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Abstract: We summarize a recent reconstruction of the quantum theory of qubits from rules
constraining an observer’s acquisition of information about physical systems. This review is
accessible and fairly self-contained, focusing on the main ideas and results and not the technical
details. The reconstruction offers an informational explanation for the architecture of the theory
and specifically for its correlation structure. In particular, it explains entanglement, monogamy and
non-locality compellingly from limited accessible information and complementarity. As a by-product,
it also unravels new ‘conserved informational charges’ from complementarity relations that
characterize the unitary group and the set of pure states.
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1. Introduction

Why is the physical world described by quantum theory? If we wish to sensibly address this
question, we have to step beyond quantum theory and to consider it within a landscape of alternative
theories. This, after all, permits us to ponder about how the world could have been different, possibly
described by modifications of quantum theory. Such an endeavor forces us to leave the usual textbook
formulation of quantum theory, and everything we take for granted about it, behind and to develop
a more general language that also applies to alternative theories. Ideally, this language should be
operational, encompassing the interactions of some observer with physical systems in a plethora of
conceivable, physically-distinct worlds.

If we wish to also provide a possible answer to the above question, we then have to find
physical properties of quantum theory that single it out, at least within the given landscape of
alternatives. In particular, the goal should be to find an operational justification for the textbook
axioms, i.e., ultimately for complex Hilbert spaces, unitary dynamics, tensor product structure for
composite systems, Born rule, and so on. The result would be a reconstruction of quantum theory from
operational axioms [1–10] and should ideally yield a better understanding of what quantum theory
tells us about Nature; and why it is the way it is.

In this manuscript, we shall review and summarize how the quantum formalism for arbitrarily
many qubits can be reconstructed from operational rules restricting an observer’s acquisition of
information about a set of observed systems [1,2]. The goal of this summary is to provide a
didactical and easily-accessible overview of this reconstruction. Its underlying framework is especially
engineered for unraveling the architecture of quantum theory, and so many reconstruction steps are
instructive for understanding the origin of quantum properties. As we shall see, this reconstruction
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provides a transparent, informational explanation for the structure of qubit quantum theory and
especially also for its paradigmatic features, such as entanglement, monogamy and non-locality.
The approach also produces novel ‘conserved informational charges’, indeed appearing in quantum
theory, that turn out to characterize the unitary group and the set of pure states and which might find
practical applications in quantum information.

The premise of the summarized approach is to only speak about information that the
observer has access to. It is thus purely operational and survives without any ontological
commitments. This approach is inspired, in part, by Rovelli’s relational quantum mechanics [11]
and the Brukner–Zeilinger informational interpretation of quantum theory [12,13]; this successful
reconstruction can be viewed as a completion of these ideas for qubit systems.

The rest of the manuscript is organized as follows. In Section 2, we review the landscape of alternative
theories; in Section 3, we formulate the operational quantum axioms; in Section 4, we summarize the
key steps of the reconstruction itself and, finally, conclude in Section 5.

2. Overview of a Landscape of Theories

We shall begin with an overview of a landscape of alternative theories, which has been developed
in [1,2] to which we also refer for further details.

2.1. From Questions and Answers to Probabilities and States

Our first aim is to define a notion of a state both for a single system and an ensemble of systems.
Consider an observer O who interrogates an ensemble of (identically prepared [1]) systems

{Sa}n
a=1, coming out of a preparation device, with binary questions Qi from some set Q. For example,

in the case of quantum theory, such a question could read “is the spin of the electron up in x-direction?”
This set Q shall only contain repeatable questions in the sense that O will receive m ∈ N times the
same answer whenever asking any Qi ∈ Q m times in immediate succession to a single system Sa.
We shall assume any Sa to always give a definite answer if asked some Qi ∈ Q, which moreover
is not independent of Sa’s preparation. Accordingly, Q can only contain physically-implementable
questions, which are ‘answerable’ by the {Sa} and not arbitrary logically conceivable binary questions.
Furthermore, since we assume definite answers, we do not address the measurement problem.
The answers to the Qi ∈ Q given by the {Sa} shall follow a specific statistics for each way of preparing
the {Sa} (for n sufficiently large). The set of all the possible answer statistics for all Qi ∈ Q for all
preparations is denoted by Σ.

O, being a good experimenter, has developed, through his experiments, a theoretical model for
Q and Σ which he employs to interpret the outcomes of his interrogations (and to decide whether a
question is in Q or not). This permits O to assign, for the next Sa to be interrogated, a prior probability
yi that Sa’s answer to Qi ∈ Q will be ‘yes’. Namely, O determines yi through a belief updating—in a
broadly Bayesian spirit—according to his model of Σ, any prior information on the way of preparation
and possibly to the frequencies of ‘yes’ answers to questions from Q, which he may have recorded in
previous interrogation runs on systems identically prepared to Sa. (We add “broadly” here as we also
consider the typical laboratory situation of an ensemble of systems.) In particular, O may also not have
carried out previous interrogations on systems identically prepared to Sa (e.g., if the ensemble contains
only the single Sa) in which case, he will estimate the prior yi for the single Sa solely according to his
model of Σ and any prior information about the preparation (more on this and update rules will be
discussed in Sections 2.3 and 2.4).

WhileQ need not necessarily contain all binary measurements that O could, in principle, perform
on the {Sa}, we shall assume that Q is ‘tomographically complete’ in the sense that the {yi}∀Qi∈Q
are sufficient to compute the probabilities for all other physically realizable measurements possibly
not contained in the Q, as well. Hence, the yi encode everything O could possibly say about the
future outcomes to arbitrary experiments on the {Sa} in his laboratory. It will therefore be sufficient to
henceforth restrict O to acquire information about the Sa solely through the Qi ∈ Q. It is also natural
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to identify O’s ‘catalog of knowledge’ about the given Sa, i.e., the collection of {yi}∀Qi∈Q, with the
state of Sa relative to O. This is a state of information and an element of Σ. Conversely, any element in
Σ assigns a probability yi to all Qi ∈ Q. Thus, we identify Σ with the state space of Sa.

The state {yi}∀Qi∈Q is the prior state for the single Sa to be interrogated next, but also coincides
with the state O assigns to the ensemble {Sa} (which may only contain a single member) given that its
members are identically prepared [1].

2.2. Time Evolution of O’s “Catalog of Knowledge”

We permit O to subject the {Sa} to interactions, which cause a state {yi(t0)}∀Qi∈Q at time t0 to
evolve in time to another legitimate state. Any permitted time evolution shall be temporally translation
invariant, thus defining a one-parameter map T∆t({yi(t0)}∀Qi∈Q) = {yi(t0 + ∆t)}∀Qi∈Q from Σ to
itself, which only depends on the time interval ∆t, but not on t0. We denote by T the set of all time
evolutions to which we allow O to expose the {Sa}.

Clearly, T is a further crucial ingredient of O’s world model; his model for describing his
interrogations with the {Sa} is thus encoded in the triple (Q, Σ, T ).

2.3. Convexity and State of No Information

It will be our challenge to unravel what O’s world model is. This requires us to subject the triple
(Q, Σ, T ) to a number of further operational conditions that are ‘natural’ in the context of information
acquisition with a broadly Bayesian spirit. Upon imposing the quantum postulates, this will turn
out to restrict Q and T to incorporate only a ‘natural’ subset of all possible quantum measurements
and time evolutions, namely projective binary measurements and unitaries, respectively (rather than
arbitrary positive operator-valued measures (POVMs) and completely positive maps). However, this
suffices for our purposes to reconstruct the textbook quantum formalism.

To account for the possibility of randomness in the method of preparation, we assume Σ to be
convex. Consider a collection of identical systems (i.e., with identical (Q, Σ, T )) that are not necessarily
in identical states and for which O uses a cascade of biased coin tosses to decide which system to
interrogate. Then O is enabled to assign a single prior state to this collection, which is a convex
combination of their individual states.

Next, we assume the existence of a special method of preparation, which generates even
completely random answer statistics over all Qi ∈ Q. This preparation is described by a
special state in Σ, namely yi = 1

2 , ∀Qi ∈ Q, and shall be called the state of no information.
This distinguished state is a constraint on the pair (Q, Σ). (E.g., in quantum theory, the pair
({binary POVMs}, {density matrices}) does not satisfy this condition because there exist inherently
biased POVMs, while ({projective binary measurements}, {density matrices}) does.) It plays two
crucial roles: it defines (1) the prior state of Sa that O will start with in a Bayesian updating when he
has no ‘prior information’ about the {Sa} (except what his model (Q, Σ, T ) is); and (2) an unambiguous
notion of the (in-)dependence of questions (cf. Section 2.4), which otherwise would be state dependent.
(E.g., in quantum theory, the questions Qx1 = “Is the spin of Qubit 1 up in x-direction?” and Qx2 = “Is
the spin of Qubit 2 up in x-direction?” are independent relative to the completely mixed state, however
not relative to a state with entanglement in x-direction.)

2.4. State Updating and (In)Dependence and Compatibility of Questions

There are two kinds of state update rules, one for the state of the ensemble {Sa} (which coincides
with the prior state assigned to the next Sa to be interrogated) and one for the posterior state of a given
ensemble member Sa. In a single shot interrogation, O receives a single Sa, assigns a prior state to it
according to his prior information (cf. Section 2.1), interrogates it with some questions fromQ (without
intermediate re-preparation) and, depending on the answers, updates the prior to a posterior state
valid for this specific Sa only. This requires a consistent posterior state update rule, which permits
O to update the probabilities yi for all Qi ∈ Q in a manner that respects the structure of Σ and the
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repeatability of questions (i.e., an answer Qi = ‘yes’ or ‘no’ must have a posterior yi = 1 or 0 as a
consequence, respectively). This is also a belief updating, but about the single Sa, and is not the same
as in Sections 2.1 and 2.3. Specifically, the posterior state of Sa may differ significantly from its prior
state if O has experienced an information gain on at least some Qi ∈ Q (this will necessarily happen
when complementary questions are involved; see below). This is the ‘collapse’ of the state: it is merely
O’s update of information about the specific Sa [1].

By contrast, in a multiple shot interrogation, O carries out a single shot interrogation on each
member of an entire (identically prepared [1]) ensemble {Sa} to do ensemble state tomography and
estimate the state of the ensemble from his/her prior information about the preparation and the
collection of posterior states from the single shot interrogations. With every further interrogated Sa, O
updates the ensemble state, which coincides with the prior state of the next system from the ensemble
to be interrogated. Accordingly, this requires a prior state update rule. This is the belief updating
alluded to in Sections 2.1 and 2.3 about the ensemble {Sa}.

It will not be necessary to specify these two update rules in detail; we just assume O uses consistent
ones. Specifically, given a posterior state update rule, we shall call Qi, Qj ∈ Q

(maximally) independent if, after having asked Qi to S in the state of no information, the posterior
probability yj =

1
2 . That is, if the answer to Qi relative to the state of no

information tells O ‘nothing’ about the answer to Qj.
dependent if, after having asked Qi to S in the state of no information, the posterior

probability yj 6= 1
2 (if yj = 0 or 1, they are maximally dependent). That

is, if the answer to Qi relative to the state of no information gives O at
least partial information about the answer to Qj.

(maximally) compatible if O may know the answers to both Qi, Qj simultaneously, i.e., if there
exists a state in Σ such that yi, yj can be simultaneously zero or one.

(maximally) complementary if every state in Σ, which features yi = 0, 1, necessarily implies yj =
1
2 .

Notice that complementarity implies independence (but not vice versa).

(One can also define partial compatibility similarly [1].) These relations shall be symmetric; e.g., Qi is
independent of Qj if and only if Qj is independent of Qi, etc.

We impose a final condition on the posterior state update rule: if Qi, Qj are maximally compatible
and independent, then asking Qi shall not change yj, i.e., O’s information about Qj.

2.5. Informational Completeness

The fundamental building blocks of the theories in the landscape that we are constructing are to
be sets of pairwise independent questions. This will help to render the convoluted parametrization
of a state by {yi}∀Qi∈Q more economical. Consider a set of pairwise independent questions QM :=
{Q1, . . . , QD}; it is called maximal if no question fromQ\QM can be added toQM without destroying
the pairwise independence of its elements. We shall assume that any maximal QM is informationally
complete in the sense that all {yi}∀Qi∈Q can be computed from the corresponding probabilities {yi}D

i=1
for all states in Σ. Any such QM features D elements [1] such that Σ becomes a D-dimensional convex
set and states become vectors:

~y =




y1

y2
...

yD




.

2.6. Information Measure

Our focus is O’s acquisition of information, so we need to quantify O’s information about the
systems. Since Qi ∈ Q is binary, we quantify O’s information about Sa’s answer to it by a function α(yi)
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with 0 ≤ α(yi) ≤ 1 bit and α(y) = 0 bit⇔ y = 1
2 and α(1) = α(0) = 1 bit. O’s total information

about a Sa must be a function of the state; we make an additive ansatz:

I(~y) :=
D

∑
i=1

α(yi). (1)

The quantum postulates will single out the specific function α.
Consider a set {Q1, . . . , Qn} of mutually (maximally) complementary questions. It is clear that

whenever O has maximal information α(yi) = 1 bit about Qi from this set, he must have zero bits
of information about all other questions in the set. We require more generally that such a set cannot
support more than one bit of information, regardless of the state:

α(y1) + · · ·+ α(yn) ≤ 1 bit (2)

for otherwise O could, for some states, reduce his total information about such a set by asking another
question from it. These complementarity inequalities represent informational uncertainty relations that
describe how the information gain about one question enforces an information loss about questions
complementary to it (see also the state ‘collapse’ in Section 2.4).

2.7. Composite Systems and (Classical) Rules of Inference

O must be able to tell a composite system apart into its constituents purely by means of the
information accessible to him through interrogation and thus ultimately by means of the question sets.
Let systems SA, SB have question sets QA,QB. It is then natural to say that they define a composite
system SAB if any Qa ∈ QA is maximally compatible with any Qb ∈ QB and if:

QAB = QA ∪QB ∪ Q̃AB, (3)

where Q̃AB only contains composite questions, which are iterative compositions, Qa ∗1 Qb, Qa ∗2

(Qa′ ∗3 Qb), (Qa ∗4 Qb) ∗5 Qb′ , (Qa ∗6 Qb) ∗7 (Qa′ ∗8 Qb′), . . ., via some logical connectives ∗1, ∗2, ∗3, · · · ,
of individual questions Qa, Qa′ , . . . ∈ QA about SA and Qb, Qb′ , . . . ∈ QB about SB. This definition is
extended recursively to composite systems with more than two subsystems.

Since O can never test the truthfulness of statements about the logical connectives of
complementary questions through interrogations and since all propositions must have operational
meaning, we shall permit O to logically connect two (possibly composite) questions directly with some
∗ only if they are compatible. For the same reason, O is allowed to apply classical rules of inference
(in terms of Boolean logic) exclusively to sets of mutually-compatible questions.

We stress that this definition of composite systems is distinct from the usual state tensor product
rule in generalized probabilistic theories coming from local tomography [3–5]. In particular, this
composition rule admits non-locally tomographic composites (see Section 4.3).

2.8. Computing Probabilities and Questions as Vectors

Thanks to informational completeness, the probability function Y(Q|~y) ∈ [0, 1] that Q = ‘yes’,
given the state ~y, exists for all Q ∈ Q and ~y ∈ Σ. As shown in [2], the exhibited structure yields:

Y(Q|~y) = Y(~q|~y) = 1
2

(
~q · (2~y−~1) + 1

)
, (4)

where~q ∈ RD is a question vector encoding Q ∈ Q and~1 is a vector with each coefficient equal to one
in the basis corresponding to QM. This equation gives rise to (part of) the Born rule.

Suppose Q, Q′ ∈ Qwere both encoded by the same~q. Then, by (4), they would be probabilistically
indistinguishable, and O must view them as logically equivalent. O is free to remove any such
redundancy from his description of Q upon which every permissible question vector ~q will encode
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a unique Q ∈ Q. Finally, for every Q ∈ Q, there exists a state ~yQ, which is the updated posterior
state of Sa after O received a ‘yes’ answer to the single question Q from Sa in the (prior) state of no
information. O had zero bits of information before, and ~yQ encodes a single independent question
answer, so we naturally require that it encodes one independent bit. Hence, for every Q ∈ Q, there
exists ~yQ ∈ Σ with I(~yQ) = 1 bit, such that Y(Q|~yQ) = 1. (In quantum theory, the ~yQ will only turn
out to be pure states for a single qubit; e.g., for two qubits and Q = ‘Is the spin of Qubit 1 up in
z-direction?’, represented by the rank-two projector Pz1 = 1

2 (1+ σz ⊗ 12×2), ~yQ corresponds to the
mixed state ρz1 = 1

4 (1+ σz ⊗ 12×2). Clearly, tr(Pz1 ρz1) = 1.)

3. The Quantum Principles as Rules Constraining O’s Information Acquisition

In the sequel, we consider the most elementary of information carriers. Within the introduced
landscape of theories, we now establish rules on O’s acquisition of information that single out the
quantum theory of a composite system SN of N ∈ N qubits, modeled in our language by a triple
(QN , ΣN , TN). Effectively, these rules constitute a set of ‘coordinates’ for quantum theory on this
landscape. The rules are spelled out first colloquially, then mathematically and are motivated in more
detail in [1,2].

Empirically, the information accessible to an experimenter about (characteristic properties of)
elementary systems is limited. For example, an experimenter may know one binary proposition about
an electron (e.g., its spin in x-direction), but nothing fully independent of it (and similarly for a classical
bit). We shall characterize a composition of N elementary systems according to how much information
is, in principle, simultaneously available to O.

Rule 1. (Limited information) “The observer O can acquire maximally N ∈ N independent bits of
information about the system SN at any moment of time.”
There exists a maximal set Qi, i = 1, . . . , N, of N mutually maximally independent and compatible questions
in QN .

O can thereby distinguish maximally 2N states of SN in a single shot interrogation.
However, empirically, elementary systems admit more independent propositions than what,

due to the information limit, they are able to answer at a time. This is Bohr’s complementarity.
The unanswered properties must be random (and so ‘in superposition’) because the information
limit makes it impossible to ascribe definite outcomes to them. For example, an experimenter may
also inquire about the spin of the electron in y-direction. Yet doing so is at the total expense of his
information about its spin in the x- and z-directions, and subsequent such measurements have random
outcomes. For the N elementary systems, we assert the existence of complementarity.

Rule 2. (Complementarity) “The observer O can always get up to N new independent bits of
information about the system SN . However, whenever O asks SN a new question, he experiences no
net loss in his total amount of information about SN .”
There exists another maximal set Q′i, i = 1, . . . , N, of N mutually maximally independent and compatible
questions in QN , such that Q′i, Qi are maximally complementary and Q′i, Qj 6=i are maximally compatible.

The peculiar mathematical form of Rule 2 becomes intuitive upon recalling that SN is a composite
system, such that complementarity should exist per elementary system [1].

Rules 1 and 2 are conceptually inspired by (non-technical) proposals made by Rovelli [11] and
Zeilinger and Brukner [12,13]. These rules say nothing about what happens in-between interrogations.
Naturally, we demand O not to gain or lose information without asking questions.

Rule 3. (Information preservation) “The total amount of information O has about (an otherwise
non-interacting) SN is preserved in-between interrogations.”
I(~y) is constant in time in-between interrogations for (an otherwise non-interacting) SN .
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Hence, O’s total information I(~y) is a ‘conserved charge’ of any time evolution T∆t ∈ TN .
The more interactions to which O may subject SN are available, the more ways in which any state

may, in principle, change in time and, thus, the more ‘interesting’ O’s world. We therefore demand
that any time evolution is physically realizable as long as it is consistent with the other rules (since
ΣN , TN are interdependent, this is distinct from ‘maximizing the number’ of states).

Rule 4. (Time evolution) “O’s ‘catalog of knowledge’ about SN evolves continuously in time in-between
interrogations, and every consistent such evolution is physically realizable.”
TN is the maximal set of transformations T∆t on states such that, for any fixed state ~y, T∆t(~y) is continuous in
∆t and compatible with Principles 1–3 (and the structure of the theory landscape).

(If we did not require this ‘maximality’ of TN , we would still ultimately obtain a linear, unitary
evolution, but not necessarily the full unitary group. This is the sole reason for demanding ‘maximality’.
Note that Principles 3 and 4 are not equivalent to the axiom of ‘continuous reversibility’ of generalized
probabilistic theories [3–5].)

We shall also allow O to ask any question to SN which ‘makes (probabilistic) sense’.

Rule 5. (Question unrestrictedness) “Every question that yields legitimate probabilities for every way of
preparing SN is physically realizable by O.”
Every question vector ~q ∈ RDN that satisfies Y(~q|~y) ∈ [0, 1] ∀~y ∈ ΣN and for which there exists ~yQ ∈ ΣN
with I(~yQ) = 1 bit, such that Y(~q|~yQ) = 1 corresponds to a Q ∈ QN .

(Without Principle 5, we would still obtain the structure of an informationally complete set QMN ,
finding that it encodes a basis of projective Pauli operator measurements [2]; Principle 5 legalizes all
such measurements.)

These five rules turn out to leave two solutions for the triple (QN , ΣN , TN). Remarkably, they
cannot distinguish between complex and real numbers. Namely, the two solutions are qubit and
rebit quantum theory, i.e., two-level systems over real Hilbert spaces [1,2]. Since the latter is both
mathematically and physically a subcase of the former, these five rules can be regarded as sufficient.
However, if one also wishes to discriminate rebits operationally, then an extra rule, adapted from [3–5]
and imposed solely for this purpose (it is partially redundant), succeeds.

Rule 6. (Tomographic locality) “O can determine the state of the composite system SN by interrogating only
its subsystems.”

As shown in [1,2], Rules 1–6 are equivalent to the textbook axioms. More precisely:

Claim. The only solution to Rules 1–6 is qubit quantum theory where:

• ΣN ' convex hull of CP2N−1 is the space of 2N × 2N density matrices over C2N
,

• states evolve unitarily according to TN ' PSU(2N) and the equation describing the state dynamics is
(equivalent to) the von Neumann evolution equation,

• QN ' CP2N−1 is (isomorphic to) the set of projective measurements onto the +1 eigenspaces of N-qubit
Pauli operators (a Hermitian operator on C2N

is a Pauli operator iff it has two eigenvalues ±1 of equal
multiplicity), and the probability for Q ∈ QN to be answered with ‘yes’ in some state is given by the Born
rule for projective measurements.

4. Synopsis of the Reconstruction Steps and Key Results

Since this gives rise to a constructive derivation of the explicit architecture of qubit quantum theory,
it involves a large number of individual steps compared to the rather abstract reconstructions [3–10].
However, this is also rewarding as it offers novel informational explanations for typical features of
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quantum theory, and so many reconstruction steps are actually quite instructive. We now provide a
summary of key results and reconstruction steps from [1,2] (to which we refer for technical details)
needed for proving the claim of the previous section.

4.1. Logical Connectives for Building Informationally Complete Sets

The first task is to build informationally complete sets QMN [1]. The conjunction of Rules 1 and 2
implies that QM1 = {Q1, Q2, . . . , QD1} for a single elementary system must be a maximal mutually
complementary set with D1 ≥ 2. We changed notation slightly compared to rules 1 and 2, labeling
complementary questions by numbers, not primes. Of course, in quantum theory, D1 = 3; the more
involved N = 2 case will entail this. The structure (3) of a composite system implies that QM2 should
contain individual questions about its subsystems. Continuing with a slight change of notation, we
denote QM1 for System 1 by {Q1, Q2, . . . , QD1} and for System 2 with a prime by {Q′1, Q′2, . . . , Q′D1

}.
Apart from these individual questions, QM2 should contain composite questions Qi ∗ Q′j for some
connective ∗. Pairwise independence of QM2 enforces that ∗ must satisfy the following truth table,
where ‘yes’ = 1 and ‘no’ = 0 (Qi, Q′j are compatible) [1]:

Qi Q′j Qi ∗Q′j
0 1 a
1 0 a
1 1 b
0 0 b

a 6= b a, b ∈ {0, 1}. (5)

Hence, ∗ is either the XNOR↔ (for a = 0, b = 1) or its negation, the XOR ⊕ (for a = 1, b = 0). Up to
an overall negation ¬, the two connectives are logically equivalent, and so, we henceforth make the
convention to only build up composite questions (for informationally complete sets) using the XNOR.
The composite question Qij := Qi ↔ Q′j is a ‘correlation question’, representing “are the answers to
Qi, Q′j the same?.” Ultimately, in quantum theory,↔ will turn out to correspond to the tensor product
⊗ in σi ⊗ σj where σi is a Pauli matrix; Qij will then correspond to “are the spins of Qubit 1 in the i-
and of Qubit 2 in the j-direction correlated?.”

4.2. Question Graphs, Independence and Compatibility for N = 2 and Entanglement

It is convenient to represent questions graphically: individual questions are represented as
vertices and bipartite correlation questions as edges between them. For instance, we may have:

4.1. Logical connectives for building informationally complete sets
The first task is to build informationally complete sets QMN

[1]. The conjunction of rules
1 and 2 implies that QM1 = {Q1, Q2, . . . , QD1} for a single elementary system must be a
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↔ will turn out to correspond to the tensor product ⊗ in σi⊗σj where σi is a Pauli matrix; Qij

will then correspond to “are the spins of qubit 1 in i- and of qubit 2 in j-direction correlated?.”
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vertices and bipartite correlation questions as edges between them. For instance, we may have

system 1 system 2

Q1

Q2

Q3

QD1

Q′
1

Q′
2

Q′
3

Q′
D1

...
...

...

system 1 system 2

Q1

Q2

Q3

QD1

Q′
1

Q′
2

Q′
3

Q′
D1

Q11

...
...

...

system 1 system 2

Q1

Q2

Q3

QD1

Q′
1

Q′
2

Q′
3

Q′
D1

Q11

Q31Q22

Q23

QD1D1

...
...

...

.

Since O is only allowed to connect compatible questions logically, there can be no edge between
individual questions of the same system.

Using only rules 1 and 2 and logical arguments, the following result is proven in [1]:

Lemma 1. Qi, Q
′
j , Qij are pairwise independent for all i, j = 1, . . . ,D1 and will thus be part of

an informationally complete set QM2 . Furthermore:

(i) Qi is compatible with Qij, ∀ j = 1, . . . ,D1 and complementary to Qkj, ∀ k 6= i and
∀ j = 1, . . . ,D1. That is, graphically, an individual question Qi is compatible with a
correlation question Qij if and only if its corresponding vertex is a vertex of the edge
corresponding to Qij . By symmetry, the analogous result holds for Q′

j.

(ii) Qij and Qkl are compatible if and only if i 6= k and j 6= l. That is, graphically, Qij and Qkl

are compatible if their corresponding edges do not intersect in a vertex and complementary
if they intersect in one vertex.

Since O is only allowed to connect compatible questions logically, there can be no edge between
individual questions of the same system.

Using only Rules 1 and 2 and logical arguments, the following result is proven in [1]:

Lemma 1. Qi, Q′j, Qij are pairwise independent for all i, j = 1, . . . , D1 and will thus be part of an
informationally complete set QM2 . Furthermore:

(i) Qi is compatible with Qij, ∀ j = 1, . . . , D1 and complementary to Qkj, ∀ k 6= i and ∀ j = 1, . . . , D1.
That is, graphically, an individual question Qi is compatible with a correlation question Qij if and only if
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its corresponding vertex is a vertex of the edge corresponding to Qij. By symmetry, the analogous result
holds for Q′j.

(ii) Qij and Qkl are compatible if and only if i 6= k and j 6= l. That is, graphically, Qij and Qkl are compatible
if their corresponding edges do not intersect in a vertex and complementary if they intersect in one vertex.

For example, Q1 in the third question graph above is compatible with Q11 and complementary to
Q22, while Q11 and Q22 are compatible and Q11 and Q31 are complementary.

This lemma has a striking consequence: it implies entanglement. Indeed, since, e.g., Q11 and
Q22 are independent and compatible, O may spend his maximally accessible amount of N = 2
independent bits of information (Rule 1) over correlation questions only. Since non-intersecting edges
do not share a common vertex, the lemma implies that no individual question is simultaneously
compatible with two correlation questions that are compatible. Hence, when knowing the answers to
Q11, Q22, O will be entirely ignorant about the individual questions; O has then maximal information
about S2, but purely composite information. This is entanglement in the very sense of Schrödinger
(“...the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its
parts...” [14]). For example, in quantum theory, a state with Q11 = Q22 = ‘yes’ will coincide with a
Bell state having the spins of Qubits 1 and 2 correlated in x- and y-direction (and anti-correlated in
z-direction). Of course, there is nothing special about Q11, Q22, and the argument works similarly for
other composite question pairs and can be extended also to states with non-maximal entanglement
(see [1] for details).

For systems with limited information content, entanglement is therefore a direct consequence of
complementarity; without it there would be no independent and compatible composite questions
sufficient to saturate the information limit [1]. For instance, two classical bits satisfy Rule 1, as well,
but admit no complementarity so that Qcbit

M2
= {Q1, Q′1, Q11} and the maximum amount of N = 2

independent bits cannot be spent on composite questions only.

For example, Q1 in the third question graph above is compatible with Q11 and complementary
to Q22, while Q11 and Q22 are compatible and Q11 and Q31 are complementary.

This lemma has a striking consequence: it implies entanglement. Indeed, since, e.g., Q11

and Q22 are independent and compatible, O may spend his maximally accessible amount
of N = 2 independent bits of information (rule 1) over correlation questions only. Since
nonintersecting edges do not share a common vertex, the lemma implies that no individual
question is simultaneously compatible with two correlation questions that are compatible.
Hence, when knowing the answers to Q11, Q22, O will be entirely ignorant about the individual
questions; O has then maximal information about S2, but purely composite information. This is
entanglement in the very sense of Schrödinger (“...the best possible knowledge of a whole does not
necessarily include the best possible knowledge of all its parts...” [16]). For example, in quantum
theory, a state with Q11 = Q22 = ‘yes’ will coincide with a Bell state having the spins of qubits
1 and 2 correlated in x- and y-direction (and anti-correlated in z-direction). Of course, there is
nothing special about Q11, Q22 and the argument works similarly for other composite question
pairs and can be extended also to states with non-maximal entanglement (see [1] for details).

For systems with limited information content, entanglement is therefore a direct consequence
of complementarity; without it there would be no independent and compatible composite
questions sufficient to saturate the information limit [1]. For instance, two classical bits satisfy
rule 1 as well, but admit no complementarity so that Qcbit

M2
= {Q1, Q

′
1, Q11} and the maximum

amount of N = 2 independent bits cannot be spent on composite questions only.

SA SB

SC
We also note that rules 1 and 2 offer a simple, intuitive explanation for

monogamy of entanglement. Consider, for a moment N = 3 elementary
systems SA, SB , SC , and suppose SA and SB are maximally entangled
(say, because O received the answer Q11 = Q22 = ‘yes’ from SAB).
Noting that SAB is a composite bipartite system inside the tripartite
SABC , O has then already spent his maximal amount of information of N = 2 independent bits
which he may know about SAB and can therefore not know anything else that is independent,
incl. non-trivial correlations with SC , about the pair. To saturate the N = 3 independent bit
limit for the tripartite system SABC , he may then only inquire individual information about SC .
This is monogamy in its extreme form: the maximally entangled pair SAB cannot be entangled
with any other system SC . This heuristic argument can be made rigorous in terms of the
compatibility and independence structure of questions for N ≥ 3 and can be extended to the
non-extremal case using informational monogamy inequalities [1].

4.3. A logical explanation for the three-dimensionality of the Bloch ball
A key result of the reconstruction, proven in [1], is the following. Since its proof is instructive
and representative for this approach, we shall rephrase it here.

Theorem 1. D1 = 2 or 3.

Proof. Consider the N = 2 case. Lemma 1 implies that any maximal set of pairwise compatible
correlation questions has D1 elements. Indeed, there are maximally D1 non-intersecting edges
between the D1 vertices of system 1 and the D1 vertices of system 2; e.g., the D1 ‘diagonal’ Qii

...

Q11

Q22

QD1D1

Q33

We also note that Rules 1 and 2 offer a simple, intuitive explanation for monogamy of entanglement.
Consider, for a moment, N = 3 elementary systems SA, SB, SC, and suppose SA and SB are maximally
entangled (say, because O received the answer Q11 = Q22 = ‘yes’ from SAB). Noting that SAB
is a composite bipartite system inside the tripartite SABC, O has then already spent his maximal
amount of information of N = 2 independent bits, which he may know about SAB and can therefore
not know anything else that is independent, including non-trivial correlations with SC, about the
pair. To saturate the N = 3 independent bit limit for the tripartite system SABC, he may then only
inquire about individual information about SC. This is monogamy in its extreme form: the maximally
entangled pair SAB cannot be entangled with any other system SC. This heuristic argument can be
made rigorous in terms of the compatibility and independence structure of questions for N ≥ 3 and
can be extended to the non-extremal case using informational monogamy inequalities [1].

4.3. A Logical Explanation for the Three-Dimensionality of the Bloch Ball

A key result of the reconstruction, proven in [1] is the following. Since its proof is instructive and
representative for this approach, we shall rephrase it here.

Theorem 1. D1 = 2 or 3.

Proof. Consider the N = 2 case. Lemma 1 implies that any maximal set of pairwise compatible
correlation questions has D1 elements. Indeed, there are maximally D1 non-intersecting edges between
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the D1 vertices of System 1 and the D1 vertices of System 2; e.g., the D1 ‘diagonal’ Qii:

For example, Q1 in the third question graph above is compatible with Q11 and complementary
to Q22, while Q11 and Q22 are compatible and Q11 and Q31 are complementary.

This lemma has a striking consequence: it implies entanglement. Indeed, since, e.g., Q11

and Q22 are independent and compatible, O may spend his maximally accessible amount
of N = 2 independent bits of information (rule 1) over correlation questions only. Since
nonintersecting edges do not share a common vertex, the lemma implies that no individual
question is simultaneously compatible with two correlation questions that are compatible.
Hence, when knowing the answers to Q11, Q22, O will be entirely ignorant about the individual
questions; O has then maximal information about S2, but purely composite information. This is
entanglement in the very sense of Schrödinger (“...the best possible knowledge of a whole does not
necessarily include the best possible knowledge of all its parts...” [16]). For example, in quantum
theory, a state with Q11 = Q22 = ‘yes’ will coincide with a Bell state having the spins of qubits
1 and 2 correlated in x- and y-direction (and anti-correlated in z-direction). Of course, there is
nothing special about Q11, Q22 and the argument works similarly for other composite question
pairs and can be extended also to states with non-maximal entanglement (see [1] for details).

For systems with limited information content, entanglement is therefore a direct consequence
of complementarity; without it there would be no independent and compatible composite
questions sufficient to saturate the information limit [1]. For instance, two classical bits satisfy
rule 1 as well, but admit no complementarity so that Qcbit

M2
= {Q1, Q

′
1, Q11} and the maximum

amount of N = 2 independent bits cannot be spent on composite questions only.

SA SB

SC
We also note that rules 1 and 2 offer a simple, intuitive explanation for

monogamy of entanglement. Consider, for a moment N = 3 elementary
systems SA, SB , SC , and suppose SA and SB are maximally entangled
(say, because O received the answer Q11 = Q22 = ‘yes’ from SAB).
Noting that SAB is a composite bipartite system inside the tripartite
SABC , O has then already spent his maximal amount of information of N = 2 independent bits
which he may know about SAB and can therefore not know anything else that is independent,
incl. non-trivial correlations with SC , about the pair. To saturate the N = 3 independent bit
limit for the tripartite system SABC , he may then only inquire individual information about SC .
This is monogamy in its extreme form: the maximally entangled pair SAB cannot be entangled
with any other system SC . This heuristic argument can be made rigorous in terms of the
compatibility and independence structure of questions for N ≥ 3 and can be extended to the
non-extremal case using informational monogamy inequalities [1].

4.3. A logical explanation for the three-dimensionality of the Bloch ball
A key result of the reconstruction, proven in [1], is the following. Since its proof is instructive
and representative for this approach, we shall rephrase it here.

Theorem 1. D1 = 2 or 3.

Proof. Consider the N = 2 case. Lemma 1 implies that any maximal set of pairwise compatible
correlation questions has D1 elements. Indeed, there are maximally D1 non-intersecting edges
between the D1 vertices of system 1 and the D1 vertices of system 2; e.g., the D1 ‘diagonal’ Qii

...

Q11

Q22

QD1D1

Q33

are pairwise independent and compatible. The constraints on the posterior state update rule in
Section 2.4 entail that they are also mutually compatible (Specker’s principle) [1] such that O may
simultaneously know the answers to all D1 Qii. Since O may not know more than N = 2 independent
bits (Rule 1), the D1 Qii cannot be mutually independent if D1 > 2. Thus, assuming the Qii are of
equivalent status, the answers to any pair of them, say Q11, Q22, must imply the answers to all others,
say Qii, i = 3, . . . , D1. Hence, Qjj = Q11 ∗ Q22, j 6= 1, 2, for a connective ∗ that preserves pairwise
independence of Q11, Q22, Qjj. Reasoning as in (5) implies that either:

Qjj = Q11 ↔ Q22, or Qjj = ¬(Q11 ↔ Q22), j = 3, . . . , D1 (6)

so that for D1 > 3 Qjj, j = 3, . . . , D1 could not be pairwise independent. Arguing identically for all
other sets of D1 pairwise independent and compatible Qij, we conclude that D1 ≤ 3.

This theorem has several crucial repercussions. We may already suggestively call D1 = 2 and
D1 = 3 the ‘rebit’ (two-level systems over real Hilbert spaces) and ‘qubit’ case, respectively. Reasoning
as in (6) shows that the Qij are logically closed under↔; as demonstrated in [1]:

Theorem 2. If D1 = 3, then QM2 := {Qi, Q′j, Qij}i,j=1,2,3 is logically closed under↔ and, thus, constitutes
an informationally complete set for N = 2 with D2 = 15.

If D1 = 2, thenQM2 = {Qi, Q′j, Qij, Q11 ↔ Q22}i,j=1,2 is logically closed under↔ and, thus, constitutes
an informationally complete set for N = 2 with D2 = 9. Furthermore, Q11 ↔ Q22 is complementary to the
individual questions Qi, Q′j, i, j = 1, 2.

Indeed, D2 = 9, 15 are the correct numbers of degrees of freedom for N = 2 rebits and qubits,
respectively. However, since the composite question Q11 ↔ Q22 is complementary to all individual
questions in the rebit case (this is not true in the qubit case!), it is impossible for O to do ensemble state
tomography by asking only individual questions Qi, Q′j, thereby violating Rule 6. We are left with the
qubit case and shall henceforth ignore rebits (for rebits see [1]).

4.4. Ruling out Local Hidden Variables and the Correlation Structure for N = 2

Using (6) and repeating the argument leading to it for ‘non-diagonal’ Qij show that either:

Q11 ↔ Q22 = Q12 ↔ Q21, or Q11 ↔ Q22 = ¬(Q12 ↔ Q21). (7)

The first case (without relative negation) is the case of classical logic and compatible with local hidden
variables for the individual questions Qi, Q′j. Namely, note that Q11 ↔ Q22 = Q12 ↔ Q21 can be
rewritten in terms of the individuals as:

(Q1 ↔ Q′1)↔ (Q2 ↔ Q′2) = (Q1 ↔ Q′2)↔ (Q2 ↔ Q′1). (8)
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Suppose for a moment that Q1, Q′1, Q2, Q′2 had simultaneous definite values (although not accessible
to O). It is easy to convince oneself that any distribution of simultaneous truth values over the Qi, Q′j
satisfies (8) [1]. In fact, (8) is a classical logical identity and can be argued to follow from classical
rules of inference [1]. However, it involves complementary individual questions, thereby violating
our premise from Section 2.7 that O may apply classical rules of inference exclusively to mutually
compatible questions. This classical case is thus ruled out.

One can check that the second case, Q11 ↔ Q22 = ¬(Q12 ↔ Q21), does not admit a local hidden
variable interpretation, but is consistent with the structure of the theory landscape and rules [1].
Since one of the two cases (7) must be true, we conclude that this second case holds. In fact, for any
complementary pairs Q, Q′ and Q′′, Q′′′ such that both Q and Q′ are compatible with both Q′′, Q′′′,
one finds similarly [1]:

(Q↔ Q′′)↔ (Q′ ↔ Q′′′) = ¬
(
(Q↔ Q′′′)↔ (Q′ ↔ Q′′)

)
. (9)

This precludes to reason classically about the distribution of truth values over O’s questions.
Equation (9) permits us to unravel the complete correlation structure for QM2 . In fact, it turns

out that there are two distinct representations of this correlation structure: one corresponding to
quantum theory in its standard representation, the other to its ‘mirror’ representation, related by a
passive (not a physical) transformation, reassigning Q1 7→ ¬Q1 (in quantum theory tantamount to a
partial transpose on qubit 1) [1]. The two distinct representations turn out to be physically equivalent,
and so, a convention has to be made. Choosing the ‘standard’ case and using (9), one finds that
the compatibility and correlation structure of QM2 can be represented graphically as in Figure 1.
For Q, Q′, Q′′ compatible, we shall henceforth distinguish between:

even correlation: if Q = Q′ ↔ Q′′ and
odd correlation: if Q = ¬(Q′ ↔ Q′′).

This precludes to reason classically about the distribution of truth values over O’s questions.
(9) permits us to unravel the complete correlation structure for QM2 . In fact, it turns out

that there are two distinct representations of this correlation structure: one corresponding to
quantum theory in its standard representation, the other to its ‘mirror’ representation, related by
a passive (not a physical) transformation, reassigningQ1 7→ ¬Q1 (in quantum theory tantamount
to a partial transpose on qubit 1) [1]. The two distinct representations turn out to be physically
equivalent and so a convention has to be made. Choosing the ‘standard’ case and using (9), one
finds that the compatibility and correlation structure of QM2 can be represented graphically as
in fig. 1. For Q,Q′, Q′′ compatible, we shall henceforth distinguish between

even correlation: if Q = Q′ ↔ Q′′, and

odd correlation: if Q = ¬(Q′ ↔ Q′′).
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Figure 1. The compatibility and correlation structure of the informationally complete set QM2

for the N = 2 qubit case. Two questions are compatible if connected by a triangle edge and
complementary otherwise. Red and green triangles denote odd and even correlation, respectively; e.g.,
Q33 = ¬(Q11 ↔ Q22) = Q12 ↔ Q21. (Taken from [1].)

One can easily check that quantum theory satisfies this correlation structure for projective
spin measurements if one replaces i = 1, 2, 3 by x, y, z. For instance, Q11 = Q22 = ‘yes’ implies,
by fig. 1, the dependent Q33 = ‘no’. In quantum theory, this corresponds to the (unnormalized)
Bell state with spin correlation in x- and y-direction and anti-correlated spins in z-direction

|x+x+〉 − |x−x−〉 = −i|y+y+〉+ i|y−y−〉 = |z+z−〉+ |z−z+〉.

4.5. Compatibility, independence and informational completeness for arbitrary N
Consider N elementary systems in the ‘qubit’ (D1 = 3) case and the XNOR conjunction

Qµ1µ2···µN
:= Qµ1 ↔ Qµ2 ↔ · · · ↔ QµN

(10)

of individual questions, where µa = 0, 1, 2, 3 and Q0 :=‘yes’. The conjunction yields ‘yes’ and
‘no’ if an even and odd number of Qµa = ‘no’, respectively, and thus does not represent “are the
answers to all Qµa the same?.” As shown in [1], these conjunctions are informationally complete:

Theorem 3. (Qubits) The 4N − 1 questions8 Qµ1···µN
, µ = 0, 1, 2, 3, are pairwise independent

and logically closed under ↔ and thus form an informationally complete set QMN
with DN =

4N − 1. Moreover, Qµ1···µN
and Qν1···νN are compatible if they differ by an even number (incl.

0) of non-zero indices and complementary otherwise.

We note that an N -qubit density matrix has precisely 4N − 1 degrees of freedom.

8 We deduct the trivial question Q000···000.

Figure 1. The compatibility and correlation structure of the informationally complete set QM2 for the
N = 2 qubit case. Two questions are compatible if connected by a triangle edge and complementary
otherwise. Red and green triangles denote odd and even correlation, respectively; e.g., Q33 = ¬(Q11 ↔
Q22) = Q12 ↔ Q21. (Taken from [1].)

One can easily check that quantum theory satisfies this correlation structure for projective spin
measurements if one replaces i = 1, 2, 3 by x, y, z. For instance, Q11 = Q22 = ‘yes’ implies, by Figure 1,
the dependent Q33 = ‘no’. In quantum theory, this corresponds to the (unnormalized) Bell state with
spin correlation in the x- and y-direction and anti-correlated spins in the z-direction:

|x+x+〉 − |x−x−〉 = −i|y+y+〉+ i|y−y−〉 = |z+z−〉+ |z−z+〉.
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4.5. Compatibility, Independence and Informational Completeness for Arbitrary N

Consider N elementary systems in the ‘qubit’ (D1 = 3) case and the XNOR conjunction:

Qµ1µ2···µN := Qµ1 ↔ Qµ2 ↔ · · · ↔ QµN (10)

of individual questions, where µa = 0, 1, 2, 3 and Q0 := ‘yes’. The conjunction yields ‘yes’ and ‘no’ if
an even and odd number of Qµa = ‘no’, respectively, and thus, does not represent “are the answers to
all Qµa the same?.” As shown in [1], these conjunctions are informationally complete:

Theorem 3. (Qubits) The 4N − 1 questions Qµ1···µN , µ = 0, 1, 2, 3 (we deduct the trivial question Q000···000),
are pairwise independent and logically closed under↔ and, thus, form an informationally complete set QMN

with DN = 4N − 1. Moreover, Qµ1···µN and Qν1···νN are compatible if they differ by an even number (including
zero) of non-zero indices and complementary otherwise.

We note that an N-qubit density matrix has precisely 4N − 1 degrees of freedom.

4.6. Linear, Reversible Time Evolution and a Quadratic Information Measure

Thus far, the summarized results invoked only Rules 1 and 2 (and in one instance, Rule 6). Rules 3
and 4, on the other hand, can be demonstrated to entail a linear and reversible evolution of the
generalized Bloch vector R4N−1 3~r = 2~y−~1 that already appeared in (4),

~r(∆t + t0) = T(∆t)~r(t0), (11)

where T(∆t) ⊂ TN defines a one-parameter matrix group [1]. Suppose T(∆t), T′(∆t′) ∈ TN correspond
to two distinct interactions to which O may subject SN . By Rule 4, T(∆t) · T′(∆t′) must likewise be
contained in TN , and since both T, T′ are invertible, also the entire set TN must be a group. We shall
henceforth often represent states with Bloch vectors~r.

Rules 3 and 4, together with elementary operational conditions on the information measure,
enforce it to be quadratic α(yi) = (2 yi − 1)2 so that O’s total information (1):

IN(~y) =
4N−1

∑
i=1

(2 yi − 1)2 = |~r|2 (12)

is simply the square norm of the Bloch vector [1]. Interestingly, this derivation would not work
without the continuity of time evolution (Rule 4). Crucially, (12) is not the Shannon entropy (see [1]
for a discussion about why the Shannon entropy is also conceptually not suitable for quantifying O’s
information). This reconstruction thereby corroborates an earlier proposal for a quadratic information
measure for quantum theory by Brukner and Zeilinger [13,15,16].

This quadratic information measure becomes key for the remaining steps of the reconstruction.
Given that (12) is a ‘conserved charge’ of time evolution (rule 3), we can already infer that TN ⊂ SO
(4N −1) because time evolution must be connected to the identity.

4.7. Pure and Mixed States

Suppose O knows SN’s answers to N mutually compatible questions fromQMN , thereby saturating
the information limit of N independent bits (Rule 1). He will then also know the answers to each of
their bipartite, tripartite, ..., and N-partite XNOR conjunctions which, by Theorem 3, are also inQMN

(and compatible). In total, he then knows the answers to:

(
N
1

)
+

(
N
2

)
+ · · ·

(
N
N

)
=

N

∑
i=1

(
N
i

)
= 2N − 1
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questions fromQMN . Thus, O’s total information (12) is 2N − 1 bits in this case. It contains dependent
bits of information because the questions in QMN are pairwise, but not all mutually independent.
Thanks to Rule 3, this is invariant under time evolution.

This allows us to distinguish two kinds of states [1];~y is called a:

pure state: if it is a state of maximal information and, hence, of maximal length:

IN(~y) =
4N−1

∑
i=1

(2 yi − 1)2 = (2N − 1) bits, (13)

mixed state: if it is a state of non-maximal information,

0bit ≤ IN(~y) =
4N−1

∑
i=1

(2 yi − 1)2 < (2N − 1) bits. (14)

The square length of the Bloch vector thus corresponds to the number of answered questions. The state
of no information~y = 1

2
~1 has length zero bits.

As can be easily checked, quantum theory satisfies this characterization. In particular, an N-qubit
density matrix, corresponding to a pure state, has a Bloch vector with square norm equal to 2N − 1.
This peculiar mathematical fact now has a clear informational interpretation.

4.8. The Bloch Ball and Unitary Group for a Single Qubit from a Conserved Informational Charge

Since D1 = 3 (cf. Section 4.3), we have that QM1 = {Q1, Q2, Q3} is a maximal set of mutually
complementary questions, i.e., no further Q ∈ Q1 can be added to QM1 without destroying mutual
complementarity in the set (cf. Section 4.1). According to (13), a pure state satisfies:

IN=1(~y) = r2
1 + r2

2 + r2
3 = (2 y1− 1)2 + (2 y2− 1)2 + (2 y3− 1)2 = 1bit. (15)

For later, we thus observe: for pure states, the maximal mutually complementary set carries exactly 1 bit of
information, and this is a conserved charge of time evolution (Rule 3).

Rule 1 implies that, e.g., the pure state ~y∗ = (1, 0, 0) exists in Σ1, and we know T1 ⊂ SO(3).
However, it is clear that applying any T ∈ SO(3) to~y∗, according to (11), yields only states that are
also compatible with all Rules 1–3 (and the landscape). Hence, by Rule 4, we must actually have
T1 = SO(3) ' PSU(2). Clearly, T1 then generates all quantum pure states from~y∗, i.e., it yields the
entire Bloch sphere (the image of any legal state under a legal time evolution is also a legal state).
Recalling that Σ1 is convex, we obtain that Σ1 = B3 ' convex hull of CP1 is the entire unit Bloch ball
with mixed states (14) lying inside; the completely mixed state equals the state of no information at the
center. Σ1,T1 coincide exactly with the set of density matrices ρ = 1

2(1+~r ·~σ) and the set of unitary
transformations ρ 7→ U ρ U†, U ∈ SU(2), respectively, for a single qubit in its adjoint (i.e., Bloch vector)
representation, where~σ = (σ1, σ2, σ3) is the vector of Pauli matrices. Finally, from the assumptions in
Section 2.8 and Rule 5, it is also clear thatQ1 = {~q ∈ R3 | |~q|2 = 1bit} ' CP1. This coincides with the
set of projectors P~q = 1

2(1+~q ·~σ) onto the +1 eigenspaces of the Pauli operators~q ·~σ. Noting that:

Tr(ρ P~q) =
1
2
(1+~r ·~q) ≡ Y(Q|~y) (16)

we also recover that (4) yields the Born rule for projective measurements. We thus have the claim of
Section 3 for N = 1 (for details see [1,2]).

4.9. Unitary Group and Density Matrices for Two Qubits from Conserved Informational Charges

Also for N = 2, it is rewarding to consider maximal mutually complementary sets withinQM2 .
Using Lemma 1, one can check that there are exactly six maximal complementarity sets containing five
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questions and twenty containing three [2]; e.g., two graphical representatives are:

The square length of the Bloch vector thus corresponds to the number of answered questions.
The state of no information ~y = 1

2
~1 has length 0 bits.

As can be easily checked, quantum theory satisfies this characterization. In particular, an
N -qubit density matrix, corresponding to a pure state, has a Bloch vector with square norm
equal to 2N − 1. This peculiar fact now has a clear informational interpretation.

4.8. The Bloch ball and unitary group for a qubit from a conserved informational charge
Since D1 = 3 (cf. sec. 4.3), we have that QM1 = {Q1, Q2, Q3} is a maximal set of mutually
complementary questions, i.e., no further Q ∈ Q1 can be added to QM1 without destroying
mutual complementarity in the set (cf. sec. 4.1). According to (13), a pure state satisfies

IN=1(~y) = r21 + r22 + r23 = (2 y1 − 1)2 + (2 y2 − 1)2 + (2 y3 − 1)2 = 1 bit. (15)

For later, we thus observe: for pure states, the maximal mutually complementary set carries
exactly 1 bit of information and this is a conserved charge of time evolution (rule 3).

Rule 1 implies that, e.g., the pure state ~y∗ = (1, 0, 0) exists in Σ1 and we know T1 ⊂ SO(3).
But it is clear that applying any T ∈ SO(3) to ~y∗, according to (11), yields only states that
are also compatible with all rules 1–3 (and the landscape). Hence, by rule 4 we must actually
have T1 = SO(3) ≃ PSU(2). Clearly, T1 then generates all quantum pure states from ~y∗, i.e., it
yields the entire Bloch sphere (the image of any legal state under a legal time evolution is also
a legal state). Recalling that Σ1 is convex, we obtain that Σ1 = B3 ≃ convex hull of CP1 is the
entire unit Bloch ball with mixed states (14) lying inside; the completely mixed state equals the
state of no information at the center. Σ1,T1 coincide exactly with the set of density matrices
ρ = 1

2 (1 + ~r · ~σ) and the set of unitary transformations ρ 7→ U ρU †, U ∈ SU(2), respectively,
for a single qubit in its adjoint (i.e., Bloch vector) representation, where ~σ = (σ1, σ2, σ3) is the
vector of Pauli matrices. Finally, from the assumptions in sec. 2.8 and rule 5 it is also clear that
Q1 = {~q ∈ R3 | |~q|2 = 1 bit} ≃ CP1. This coincides with the set of projectors P~q = 1

2(1 + ~q · ~σ)
onto the +1 eigenspaces of the Pauli operators ~q · ~σ. Noting that

Tr(ρP~q) =
1

2
(1 + ~r · ~q) ≡ Y (Q|~y) (16)

we also recover that (4) yields the Born rule for projective measurements. We thus have the
claim of sec. 3 for N = 1 (for details see [1, 2]).

4.9. Unitary group and density matrices for two qubits from conserved informational charges
Also for N = 2 it is rewarding to consider maximal mutually complementary sets within QM2 .
Using lemma 1, one can check that there are exactly sixmaximal complementarity sets containing
five questions and twenty containing three [2]; e.g., two graphical representatives are:
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′
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The six maximal complementarity sets of five elements can be represented as a lattice of
pentagons, see fig. 2 (which also contains four green triangles, each representing one of the
twenty maximal complementarity sets of three questions) [2].

The six maximal complementarity sets of five elements can be represented as a lattice of pentagons;
see Figure 2 (which also contains four green triangles, each representing one of the twenty maximal
complementarity sets of three questions) [2].
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Figure 2. The six maximal comple-
mentarity sets represented as pentagons.
Two questions are complementary if they
share a pentagon or are connected by an
edge and compatible otherwise. Every
pentagon is connected to all other five be-
cause any Q ∈ QM2 is contained in pre-
cisely two pentagons. The red arrows rep-
resent the information swap (21) between
pentagons 1 and 2 that preserves all pen-
tagon equalities (18) and defines the time
evolution generator (22). (Figure adapted
from [2].)

Each of these sets has to satisfy the complementarity inequalities (2); specifically 0 bits ≤
I(Penta) :=

∑
i∈Penta r

2
i ≤ 1 bit for the information carried by the five questions in pentagon a.

Since any Q ∈ QM2 is contained in precisely two pentagons (cf. fig. 2) we find

6∑

a=1

I(Penta) = 2


 ∑

i=1,2,3

(r2i1 + r2i2) +
∑

i,j=1,2,3

r2ij


 = 2 IN=2(~r). (17)

Noting that for pure states IN=2(~rpure) = 3 bits thus produces the pentagon equalities [2]

pure states: I(Penta) ≡ 1 bit, a = 1, . . . , 6. (18)

Any pure state must satisfy (18) and T2 evolves pure states to pure states (rule 3). Hence, in
analogy to N = 1: for pure states, these six maximal mutually complementary sets carry exactly
1 bit of information and these are six conserved charges of time evolution. There are further
interesting constraints on the distribution of O’s information over QM2 [2].

It can be straightforwardly checked that quantum theory actually satisfies (18). Indeed, in
the case of quantum theory the identity for Pent1 reads in more familiar language (pure states)

I(Pent1) = 〈σ2 ⊗ 1〉2 + 〈σ3 ⊗ 1〉2 + 〈σ1 ⊗ σ1〉2 + 〈σ1 ⊗ σ2〉2 + 〈σ1 ⊗ σ3〉2 = 1,

etc. Remarkably, these identities of quantum theory seem not to have been reported before in the
literature. These novel conserved informational charges are a prediction of our reconstruction,
underscoring the benefits of taking this informational approach. And these informational charges
are indispensable for deriving the unitary group and the state space as we shall now see.

Using that I(Penta(~r)) is conserved under T2 ⊂ SO(15) entails (with new index i = 1, . . . , 15)
∑

i∈Penta,1≤j≤15

riGij rj = 0, a = 1, . . . 6, (19)

where T (∆t) = exp(∆tG) for G ∈ so(15) [2]. The correlation structure of fig. 1 enforces [2]

Gij = 0, whenever Qi, Qj are compatible. (20)

Each of the 15 Qi ∈ QM2 is complementary to eight others and since Gij = −Gji, there could
be maximally 60 linearly independent Gij of T2.

These are constructed as follows. For every pair of pentagons there is a unique information
swap transformation which preserves (18). For instance, the red arrows in fig. 2 represent the
complete information swap between pentagons Pent1 and Pent2 (←→ is not the XNOR)

r22 ←→ r231 (Pent5), r23 ←→ r221 (Pent3), r212 ←→ r′3
2
(Pent4), r213 ←→ r′22 (Pent6) (21)

Figure 2. The six maximal complementarity sets represented as pentagons. Two questions are complementary
if they share a pentagon or are connected by an edge and compatible otherwise. Every pentagon is connected
to all of the other five because any Q ∈ QM2 is contained in precisely two pentagons. The red arrows represent
the information swap (21) between Pentagons 1 and 2 that preserves all pentagon equalities (18) and defines the
time evolution generator (22). (Figure adapted from [2]. Reprinted with permission from [P. Höhn and C. Wever,
Phys. Rev. A95, 012102 2017.] Copyright (2017) by the American Physical Society.)

Each of these sets has to satisfy the complementarity inequalities (2); specifically 0 bits ≤
I(Penta) := ∑i∈Penta r2

i ≤ 1 bit for the information carried by the five questions in pentagon a. Since
any Q ∈ QM2 is contained in precisely two pentagons (cf. Figure 2), we find:

6

∑
a=1

I(Penta) = 2

(
∑

i=1,2,3
(r2

i1 + r2
i2) + ∑

i,j=1,2,3
r2

ij

)
= 2 IN=2(~r). (17)

Noting that for pure states IN=2(~rpure) = 3 bits thus produces the pentagon equalities [2]:

pure states: I(Penta) ≡ 1 bit, a = 1, . . . , 6. (18)

Any pure state must satisfy (18), and T2 evolves pure states to pure states (Rule 3). Hence, in analogy
to N = 1: for pure states, these six maximal mutually complementary sets carry exactly one bit of information,
and these are six conserved charges of time evolution. There are further interesting constraints on the
distribution of O’s information over QM2 [2].
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It can be straightforwardly checked that quantum theory actually satisfies (18). Indeed, in the
case of quantum theory, the identity for Pent1 reads in more familiar language (pure states):

I(Pent1) = 〈σ2 ⊗ 1〉2 + 〈σ3 ⊗ 1〉2 + 〈σ1 ⊗ σ1〉2 + 〈σ1 ⊗ σ2〉2 + 〈σ1 ⊗ σ3〉2 = 1,

etc. Remarkably, these identities of quantum theory seem not to have been reported before in
the literature. These novel conserved informational charges are a prediction of our reconstruction,
underscoring the benefits of taking this informational approach. Additionally, these informational
charges are indispensable for deriving the unitary group and the state space, as we shall now see.

Using that I(Penta(~r)) is conserved under T2 ⊂ SO(15) entails (with new index i = 1, . . . , 15):

∑
i∈Penta ,1≤j≤15

ri Gij rj = 0, a = 1, . . . 6, (19)

where T(∆t) = exp(∆tG) for G ∈ so(15) [2]. The correlation structure of Figure 1 enforces [2]:

Gij = 0, whenever Qi, Qj are compatible. (20)

Each of the 15 Qi ∈ QM2 is complementary to eight others, and since Gij = −Gji, there could be
maximally 60 linearly independent Gij of T2.

These are constructed as follows. For every pair of pentagons, there is a unique information swap
transformation that preserves (18). For instance, the red arrows in Figure 2 represent the complete
information swap between pentagons Pent1 and Pent2 (←→ is not the XNOR):

r2
2 ←→ r2

31 (Pent5), r2
3 ←→ r2

21 (Pent3), r2
12 ←→ r′3

2
(Pent4), r2

13 ←→ r′22 (Pent6) (21)

that keeps all other components fixed. (18) are preserved because every swap in (21) occurs within a
pentagon. The correlation structure of Figure 1 fixes the corresponding generator to [2]:

GPent1,Pent2
ij = δi2δj(31) − δi3δj(21) + δi(12)δj3′ − δi(13)δj2′ − (i←→ j). (22)

One can repeat the argument for all 15 pentagon pairs, producing 15 linearly independent generators [2].
Remarkably, they turn out to coincide exactly with the adjoint representation of the 15 fundamental
generators of SU(4) [2]. In particular, (22) is the generator of entangling unitaries leaving r11 invariant.
The other 45 independent generators satisfying (20) are ruled out by the correlation structure so
that T2 cannot be generated by anything else than these 15 pentagon swaps [2]. One can show that
the exponentiation of (linear combinations of) these 15 pentagon swaps generates PSU(4) and that
this group abides by all rules and forms a maximal subgroup of SO(15) [2]. Rule 4 then implies
T2 ' PSU(4), which is the correct set of unitary transformations ρ 7→ U ρ U†, U ∈ SU(4), for
two qubits.

It turns out that the set of Bloch vectors satisfying all six pentagon equalities (18) and the
conservation equations (19) for the 15 pentagon swaps splits into two sets on each of which T2 = PSU(4)
acts transitively [2]. These two sets correspond precisely to the two possible conventions of building
up composite questions either using the XNOR or XOR (cf. Section 4.1) and are therefore physically
equivalent. Adhering to the XNOR convention, we conclude that the surviving set of Bloch vectors
solving (18) and (19) is the set of N = 2 states admitted by the rules. Indeed, it coincides exactly
with the set of quantum pure states, which forms a CP3 of which PSU(4) is the isometry group [2].
Employing convexity of Σ2, one finally finds:

Σ2 = closed convex hull of CP3,

which is exactly the set of normalized 4× 4 density matrices over C2 ⊗C2.
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Concluding, the new conserved informational charges (18), in analogy to (15) for N = 1, define
both the unitary group and the set of states for two qubits (for neglected details, see [2]).

4.10. Unitaries and States for N > 2 Elementary Systems

According to Theorem 3, ΣN is (4N −1)-dimensional and TN ⊂ SO (4N −1) (cf. Section 4.6).
The reconstruction of the unitary group uses a universality result from quantum computation:
two-qubit unitaries PSU(4) (between any pair) and single-qubit unitaries PSU(2) ' SO(3) generate
the full projective unitary group PSU (2N) for N qubits [17,18]. Given that SN is a composite system,
all of these bipartite and local unitaries must be in TN . One can check that PSU (2N) again abides by all
rules and constitutes a maximal subgroup of SO (4N − 1) [2]. Thanks to Rule 4, this yields TN ' PSU
(2N), which coincides with the set of unitary transformations on N-qubit density matrices. In analogy
to the previous case, one obtains as the state space:

ΣN = closed convex hull of CP2N−1,

which agrees with the set of normalized N-qubit density matrices (for details, see [2]).

4.11. Questions as Projective Measurements and the Born Rule

The assumptions in Section 2.8 and Rule 5 yield the following question set characterization [2]:

QN ' {~q ∈ R4N−1 |Y(~q|~r) ∈ [0, 1] ∀~r ∈ ΣN and ~q is a 1 bit quantum state}. (23)

As shown in [2], this set is isomorphic to the set of projectors P~q = 1
2 (1+~q ·~σ) onto the +1 eigenspaces

of the Pauli operators ~q ·~σ = ∑µ1···µN
qµ1···µN σµ1···µN , where σµ1···µN = σµ1 ⊗ · · · ⊗ σµN and σ0 = 1.

Noting that qµ1···µN corresponds to (10) reveals that the XNOR at the question level corresponds to
the tensor product ⊗ at the operator level. One also finds that (16) again holds, such that (4) yields
the Born rule for projective measurements for arbitrary N (for the neglected details and many further
interesting properties of QN , we refer to [2]).

4.12. The von Neumann Evolution Equation

We thus obtain qubit quantum theory in its adjoint (i.e., Bloch vector) representation. Lastly, we
note that~r(t) = T(t)~r(0) with T(t) = et G ∈ PSU (2N) is equivalent to the adjoint action:

ρ(t) = U(t) ρ(0)U†(t), (24)

of U(t) = e−i H t ∈ SU(2N) for some Hermitian operator H on C2N
, where ρ(t) = 1

2N (1+~r(t) ·~σ) [2].
(24), in turn, is equivalent to ρ(t) solving the von Neumann evolution equation:

i
∂ ρ

∂t
= [H, ρ]. (25)

We have therefore also recovered the correct time evolution equation for quantum states.
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5. Conclusions

We have reviewed and summarized the key steps from [1,2] necessary to prove the claim of
Section 3. This yields a reconstruction of the explicit formalism of qubit quantum theory from rules
constraining an observer’s acquisition of information about a system [1,2]. The derivation corroborates
the consistency of interpreting the state as the observer’s ‘catalog of knowledge’ and shows that it
is sufficient to speak only about the information accessible to him for reproducing quantum theory.
In fact, for qubits, this derivation accomplishes an informational reconstruction of the type proposed in
Rovelli’s relational quantum mechanics [11] and in the Brukner-Zeilinger informational interpretation
of quantum theory [12,13].

As a key benefit, this reconstruction also provides a novel informational explanation for the
architecture of qubit quantum theory. In particular, it explains the logical structure of a basis of spin
measurements, the dimensionality and structure of quantum state spaces, the correlation structure
and the unitarity of time evolution from the perspective of information acquisition. This unravels
previously unknown structural properties: conserved ‘informational charges’ from complementarity
relations define and explain the unitary group and the set of pure states.
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