In the last thirty years, its applications have spanned several discipline areas such as information theory, systems theory, control theory, signal processing and mathematical programming [8,9,10,11,12,13,14,15]. Considering the set of all [image: there is no content] SPD matrices as a manifold [image: there is no content], by defining affine Riemannian metric on [image: there is no content], ones can find that [image: there is no content] becomes a complete Riemannian manifold (Hadamard space) [16]. Thus, for any two points on [image: there is no content], there exists the shortest curve, namely, geodesic connecting them. It is remarkable that ones can obtain an explicit expression of the geodesic on [image: there is no content] to conveniently calculate the geodesic distance [3].



Fisher information matrix (FIM) is one of important contents in the probability theory and statistics [17,18]. Since a FIM is a symmetric positive-definite matrix, the set of all Fisher information matrices (FIMs) corresponding to a given probability distribution family is a submanifold of [image: there is no content], which is called the information submanifold of [image: there is no content]. Thus, some properties including metric and geodesic about the information submanifold can be obtained through the differential geometrical theory of [image: there is no content]. In addition, for the sensor networks, the resolve ability of multiple closely spaced targets with a given sensor measurement model is a basic concept about the sensor systems and an extremely important aspect of their over-all performance [19,20]. Some sensor measurement models have been introduced in [21,22,23]. The information resolution based on statistical manifold is introduced in [24,25] which cannot give an geodesic explicitly expressed in general. Meanwhile, as a very important issue for sensor networks, target tracking has also been investigated [22,23,26]. In this paper, the above two aspects are considered by the information submanifold for sensor networks. Accordingly, by virtue of information submanifold, we give the analysis of sensor networks to gain a better understanding and more comprehensive investigation of sensor system issues for target resolution and tracking. In particular, the information distance (IFD) between two targets is used to measure target resolvability in the region covered by the sensor system and is exactly calculated by the geodesic on [image: there is no content]. Comparing with some classical resolution, such as normal resolution defined by half-power width, Kullback-Leibler divergence defined by distance-like measurement, the presented information resolution is defined by the information submanifold with geodesic distance not Euclidean distance (Ed), which can show the geometrical property of the measurement models more efficiently. It is also compared with the Rao geodesic distance which is defined by statistical manifold through three classical sensor network measurement models in this paper. The simulation results indicate that the presented information resolution has the similar efficient as Rao geodesic distance and less computation complexity because of the application of Fisher information and the geodesic explicitly expressed for any two FIMs.



The outline of this paper is organized as follows. In Section 2, the geometrical structures of [image: there is no content] are stated briefly. The information submanifold theory is presented in Section 3. The target resolution and tracking with some classical measurement models based on the geodesic distance on the information submanifold are presented and analyzed in Section 4. Finally, some conclusions are given at Section 5.




2. Manifold of Symmetric Positive-Definite Matrices


In this section, basic materials including some definitions and results about manifold of the [image: there is no content] SPD matrices [image: there is no content] are reviewed [8,16]. These will be used throughout this paper. Let [image: there is no content] denote the space of all [image: there is no content] real symmetric matrices, and the set of all [image: there is no content] SPD matrices is considered as a manifold


[image: there is no content]



(1)




where [image: there is no content] means that the quadratic form [image: there is no content] for all [image: there is no content]. Then, the exponential mapping from [image: there is no content] to [image: there is no content] is usually given by


[image: there is no content]



(2)







It is well known that [image: there is no content] and [image: there is no content] if [image: there is no content]. When [image: there is no content], the logarithmic mapping can be given by


[image: there is no content]



(3)







In particular, [image: there is no content] if [image: there is no content]. Another important fact is that


[image: there is no content]



(4)







For a given matrix [image: there is no content], the Riemannian metric is defined by


[image: there is no content]



(5)




where [image: there is no content] are two tangent vectors over [image: there is no content] at A and [image: there is no content] denotes the trace of object matrix. The positive definiteness of this metric is due to the fact that


[image: there is no content]



(6)







Then, manifold [image: there is no content] with the Riemannian metric becomes a Riemannian manifold. The geodesic [image: there is no content], with initial point [image: there is no content] and initial tangent vector [image: there is no content], is given by


P(t)=P012exp(tP0−12SP0−12)P012=P0exp(tP0−1S).



(7)







Let [image: there is no content], then the geodesic connecting A and B is given by


[image: there is no content]



(8)







The geodesic distance between A and B on [image: there is no content] is given by


[image: there is no content]



(9)




where [image: there is no content] is the eigenvalue of matrix [image: there is no content] for [image: there is no content]. The mean in the Riemannian sense of two SPD matrices A and B is given by [image: there is no content]. If all [image: there is no content] belong to a single geodesic of [image: there is no content], i.e., [image: there is no content], we have


[image: there is no content]



(10)







It can be seen that [image: there is no content] if and only if [image: there is no content].



Proposition 1.

Let [image: there is no content], then the geodesic distance between A and B is given by


d(A,B)={ln2tr{A−1B}+tr2{A−1B}−4|A|−1|B|2+ln2tr{A−1B}−tr2{A−1B}−4|A|−1|B|2}12,



(11)




where [image: there is no content] denotes the determinant of matrix A.





Proof. 

For two [image: there is no content] SPD matrices


[image: there is no content]



(12)




we get


[image: there is no content]



(13)









By a direct calculation, we see that the eigenvalues of [image: there is no content] satisfy


[image: there is no content]



(14)




and furthermore, we have


[image: there is no content]



(15)







Finally, by (9), the geodesic distance between A and B can be obtained as (3) for any two SPD matrices.  ☐



Proposition 2.

If A and B are diagonal matrices on [image: there is no content], i.e., [image: there is no content] and [image: there is no content], then the geodesic connecting A and B is given by


[image: there is no content]



(16)







The corresponding geodesic distance is given by


[image: there is no content]



(17)









Proof. 

For two diagonal matrices


[image: there is no content]



(18)




we can get


[image: there is no content]



(19)









Therefore, by (4), the geodesic connecting A and B is given by


PA,B(t)=A(A−1B)t=diag(a11,a22,⋯,ann)diag(b11a11,b22a22,⋯,bnnann)t=diag(b11ta11t−1,b22ta22t−1,⋯,bnntannt−1).



(20)







Meanwhile, because the eigenvalues of matrix [image: there is no content] are


[image: there is no content]



(21)




by (9), the geodesic distance between A and B satisfies


[image: there is no content]



(22)




☐




3. Information Submanifold


As well known that the probability distribution family [image: there is no content] is called a statistical model with probability density function (pdf) [image: there is no content] [27], if it satisfies the following regularity conditions:

	
All the [image: there is no content]’s have a common support so that [image: there is no content] for all [image: there is no content], where X is the support.



	
For every fixed θ, [image: there is no content] are linearly independent, where [image: there is no content].



	
The moments of random variables [image: there is no content] exist up to necessary orders.



	
The partial derivatives [image: there is no content] and the integration with respect to the measure F can always be exchanged as


[image: there is no content]



(23)




for any smooth functions [image: there is no content].








Based on the theory of probability distribution, for a given pdf [image: there is no content] with [image: there is no content], the FIM [image: there is no content] is defined by


[image: there is no content]



(24)




where [image: there is no content] denotes the expectation with respect to the pdf [image: there is no content]. Particularly, for the multivariate normal distribution with the pdf


[image: there is no content]



(25)




where [image: there is no content] and [image: there is no content] are the mean and the covariance of the distribution, respectively, we have


[image: there is no content]



(26)







For the pdf [image: there is no content], by the theory of differential geometry [28], it is easy to know that the set


[image: there is no content]



(27)




is a submanifold of [image: there is no content]. Then, we can give the following definition.



Definition 1.

For a given pdf [image: there is no content], the determinant of FIM [image: there is no content], i.e., [image: there is no content], is called Fisher information of [image: there is no content], while the set [image: there is no content] is called information submanifold of [image: there is no content] for the given probability distribution family M.





Proposition 3.

For the exponential family [image: there is no content] with the pdf


[image: there is no content]



(28)




we have


[image: there is no content]



(29)









In fact, for the exponential family with the pdf (28) where [image: there is no content] is the natural coordinate system, [image: there is no content] are independent function, and [image: there is no content] is the potential function which is independent to x, by direct calculation we can get


[image: there is no content]



(30)







From (4), suppose that [image: there is no content] and [image: there is no content] are two FIMs corresponding to the same statistical model, then the geodesic connecting A and B is given by


[image: there is no content]



(31)







From (9), the corresponding geodesic distance is given by


[image: there is no content]



(32)




which is also called information distance (IFD) between [image: there is no content] and [image: there is no content], where [image: there is no content] is the eigenvalue of matrix [image: there is no content].



3.1. The Information Submanifold for the Normal Distribution


In particular, for the normal distribution with the pdf


[image: there is no content]



(33)




where [image: there is no content], μ and σ are the mean and the variance, respectively, by (24), we can get the FIM as


[image: there is no content]



(34)




which is positive-definite diagonal matrix.



Proposition 4.

Suppose that [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content]. The geodesic connecting A and B is given by


[image: there is no content]



(35)







The geodesic distance between A and B is


[image: there is no content]



(36)









Proof. 

By (16) and (35), we can easily obtain that


[image: there is no content]








☐





Proposition 5.

Suppose that [image: there is no content], are m FIMs corresponding the normal distribution, then the Riemannian mean of them is given by


[image: there is no content]



(37)




and the geometric mean is given by 


[image: there is no content]



(38)









Proof. 

From (35), for any [image: there is no content], we have [image: there is no content]. Therefore, for any m FIMs [image: there is no content], they are all belong to [image: there is no content]. Then, by (10), we can get the Riemannian mean as


Rm(P)=P11mP21m⋯Pm1m=(1σ12)1m00(2σ12)1m⋯(1σm2)1m00(2σm2)1m=(∏i=1mσi)−2m002(∏i=1mσi)−2m.













Meanwhile, the geometric mean is given by


[image: there is no content]








☐




3.2. The Information Submanifold for the Von Mises Distribution


In probability theory and directional statistics, the von Mises (voM) distribution which is also known as the circular normal distribution or Tikhonov distribution is an important continuous probability distribution on the circle. For the voM distribution with the angle variable [image: there is no content] given by


[image: there is no content]



(39)




where [image: there is no content], and [image: there is no content] is the modified Bessel function of integer order r satisfying


[image: there is no content]



(40)




the components of the FIM [image: there is no content] with [image: there is no content] are respectively


[image: there is no content]



(41)






[image: there is no content]



(42)







Similarly as the last subsection, let [image: there is no content] and [image: there is no content] be two FIMs for voM distribution where [image: there is no content], then by a calculation from (3), we can see that the geodesic connecting A and B satisfies


[image: there is no content]



(43)




where


[image: there is no content]



(44)







The geodesic distance between A and B is given by


[image: there is no content]



(45)








3.3. The Information Submanifold for Curved Gaussian Distribution


For the curved Gaussian distribution with the pdf [29]


p(x;θ)=12πauexp−(x−u)22a2u2=exp−x22a2u2+xa2u−12a2−ln2πau,



(46)




where [image: there is no content] with [image: there is no content] and [image: there is no content]. By (29), we can get the corresponding FIM


[image: there is no content]



(47)




and it’s inverse matrix


[image: there is no content]



(48)







As the same time, let [image: there is no content] and [image: there is no content] be two FIMs for curved Gaussian distribution where [image: there is no content], then by (3), we can get the geodesic connecting A and B


[image: there is no content]



(49)







The geodesic distance between A and B is given as


dp(A,B)={ln2u22(a2+2)(u12+u22)−4u1u23]2a2u14+K+ln2u22(a2+2)(u12+u22)−4u1u232a2u14−K}12,



(50)




where [image: there is no content].





4. Application of Information Submanifold for Sensor Networks


4.1. Information Resolution Based on Information Submanifold


In this subsection, the information resolution based on information submanifold is served as a new metric to measure the intrinsic similarities of the corresponding information matrix and is optimal to determine such resolution with respect to the underlying similitude which generates the manifold of SPD matrices based on differential geometry. It is defined on the basis of consideration of information distance connecting two relative FIMs for two measurement results. According to the definition, a new resolution cell denoted as [image: there is no content] is a geodesic ball described by the set of equidistant points [image: there is no content] from the center θ in an information submanifold which is defined by a measurement model [image: there is no content]. Therefore, we have the following definition.



Definition 2.

For a given measurement model with pdf [image: there is no content] and a known target state θ with [image: there is no content], the set


[image: there is no content]



(51)




is called information resolution cell, where [image: there is no content] given by (32) is the IFD of the two targets and δ is the radius of the information resolution cell which is called the information resolution limit.





Given a minimal resolution limit value [image: there is no content] for a sensor network, we can distinguish two targets by the information resolution [image: there is no content], i.e., if [image: there is no content], the two targets can be distinguished, otherwise, we cannot distinguish them so that regard them as one target. In the following three subsections, we will use three classical measurement models, i.e., range-bearing measurement model, two-bearings measurement model and three dimensional (3D) range-bearings measurement model, to show the effectiveness of information resolution based on information submanifold.



4.1.1. Range-Bearing Measurement


As well known that, assume that the sensor is located at the origin of coordinate [image: there is no content], the range-bearing measurement model can be represented as


[image: there is no content]



(52)




where [image: there is no content] with [image: there is no content], [image: there is no content] and [image: there is no content]. It should be noted that the term [image: there is no content] appeared in the diagonal of range component to take into account the fact that the amplitude of the radar echo signal attenuates according to the fourth power of the target range. Then, we can see that the sensor measurement x satisfies the Gaussian distribution with the mean and covariance matrix given by


[image: there is no content]



(53)







By (26), the corresponding FIM satisfies


[image: there is no content]



(54)






[image: there is no content]



(55)






[image: there is no content]



(56)







According to the FIM above, we can obtain an information submanifold corresponding to the range-bearing measurement model and calculate the information distance between any two measured target states for determining whether they can be resolved or not.



Assume that the area of interest is [image: there is no content] with [image: there is no content] and [image: there is no content]. The sensor is located at [image: there is no content] and the known target [image: there is no content] is located at [image: there is no content]. At the same time, without loss of generality, we assume that the detection target [image: there is no content] is on the same plane with [image: there is no content] and the sensor.



Figure 1a shows the information distance between two closely spaced targets [image: there is no content] and [image: there is no content] for range-bearing measurement sensor network. Figure 1b is the contour map of Figure 1a. A same plot is generated in Figure 2a in Rao geodesic distance based on information matrix metric ([image: there is no content]). And the contour map generated via [image: there is no content] in the same scenario as in Figure 1b is given in Figure 2b. From this, we can see that the IFD increases with the area centered at the location of [image: there is no content]. At the same time, we can know that the change of IFD is more larger when the detected target [image: there is no content] is closer to the sensor [image: there is no content]. Clearly, the uncertainty area is under a given threshold to the value of IFD and target [image: there is no content] can be distinguished from target [image: there is no content] when it is outside this area. There are sixteen targets with Ed, [image: there is no content] and IFD as shown in Table 1 corresponding to [image: there is no content] and [image: there is no content], respectively. It can be seen that the IFD is increasing with the Ed between [image: there is no content] and [image: there is no content], especially when [image: there is no content] is moving to close the sensor. Meanwhile, we can also know that the IFD is different for two detected targets with the same Ed to [image: there is no content], and the closer the Ed of one target to [image: there is no content] is, the bigger the IFD to [image: there is no content] is in generally. For example, setting [image: there is no content] and [image: there is no content] with the same [image: there is no content] and [image: there is no content] to [image: there is no content] for [image: there is no content], however the relationship of the IFD is [image: there is no content] which indicates that the presented information resolution is more efficient and accurate than others for this measurement system. In addition, if the minimal resolution limit [image: there is no content] is given as [image: there is no content] for the samples in Table 1, the four targets [image: there is no content] and [image: there is no content] cannot be distinguished with [image: there is no content], and the others can be distinguished. For target [image: there is no content], we can get the similar analysis results as [image: there is no content].


Figure 1. (a) IFD between two closely spaced targets for range-bearing measurement model; (b) The contour map of Figure 1a.



[image: Entropy 19 00131 g001]





Figure 2. (a) [image: there is no content] between two closely spaced targets for range-bearing measurement model; (b) The contour map of Figure 2a.



[image: Entropy 19 00131 g002]






Table 1. [image: there is no content] and IFD with [image: there is no content] for range-bearing measurement model.







	
[image: there is no content]

	
(3,8)

	
(5,10)

	
(7,12)

	
(9,14)

	
(11,16)

	
(13,18)

	
(15,20)

	
(17,22)




	
Ed

	
9.90(7.07)

	
7.07(4.24)

	
4.24(1.41)

	
1.41(1.41)

	
1.41(4.24)

	
4.24(7.07)

	
7.07(9.90)

	
9.90(12.73)




	
[image: there is no content]

	
1.28(1.12)

	
0.97(0.73)

	
0.62(0.26)

	
0.22(0.26)

	
0.22(0.73)

	
0.62(1.12)

	
0.97(1.47)

	
1.28(1.78)




	
IFD

	
2.15(1.67)

	
1.37(0.89)

	
0.74(0.27)

	
0.23(0.25)

	
0.21(0.69)

	
0.59(1.07)

	
0.93(1.40)

	
1.23(1.70)




	
[image: there is no content]

	
(3,22)

	
(5,20)

	
(7,18)

	
(9,16)

	
(11,14)

	
(13,12)

	
(15,10)

	
(17,8)




	
Ed

	
9.90(10.30)

	
7.07(7.62)

	
4.24(5.10)

	
1.41(3.16)

	
1.41(3.16)

	
4.24(5.10)

	
7.07(7.62)

	
9.90(10.30)




	
[image: there is no content]

	
2.73(3.65)

	
1.98(2.67)

	
1.19(1.61)

	
0.39(0.56)

	
0.39(0.72)

	
1.19(1.43)

	
1.98(2.21)

	
2.73(2.97)




	
IFD

	
0.94(1.26)

	
0.68(0.99)

	
0.41(0.73)

	
0.14(0.53)

	
0.14(0.48)

	
0.40(0.62)

	
0.65(0.85)

	
0.87(1.09)











4.1.2. Two-Bearings Measurement


Suppose that two sensors [image: there is no content] and [image: there is no content] are located at [image: there is no content] and [image: there is no content] respectively. The sensors can observe two bearings of the target [image: there is no content] and each of the measurement [image: there is no content] satisfies the voM distribution, i.e.,


[image: there is no content]



(57)




where [image: there is no content], and κ is a constant. Sine the sensor measurements are independent, each voM distribution is with common concentration parameter κ and the measurement at ith sensor has circular mean [image: there is no content], then the bearing measurements [image: there is no content] satisfy the joint distribution with the pdf


[image: there is no content]



(58)




where [image: there is no content] is the local coordinate. Then, by (24), we can obtain the corresponding FIM as


[image: there is no content]



(59)






[image: there is no content]



(60)






[image: there is no content]



(61)







Thus, we can obtain an information submanifold corresponding to the two-bearings measurement model and calculate the information distance between two measured target states.



Assume that the area of interest is [image: there is no content] and [image: there is no content]. The two sensors are located at [image: there is no content], and [image: there is no content], respectively. The target [image: there is no content] is located at [image: there is no content]. Without loss of generality, we also assume that the detection target [image: there is no content] is on the same plane with [image: there is no content] and the sensors.



Figure 3a shows the information distance between two spaced targets [image: there is no content] and [image: there is no content] for the two-bearings measurement sensor network. Figure 3b is the contour map of Figure 3a. A same plot is generated in Figure 4a in Rao geodesic distance based on information matrix metric. And the contour map generated via [image: there is no content] in the same scenario as in Figure 1b is given in Figure 4b. Accordingly, it is easy to know that the IFD increases with the area centered at the location of [image: there is no content]. At the same time, we can know that the change of IFD is more larger when the detected target [image: there is no content] is closer to the line [image: there is no content] connecting the sensor [image: there is no content] and [image: there is no content]. Clearly, the uncertainty area is under a given threshold to the value of IFD and target [image: there is no content] can be distinguished from target [image: there is no content] when it is outside this area. As shown in Table 2 with [image: there is no content] and [image: there is no content], for the selected samples, we can also get the similar property which is given in the last subsection. For example, setting [image: there is no content] and [image: there is no content] with the same [image: there is no content], the corresponding relationships about [image: there is no content] and IFD are [image: there is no content] and [image: there is no content], respectively. Thus, we can know that the presented information resolution has the same efficient as the Rao geodesic distance for the measurement model. Meanwhile, based on the geometrical property of this measurement model, i.e., the closer the detected target [image: there is no content] to the line [image: there is no content] is, the bigger the change of the Fisher information is, it can be seen that the presented method is more accuracy than others for this measurement model. Similarly, for a given minimal resolution limit [image: there is no content], there are only [image: there is no content] and [image: there is no content] which cannot be distinguished from [image: there is no content], while the all targets can be distinguished from [image: there is no content] under the same situations.


Figure 3. (a) IFD between two closely spaced targets for two-bearings measurement model; (b) The contour map of Figure 3a.



[image: Entropy 19 00131 g003]





Figure 4. (a) [image: there is no content] between two closely spaced targets for two-bearings measurement model; (b) The contour map of Figure 4a.



[image: Entropy 19 00131 g004]






Table 2. [image: there is no content] and IFD [image: there is no content] for two-bearings measurement model.







	
[image: there is no content]

	
(11,11)

	
(15,15)

	
(19,19)

	
(23,23)

	
(27,27)

	
(31,31)

	
(35,35)

	
(39,39)




	
Ed

	
21.0(15.2)

	
15.8(10.2)

	
11.1(6.3)

	
7.6(6.3)

	
7.6(10.2)

	
11.1(15.2)

	
15.8(20.3)

	
21.0(26.1)




	
[image: there is no content]

	
0.38(0.53)

	
0.29(0.32)

	
0.21(0.16)

	
0.21(0.26)

	
0.21(0.33)

	
0.31(0.46)

	
0.43(0.60)

	
0.55(0.72)




	
IFD

	
1.88(1.71)

	
1.31(1.05)

	
0.90(0.59)

	
0.60(0.52)

	
0.38(0.81)

	
0.36(1.20)

	
0.58(1.59)

	
0.91(1.97)




	
[image: there is no content]

	
(2,33)

	
(5,30)

	
(8,27)

	
(11,24)

	
(14,21)

	
(17,18)

	
(20,15)

	
(23,12)




	
Ed

	
18.3(28.0)

	
15.0(23.9)

	
12.4(19.7)

	
10.8(15.7)

	
10.8(11.7)

	
12.4(8.5)

	
15.0(5.4)

	
18.3(5.4)




	
[image: there is no content]

	
0.53(0.64)

	
0.43(0.52)

	
0.34(0.46)

	
0.27(0.38)

	
0.23(0.30)

	
0.23(0.22)

	
0.47(0.17)

	
0.62(0.19)




	
IFD

	
1.05(2.07)

	
0.76(1.80)

	
0.56(1.55)

	
0.58(1.30)

	
0.76(1.04)

	
0.99(0.78)

	
1.24(0.54)

	
1.50(0.53)











4.1.3. 3D Range-Bearings Measurement


Using a similar method, we consider the 3D positioning model in this subsection. Let the range, azimuth and altitude angle of the target [image: there is no content] be τ, α and β, respectively. In the network of single conventional sensor measurement model, the state of a target is simply represented by its location, i.e., [image: there is no content]. The sensor can observe range and bearings of the target, and then the measurement model can be written as


[image: there is no content]



(62)




where τ, α and β denote the range, angle of rotation and angle of altitude of the measurement subject to an additive zero-mean Gaussian noise [image: there is no content] with the covariance [image: there is no content], respectively. Therefore, the measurement x obeys a normal distribution with the mean and the covariance respectively satisfying


[image: there is no content]



(63)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the standard deviations of range and bearings measurement noise, respectively. By (26), we can calculate the FIM elements of model (62) respectively as follows


[image: there is no content]



(64)
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(65)
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(66)
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(67)
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(68)






[image: there is no content]



(69)







By the six equations above, we can calculate the geodesic distance between any two information matrices corresponding to the 3D measurement model. Assume that the area of interest is [image: there is no content], [image: there is no content], and [image: there is no content]. Then, the sensor is located at [image: there is no content], and the reference target is located at [image: there is no content]. In addition, we assume that the moving target is on the same plane with [image: there is no content] for simplifying the simulation results.



Figure 5a shows the information distance between two closely spaced targets [image: there is no content] and [image: there is no content] for 3D range and angle measurement sensor network and Figure 5b is the contour map of Figure 5a. From this we can know that the IFD increases with the area centered at the location of [image: there is no content]. The closer that target [image: there is no content] to [image: there is no content] is, the smaller the IFD is. For a given resolution limit [image: there is no content], we can easily know that two targets whether can be distinguished or not by calculating the IFD between them, i.e., there are two detection points or one point. A same plot is generated in Figure 6a in Rao geodesic distance based on information matrix metric. And the contour map generated via [image: there is no content] in the same scenario is given in Figure 6b. For some samples as shown in Table 3 with [image: there is no content] and [image: there is no content], the similar analysis results can be also obtained as the 2D range-bearing measurement model. For example, by a given minimal resolution limit [image: there is no content], there are only [image: there is no content] and [image: there is no content] which cannot be distinguished from [image: there is no content] and only [image: there is no content] which cannot be distinguished from [image: there is no content] with the presented method.


Figure 5. (a) [image: there is no content] between two closely spaced targets for 3D range-bearings measurement sensor network; (b) The contour map of Figure 5a.
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Figure 6. (a) [image: there is no content] between two closely spaced targets for 3D range-bearings measurement sensor network; (b) The contour map of Figure 6a.
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Table 3. [image: there is no content] and IFD with [image: there is no content] for 3D range-bearings measurement sensor network.







	
[image: there is no content]

	
(6,6,6)

	
(10,10,10)

	
(14,14,14)

	
(18,18,18)

	
(22,22,22)

	
(26,26,26)

	
(30,30,30)

	
(34,34,34)




	
Ed

	
24.3(17.3)

	
17.3(10.4)

	
10.4(3.5)

	
3.5(3.5)

	
3.5(10.4)

	
10.4(17.3)

	
17.3(24.3)

	
24.3(31.2)




	
[image: there is no content]

	
70.0(50.0)

	
50.0(30.0)

	
30.0(10.0)

	
10.0(10.0)

	
10.0(30.0)

	
30.0(50.0)

	
50.0(70.0)

	
70.0(90.0)




	
IFD

	
2.41(1.96)

	
1.3(0.94)

	
0.71(0.27)

	
0.21(0.24)

	
0.19(0.64)

	
0.52(0.97)

	
0.81(1.26)

	
1.06(1.51)




	
[image: there is no content]

	
(6,6,34)

	
(10,10,30)

	
(14,14,26)

	
(18,18,22)

	
(22,22,18)

	
(26,26,14)

	
(30,30,10)

	
(34,34,6)




	
Ed

	
24.3(22.9)

	
17.3(16.4)

	
10.4(10.4)

	
3.5(6.6)

	
3.5(8.7)

	
10.4(14.3)

	
17.3(20.7)

	
24.3(27.4)




	
[image: there is no content]

	
70.0(90.0)

	
50.0(70.0)

	
30.0(50.0)

	
10.0(30.0)

	
10.0(10.0)

	
30.0(10.0)

	
50.0(30.0)

	
70.0(50.0)




	
IFD

	
2.47(1.96)

	
1.49(0.95)

	
0.84(0.27)

	
0.27(0.36)

	
0.26(0.89)

	
0.76(1.39)

	
1.20(1.83)

	
1.58(2.21)










Remark 1.

From the analysis with the three sensor systems above, it illustrates the sensing ability of the sensor networks to distinguish two closely spaced targets. A minimal detectable information distance may be identify in the maps for a given resolution limit [image: there is no content]. If information distance between two targets is below the given threshold, the two closely spaced targets may not be distinguished by the sensor system and are considered as one target. Otherwise, we can distinguish them as two different targets. In addition, compared with some classical resolution, information resolution based on information submanifold and information resolution based on statistical manifold are all defined throughout geodesic distance and can all show the geometric property of sensor networks measurement system. It should be noted that, because there is no explicit geodesic expression on statistical manifold in general, the geodesic calculation has very high complexity and is approximately handled by the Euclidean distance sometimes. Thus, it would be some cause of calculation error for target resolvability, especially when the two targets is not fairly close to each other. However, the information distance based on information submanifold is only related to FIMs corresponding to the targets states and can be calculated by an explicit geodesic expression on [image: there is no content]. Meanwhile, the presented resolution in this paper can show the Fisher information and the measurement models more effectively.







4.2. Bearing-Only Tracking With Single Sensor


In this subsection, we present a new tracking method based on information submanifold for bearing-only tracking with a single sensor. By (59)∼(62), as a function of the second sensor location, the determinant of the FIM can be given by


[image: there is no content]



(70)




where [image: there is no content], and [image: there is no content].



For the given locations of the two sensors, we can get the Fisher information for the detection target by (70) which represents the volume of the amount of information. Under the same situation as in the last subsection, the target information map and the contour map for the two-bearings passive sensor networks can be obtained as shown in Figure 7a,b on a logarithm scale. From the two figures, it can be seen that the amount of the information is very little and even almost is zero nearby the straight line passing through the two sensors. In fact, the target can not be located in this region due to the bearing-only measurement. In order to eliminate the unmeasurable area and obtain the maximal Fisher information, we can move the sensor with respect to the target. If the trajectory of the target moving is known, the sensor would have an optimal scheduling such that maximal target information. Therefore, we make the following parameter replacement using the polar coordinate


η2=η1+rcosφ,ξ2=ξ1+rsinφ,



(71)




where r and [image: there is no content] denote the step length and the direction of the sensor movement, respectively. Substituting (71) into (70), we see that (70) becomes


[image: there is no content]



(72)






Figure 7. (a) Target information for the sensor network with two-bearings passive sensor networks; (b) The contour map of target information.
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Taking the partial derivative of (72) with respect to [image: there is no content] and setting it to be zero, we can obtain the optimal sensor heading course [image: there is no content] which satisfies the following expression


[image: there is no content]



(73)







Without loss of generality, let the Line-of-Sight from the sensor to the target be the baseline direction of the coordinate systems. The optimal sensor moving direction based on (73) can be simplified as


[image: there is no content]



(74)




where [image: there is no content].



Assume that the initial state of the sensor locates at [image: there is no content], and the location of the target is [image: there is no content]. Then, we can get the polar relation map about the optimal moving direction [image: there is no content] and the moving radius r as Figure 8.


Figure 8. Optimal sensor movement direction for given radius.
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As described in Figure 8, the optimal direction of the sensor changes from [image: there is no content] to [image: there is no content] with the increase of the length of tracking radius. And when the radius equals to the distance between the target and the sensor, i.e., [image: there is no content], the optimal direction is [image: there is no content]. Therefore, we can select the optimal direction based on the radius of the sensor which we design in the practical applications.





5. Conclusions


In this paper, we have proposed the information submanifold and its applications for sensor networks based on SPD matrices. Three simple examples corresponding three probability distributions are calculated with the geodesic and geodesic distance. The problems of target resolution and tracking with a single sensor based on the information submanifold are analyzed and computed through two classical sensor networks models. The simulation results have shown that the proposed method yields very effective performance in practical environments. Our future work will focus on the applications of the curvature of the information submanifold for the management and tracking of the sensor networks.
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