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Abstract: The quantum Otto cycle serves as a bridge between the macroscopic world of heat engines
and the quantum regime of thermal devices composed from a single element. We compile recent
studies of the quantum Otto cycle with a harmonic oscillator as a working medium. This model
has the advantage that it is analytically trackable. In addition, an experimental realization has been
achieved, employing a single ion in a harmonic trap. The review is embedded in the field of quantum
thermodynamics and quantum open systems. The basic principles of the theory are explained by
a specific example illuminating the basic definitions of work and heat. The relation between quantum
observables and the state of the system is emphasized. The dynamical description of the cycle
is based on a completely positive map formulated as a propagator for each stroke of the engine.
Explicit solutions for these propagators are described on a vector space of quantum thermodynamical
observables. These solutions which employ different assumptions and techniques are compared.
The tradeoff between power and efficiency is the focal point of finite-time-thermodynamics.
The dynamical model enables the study of finite time cycles limiting time on the adiabatic and
the thermalization times. Explicit finite time solutions are found which are frictionless (meaning
that no coherence is generated), and are also known as shortcuts to adiabaticity.The transition from
frictionless to sudden adiabats is characterized by a non-hermitian degeneracy in the propagator.
In addition, the influence of noise on the control is illustrated. These results are used to close the
cycles either as engines or as refrigerators. The properties of the limit cycle are described. Methods to
optimize the power by controlling the thermalization time are also introduced. At high temperatures,
the Novikov–Curzon–Ahlborn efficiency at maximum power is obtained. The sudden limit of the
engine which allows finite power at zero cycle time is shown. The refrigerator cycle is described
within the frictionless limit, with emphasis on the cooling rate when the cold bath temperature
approaches zero.
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1. Introduction

Quantum thermodynamics is devoted to the link between thermodynamical processes and their
quantum origin. Typically, thermodynamics is applied to large macroscopic entities. Therefore, to what
extent is it possible to miniaturize. Can thermodynamics be applicable to the level of a single quantum
device? We will address this issue in the tradition of thermodynamics, by learning from an example:
Analysis of the performance of a heat engine [1]. To this end, we review recent progress in the study of
the quantum harmonic oscillator as a working medium of a thermal device. The engine composed of
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a single harmonic oscillator connected to a hot and cold bath is an ideal analytically solvable model
for a quantum thermal device. It has therefore been studied extensively and inspired experimental
realisation. Recently, a single ion heat engine with an effective harmonic trap frequency has been
experimentally realised [2]. This device could roughly be classified as a reciprocating Otto engine
operating by periodically modulating the trap frequency.

Real heat engines operate far from reversible conditions. Their performance resides between
the point of maximum efficiency and maximum power. This has been the subject of finite time
thermodynamics [3,4]. The topic has been devoted to the irreversible cost of operating at finite
power. Quantum engines add a twist to the subject, as they naturally incorporate dynamics into
thermodynamics [5,6].

Quantum heat engines can be classified either as continuous or reciprocating. The prototype of
a continuous engine is the three-level amplifier pioneered by Scovil and Schulz-DuBois [7]. This device
is simultaneously coupled to three input currents. It is therefore termed a tricycle, and can operate
either as an engine or as a refrigerator. A review of continuous quantum heat engines has been
published recently [8] and therefore is beyond the scope of this review.

Reciprocating engines are classified according to their sequence of strokes. The most studied
cycles are Carnot [9–13] and Otto cycles [14–19]. The quantum Otto cycle is easier to analyze, and
therefore it became the primary example of a reciprocating quantum heat engine. The pioneering
studies of quantum reciprocating engines employed a two-level system—a qubit—as a working
medium [9,10,14,20]. The performance analysis of the quantum versions of reciprocating engines
exhibited an amazing resemblance to macroscopic counterparts. For example, the efficiency at
maximum power of the quantum version of the endoreversiable engine converges at high temperature
to the Novikov–Curzon–Ahlborn macroscopic Newtonian model predictions [21,22]. The deviations
were even small at low temperature, despite the fact that the heat transport law was different [9].
The only quantum feature that could be identified was related to the discrete structure of the
energy levels.

Heat engines with quantum features require a more complex working medium than a single qubit
weakly coupled to a heat bath. This complexity is required to obtain quantum analogues of friction
and heat leaks. A prerequisite for such phenomena is that the external control part of the Hamiltonian
does not commute with the internal part. This generates quantum non-adiabatic phenomena which
lead to friction [23]. A working medium composed of a quantum harmonic oscillator has sufficient
complexity to represent generic phenomena, but can still be amenable to analytic analysis [24].

The quantum Otto cycle is a primary example of the emerging field of quantum thermodynamics.
The quest is to establish the similarities and differences in applying thermodynamic reasoning up to
the level of a single quantum entity. The present analysis is based on the theory of quantum open
systems [25,26]. A dynamical description based on the weak system bath coupling has been able to
establish consistency between quantum mechanics and the laws of thermodynamics [25]. These links
allow work and heat to be defined in the quantum regime [27]. This framework is sufficient for the
present analysis.

In the strong coupling regime where the partition between system and bath is not clear, the connection
to thermodynamics is not yet established—although different approaches have been suggested [28,29].
A different approach to quantum thermodynamics termed quantum thermodynamics resource theory
follows ideas from quantum information resource theory, establishing a set of rules [30,31]. We will
try to show how this approach can be linked to the Otto cycle under analysis.

2. The Quantum Otto Cycle

Nicolaus August Otto invented a reciprocating four stroke engine in 1861, and won a gold medal in
the 1867 Paris world fair [32]. The basic components of the engine are hot and cold reservoirs, a working
medium, and a mechanical output device. The cycle of the engine is defined by four segments:
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1. The hot isochore: heat is transferred from the hot bath to the working medium without
volume change.

2. The power adiabat: the working medium expands, producing work, while isolated from the hot
and cold reservoirs.

3. The cold isochore: heat is transferred from the working medium to the cold bath without
volume change.

4. The compression adiabat: the working medium is compressed, consuming power while isolated
from the hot and cold reservoirs, closing the cycle.

Otto determined that the efficiency η of the cycle is limited to ηo ≤ 1− (Vh
Vc
)

Cp
Cv −1, where Vc/h and

Tc/h are the volume and temperature of the working medium at the end of the hot and cold isochores,
respectively. Cp and Cv are the heat capacities under constant pressure and constant volume [33].
As expected, Otto efficiency is always smaller than the efficiency of the Carnot cycle ηo ≤ ηc = 1− Tc

Th
.

The first step in learning from an example is to establish a quantum version of the Otto cycle.
This is carried out by seeking analogues for each segment of the cycle. What makes the approach
unique is that it is applicable to a small quantum system such as a single atom in a harmonic trap.
The description is embedded in the theory of open quantum systems. Each of these segments is defined
by a completely positive (CP) propagator [34] describing the change of state in the working medium:
ρ̂ f = Ui→ f ρ̂i, where the density operator ρ̂ describes the state of the working medium.

The quantum engine Otto cycle is therefore described as:

1. The hot isochore: heat is transferred from the hot bath to the working medium without change in
the external parameter ωh. The stroke is described by the propagator Uh.

2. The expansion adiabat: the working medium reduces its energy scale. The harmonic frequency
changes from ωh to ωc, with ωh > ωc, producing work while isolated from the hot and cold
reservoirs. The stroke is described by the propagator Uhc.

3. The cold isochore: heat is transferred from the working medium to the cold bath without change
in the external parameter ωc. The stroke is described by the propagator Uc.

4. The compression adiabat: the working medium increases its energy scale. The harmonic
frequencies increase from ωc to ωh, consuming power while isolated from the hot and cold
reservoirs. The stroke is described by the propagator Uch.

The cycle propagator becomes the product of the segment propagators:

Ucyc = UchUcUhcUh . (1)

The cycle propagator is a completely positive (CP) map of the state of the working medium [34].
The order of propagators is essential, since the segment propagators do not commute; for example,
[Uh,Uhc] 6= 0. The non-commuting property of the segment propagators is not an exclusive quantum
property. It is also present in stochastic descriptions of the engine where the propagators operate on
a vector of populations of the energy eigenvalues. Nevertheless, it can have a quantum origin for
engines with propagators with small action [35,36]. The same operators but with different parameters
(such as different frequencies) can be used to describe an Otto refrigeration cycle. Figure 1 shows
a schematic representation of the Otto cycle in phase space.

In the adiabatic limit when the population N stays constant in the expansion and compression
segments, the work per cycle becomes:

Wcyc = h̄∆ω∆N , (2)

where ∆ω = ωh − ωc and ∆N is the population difference. ∆N = ∆Nc = ∆Nh, since the cycle is
periodic. Under these conditions, the efficiency becomes:

ηo = 1− ωc

ωh
≤ ηc , (3)
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where ηc is the Carnot efficiency ηc = 1− Tc
Th

. At this stage, it is also useful to define the compression
ratio C = ωh

ωc
.

A

C  D

B 

Uch

UhUc

Uhc

Figure 1. Otto cycle in phase space. The blue and red bowls represent the energy value in position and
momentum. The compression ratio is C = ωh

ωc
= 2. Expansion adiabat A → B. Cold isochore B → C.

Compression adiabat C → D. Hot isochore D → A. The Wigner distribution in phase space is shown in
green. The state in A is a thermal equilibrium state with the hot bath temperature. The state in B is
squeezed with respect to the cold bath frequency ωc. The state in C is an equilibrium state with the
cold bath temperature. The state in D shows position momentum correlation 〈Ĉ〉 6= 0.

2.1. Quantum Dynamics of the Working Medium

The quantum analogue of the Otto cycle requires a dynamical description of the working medium,
the power output, and the heat transport mechanism.

A particle in a harmonic potential will constitute our working medium. This choice is amenable to
analytic solutions and has sufficient complexity to serve as a generic example. Even a single specimen
is sufficient to realize the operation of an engine.

We can imagine a single particle in a harmonic trap V(Q) = k
2 Q2. Expansion and compression of

the working medium is carried out by externally controlling the trap parameter k(t). The energy of the
particle is represented by the Hamiltonian operator:

Ĥ =
1

2m
P̂2

+
k(t)

2
Q̂

2
, (4)

where m is the mass of the system and P̂ and Q̂ are the momentum and position operators.
All thermodynamical quantities will be intensive; i.e., normalized to the number of particles. In the
macroscopic Otto engine, the internal energy of the working medium during the adiabatic expansion
is inversely proportional to the volume. In the harmonic oscillator, the energy is linear in the frequency
ω(t) =

√
k(t)/m [37]. This therefore plays the role of inverse volume 1

V .
The Hamiltonian (4) is the generator of the evolution on the adiabatic segments. The frequency

ω changes from ωh to ωc in a time period τhc in the power adiabat (ωh > ωc) and from ωc to ωh in
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a period τch in the compression adiabat. The dynamics of the state ρ̂ during the adiabatic segments is
unitary and is the solution of the Liouville von Neumann equation [38]:

d
dt

ρ̂(t) = − i
h̄
[Ĥ(t), ρ̂(t)] , (5)

where Ĥ is time dependent during the evolution. Notice that [Ĥ(t), Ĥ(t′)] 6= 0, since the kinetic energy
does not commute with the varying potential energy. This is the origin of quantum friction [23,39].
The formal solution to Equation (5) defines the propagator:

ρ̂(t) = U (t)ρ̂(0) = Ûρ̂(0)Û† , (6)

where Û satisfies the equation:

ih̄
d
dt

Û = Ĥ(t)Û (7)

with the initial condition Û(0) = Î.
The dynamics on the hot and cold isochores is a thermalization process of the working medium

with a bath at temperature Th or Tc. The dynamics is of an open quantum system, where the working
medium is described explicitly and the bath implicitly [40–42]:

d
dt

ρ̂(t) = − i
h̄
[Ĥ, ρ̂] + LD(ρ̂) , (8)

where LD is the dissipative term responsible for driving the working medium to thermal equilibrium,
while the Hamiltonian Ĥ = Ĥ(ωh/c) is static. The equilibration is not complete in typical operating
conditions, since only a finite time τh or τc is allocated to the hot or cold isochores. The dissipative
“superoperator” LD must conform to Lindblad’s form for a Markovian evolution [40,41], and for the
harmonic oscillator can be expressed as [43–45]:

LD(ρ̂) = k↑(â†ρ̂â − 1
2
{ââ†, ρ̂}) + k↓(âρ̂â† − 1

2
{â†â, ρ̂}) , (9)

where anticommutator {Â, B̂} ≡ ÂB̂ + B̂Â. k↑ and k↓ are heat conductance rates obeying detailed

balance k↑
k↓

= e
− h̄ω

kbT , and T is either Th or Tc. The operators â† and â are the raising and
lowering operators, respectively. Notice that they are different in the hot and cold isochores, since

â = 1√
2
(
√

mω
h̄ Q̂ + i

√
1

h̄mω P̂) depends on ω. Formally for the isochore Uh/c = exp(Lt) where

L = −i/h̄[Ĥ, ·] + LD.
Equation (9) is known as a quantum Master equation [42] or L-GKS [40,41]. It is an example

of a reduced description where the dynamics of the working medium is sought explicitly while the
baths are described implicitly by two parameters: the heat conductivity Γ = k↓ − k↑ and the bath
temperature T. The Lindblad form of Equation (9) guarantees that the density operator of the extended
system (system + bath) remains positive (i.e., physical) [40]. Specifically, for the harmonic oscillator,
Equation (9) has been derived from first principles by many authors [44,46–49].

To summarize, the quantum model of the Otto cycle is composed of a working fluid of harmonic
oscillators (4). The power stroke is modeled by the Liouville von Neumann Equation (5), while the
heat transport via a Master Equations (8) and (9).

3. Quantum Thermodynamics

Thermodynamics is notorious for its ability to describe a process employing an extremely small
number of variables. In scenarios where systems are far from thermal equilibrium, further variables
have to be added. The analogue description in quantum thermodynamics is based on a minimal set
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of quantum expectations 〈X̂n〉, where 〈X̂n〉 = Tr{X̂nρ̂}. The dynamics of this set is generated by the
Heisenberg equations of motion

d
dt

X̂ =
∂X̂
∂t

+
i
h̄
[Ĥ, X̂] + L∗D(X̂) , (10)

where the first term addresses an explicitly time-dependent set of operators, X̂(t).
The dynamical approach to quantum thermodynamics [25] seeks the relation between

thermodynamical laws and their quantum origin.
The first law of thermodynamics is equivalent to the energy balance relation. The energy expectation

E is obtained when X̂ = Ĥ; i.e., E = 〈Ĥ〉. The quantum energy partition defining the first law of
thermodynamics, dE = dW + dQ, is obtained by inserting Ĥ into (10) [5,6,25,50]:

d
dt

E = Ẇ + Q̇ = 〈 ∂Ĥ
∂t
〉 + 〈 L∗D(Ĥ) 〉. (11)

The power is identified as

P = Ẇ = 〈 ∂Ĥ
∂t
〉.

The heat exchange rate becomes

d
dt
Q = 〈 L∗D(Ĥ) 〉.

The analysis of the Otto cycle benefits from the simplification that power is produced or consumed
only on the adiabats and heat transfer takes place only on the isochores.

The thermodynamic state of a system is fully determined by the thermodynamical variables.
Statistical thermodynamics adds the prescription that the state is determined by the maximum entropy
condition subject to the constraints set by the thermodynamical observables [51–53]. Maximizing the
von Neumann entropy [38]

SVN = −kBTr{ρ̂ ln(ρ̂)} (12)

subject to the energy constraint leads to thermal equilibrium [53]

ρ̂eq =
1
Z

e−
Ĥ

kBT , (13)

where kB is the Boltzmann constant and Z = Tr{e−
Ĥ

kBT } is the partition function.
In general, the state of the working medium is not in thermal equilibrium. In order to generalize

the canonical form (13), additional observables are required to define the state of the system.
The maximum entropy state subject to this set of observables [51,54] 〈X̂j〉 = tr{X̂jρ̂} becomes

ρ̂ =
1
Z

exp

(
∑

j
β jX̂j

)
, (14)

where β j are Lagrange multipliers. The generalized canonical form of (14) is meaningful only if the
state can be cast in the canonical form during the entire cycle of the engine, leading to β j = β j(t).
This requirement is called canonical invariance [55]. It implies that if an initial state belongs to the
canonical class of states, it will remain in this class throughout the cycle.

A necessary condition for canonical invariance is that the set of operators X̂ in (14) is closed under
the dynamics generated by the equation of motion. If this condition is satisfied, then the state of the
system can be reconstructed from a small number of quantum observables 〈X̂j〉(t). These become the
thermodynamical observables, since they define the state under the maximum entropy principle.
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The condition for canonical invariance on the unitary part of the evolution taking place on the
adiabats is as follows: if the Hamiltonian is a linear combination of the operators in the set Ĥ(t) =

∑m hmX̂m (hm(t) are expansion coefficients), and the set forms a closed Lie algebra [X̂j, X̂k] = ∑l Cjk
l X̂l

(where Cjk
l is the structure factor of the Lie algebra), then the set X̂ is closed under the evolution [56].

For a closed Lie algebra, the generalized Gibbs state Equation (14) can always be written in
a product form:

ρ̂ = ∏
k

eλkX̂k , (15)

where there is a one-to-one relation between λ and β, depending on the order of the product form.
Multiplying the equation of motion by ρ̂−1 leads to d

dt ρ̂ρ̂−1 = L(ρ̂)ρ̂−1. Using the product form and
the Backer–Housdorff relation, the l.h.s. d

dt ρ̂ρ̂−1 decomposes to a linear combination of the operator
algebra. This is also true for the r.h.s [Ĥ, ρ̂]ρ̂−1, which also becomes a linear combination of the operator
algebra. Comparing both sides of the equation of motion, one obtains a set of coupled differential
equations for the coefficients λk. Their solution guarantees that canonical invariance prevails [54].

For the harmonic Otto cycle, the set of the operators P̂2, Q̂
2
, and D̂ = 1

2 (Q̂P̂ + P̂Q̂) form a closed

Lie algebra. Since the Hamiltonian is a linear combination of the first two operators of the set (P̂2 and
Q̂

2
), canonical invariance will prevail on the adiabatic segments.

On the isochores, the set of operators also has to be closed to the operation of LD. The set P̂2,
Q̂

2
, and D̂ is closed to LD, defined by (9). For canonical invariance of ρ̂, LD ρ̂ρ̂−1 should also be

a linear combination of operators in the algebra. For the harmonic working medium and LD defined
in (9), this condition is fulfilled. As a result, canonical invariance with the set of operators P̂2, Q̂

2
, and

D̂ = 1
2 (Q̂P̂ + P̂Q̂) prevails for the whole cycle [24].
The significance of canonical invariance is that a solution of the operator dynamics allows the

reconstruction of the state of the working medium during the whole cycle. As a result, all dynamical
quantities become functions of a very limited set of thermodynamic quantum observables 〈X̂j〉.
The choice of a set of operators {X̂j} should reflect the most essential thermodynamical variables.

The operator algebra forms a vector space with the scalar product
(
X̂j · X̂k

)
= Tr{X̂†

j X̂k}. This vector
space will be used to describe the state ρ̂ and define the cycle propagators Ul . This description is
a significant reduction in the dimension of the propagator U from N2, where N is the size of Hilbert
space to M the size of the operator algebra.

Explicitly, variables with thermodynamical significance are chosen for the harmonic oscillator.
These variables are time-dependent and describe the current state of the working medium:

• The Hamiltonian Ĥ(t) = 1
2m P̂2

+ 1
2 mω(t)2Q̂

2
.

• The Lagrangian L̂(t) = 1
2m P̂2 − 1

2 mω(t)2Q̂
2
.

• The position momentum correlation Ĉ(t) = 1
2 ω(t)(Q̂P̂ + P̂Q̂) = ω(t)D̂.

These operators are linear combinations of the same Lie algebra as Q̂
2
, P̂2, and D̂. A typical cycle

in terms of these variables is shown in Figure 2.
In the algebra of operators, a special place can be attributed to the Casimir operator Ĝ.

This Casimir commutes with all the operators in the algebra [57,58]. Explicitly, it becomes:

Ĝ =
Ĥ2 − L̂2 − Ĉ

2

h̄2ω2
=
−
(
P̂Q̂ + Q̂P̂

)2
+ 2P̂P̂Q̂Q̂ + 2Q̂Q̂P̂P̂

4h̄2 . (16)

Since [Ĥ, Ĝ] = 0, Ĝ is constant under the evolution of the unitary segments generated by Ĥ.
The Casimir for the harmonic oscillator is a positive operator with a minimum value determined by
the uncertainty relation: 〈Ĝ〉 ≥ 1

4 [59].



Entropy 2017, 19, 136 8 of 36

50

100

150

200

H
-20

0

20

L

-40 -20 0 20 40

C

D

C

B

A

Figure 2. Otto refrigeration cycle displayed in the thermodynamical variables Ĥ, L̂, Ĉ. When the
working medium is in contact with a hot bath, the system exhausts heat and equilibrates, spiralling
downward from a high 〈Ĥ〉 (energy) value and towards zero correlation 〈Ĉ〉 and Lagrangian 〈L̂〉
(i.e., towards thermal equilibrium). The hot ishochore is marked by the red dotted line A→ D. On the
expansion adiabat, the system spirals downwards, losing energy as it cools down—marked by the green
line D → C. It then spirals upwards (blue line), gaining energy from the cold bath C → B. In addition,
it spirals towards zero 〈Ĉ〉 and 〈L̂〉. Then, the compression adiabat (black line) takes it back to the top of
the hot (red) spiral B→ A.

A related invariant to the dynamics is the Casimir companion [59], which for the harmonic
oscillator is defined as:

X =
〈Ĥ〉2 − 〈L̂〉2 − 〈Ĉ〉2

h̄2ω2
. (17)

Combining Equations (16) and (17), an additional invariant to the dynamics can be defined:

1
h̄2ω2

(
Var(Ĥ)−Var(L̂)−Var(Ĉ)

)
= const , (18)

where Var(Â) = 〈Â2〉 − 〈Â〉2.
Coherence is an important quantum feature. The coherence is characterised by the deviation of

the state of the system from being diagonal in energy [60,61], and it can be defined as:

Co =
1

h̄ω

√
〈L̂2〉+ 〈Ĉ2〉 . (19)

From Equation (16), we can deduce that increasing coherence has a cost in energy ∆E = h̄ωCo.
For the closed algebra of operators, the canonical state of the system ρ̂ can be cast into the product

form [24,62]. This state ρ̂ is defined by the parameters β, γ, and γ∗:

ρ̂ =
1
Z

eγâ2
e−βĤeγ∗ â†2

, (20)

where Ĥ = h̄ω
2 (ââ† + â†â), Ĉ = −i h̄ω

2 (â2 − â†2
), L̂ = − h̄ω

2 (â2 + â†2
), and
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Z =
e

βh̄ω
2

(eβh̄ω − 1)
√

1− 4γγ∗

(eβh̄ω−1)2

. (21)

From (20), the expectations of Ĥ and â2 are extracted, leading to

〈
Ĥ
〉

=
h̄ω(e2βh̄ω − 4γγ∗ − 1)
2((eβh̄ω − 1)2 − 4γγ∗)

and
〈

â2
〉

=
2γ∗

(eβh̄ω − 1)2 − 4γγ∗
. (22)

Equation (22) can be inverted, leading to

γ =
h̄ω
2 (
〈
L̂
〉
+ i
〈
Ĉ
〉
)〈

L̂
〉2

+
〈
Ĉ
〉2 − ( h̄ω

2 −
〈
Ĥ
〉
)2

(23)

and the inverse temperature β:

eβh̄ω =

〈
L̂
〉2

+
〈
Ĉ
〉2 −

〈
Ĥ
〉2

+ h̄2ω2

4〈
L̂
〉2

+
〈
Ĉ
〉2 −

(
h̄ω
2 −

〈
Ĥ
〉)2 . (24)

Equations (23) and (24) relate the state of the system ρ̂ (by Equation (20)) to the thermodynamical
observables 〈Ĥ〉, 〈L̂〉, and 〈Ĉ〉.

The generalized canonical state of the system Equation (20) is equivalent to a squeezed thermal
state [63]:

ρ̂ = Ŝ(γ)
1
Z

e−βĤŜ
†
(γ) , (25)

with the squeezing operator Ŝ(γ) = exp( 1
2 (γ
∗ â2 − γâ†2)). This state is an example of a generalized

Gibbs state subject to non-commuting constraints [64,65]. Figure 1 shows examples of such states,
which all have a Gaussian shape in phase space.

Entropy Balance

In thermodynamics, the entropy S is a state variable. Shannon introduced entropy as a measure
of missing information required to define a probability distribution p [66]. The information entropy
can be applied to a complete quantum measurement of an observable represented by the operator Ô
with possible outcomes pj:

SÔ = −kB ∑
j

pj ln pj , (26)

where pj = Tr{P̂jρ̂}. The projections P̂j are defined using the spectral decomposition theorem
Ô = ∑j λjP̂j, where λj are the eigenvalues of the operator Ô. SÔ is then the measure of information
gain obtained by the measurement.

The von Neumann entropy [38] is equivalent to the minimum entropy SŶn
associated with

a complete measurement of the state ρ̂ by the observable Ŷn, where the set of operators Ŷn includes
all possible non-degenerate operators in Hilbert space. The operator that minimizes the entropy
commutes with the state [ρ̂, Ŷmin] = 0. This leads to a common set of projectors of Ŷmin and ρ̂; therefore,
SVN = −tr{ρ̂ ln ρ̂}, which is a function of the state only. Obviously, SVN ≤ SÔ. This provides the
interpretation that SVN is the minimum information required to completely specify the state ρ̂.

The primary thermodynamic variable for the heat engine is energy. The entropy associated with
the measurement of energy SE = SĤ in general differs from the von Neumann entropy SE ≥ SVN .
Only when ρ̂ is diagonal in the energy representation—such as in thermal equilibrium (13)—SE = SVN .
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The relative entropy between the state and its diagonal representation in the energy eigenfucntions
is an alternative measure of coherence [67]:

D(ρ̂||ρ̂ed) = Tr{ρ̂(ln ρ̂− ln ρ̂ed)} , (27)

where ρ̂ed is the state composed of the energy projections which has the same populations of the energy
levels as state ρ̂. The conditional distance D(ρ̂||ρ̂ed) is equivalent to the difference between the energy
entropy SE and the von Neumann entropy SVN : D(ρ̂||ρ̂ed) = SE − SVN ≥ 0.

The von Neumann entropy is invariant under unitary evolution [54]. This is the result of the
property of unitary transformations, where the set of eigenvalues of ρ̂′ = Ûρ̂Û† is equal to the set
of eigenvalues of ρ̂. Since the von Neumann entropy SVN is a functional of the eigenvalues of ρ̂, it
becomes invariant to any unitary transformation.

When the unitary transformation is generated by members of the Lie algebra, the Casimir is
invariant. The von Neumann entropy of the generalized Gibbs state (20) is a function of the Casimir
〈Ĝ〉 [68] so that in this case it also becomes constant:

SVN = ln

(√
〈Ĝ〉 − 1

4

)
+
√
〈Ĝ〉asinh


√
〈Ĝ〉

〈Ĝ〉 − 1
4

 . (28)

An alternative expression for the SVN entropy is calculated from the covariance matrix of Gaussian
canonical states [69–71]:

SVN =
ν + 1

2
ln(

ν + 1
2

)− ν− 1
2

ln(
ν− 1

2
) , (29)

where ν = 2
h̄
√

σ,

σ =

∣∣∣∣∣ σpp σpq

σqp σqq

∣∣∣∣∣ ,

and σij is the covariance.
The energy entropy SE of the oscillator (not in equilibrium) is found to be equivalent to the

entropy of an oscillator in thermal equilibrium with the same energy expectation value:

SE =
1

h̄ω

(〈
Ĥ
〉
+

h̄ω

2

)
ln

(〈
Ĥ
〉
+ h̄ω

2〈
Ĥ
〉
− h̄ω

2

)
− ln

(
h̄ω〈

Ĥ
〉
− h̄ω

2

)
. (30)

SE in (30) is completely determined by the energy expectation E =
〈
Ĥ
〉
. As an extreme example,

for a squeezed pure state, SVN = 0 and SE ≥ 0.
In a macroscopic working medium, the internal temperature can be defined from the entropy and

energy variables 1/Tint =
(

∂S
∂E

)
V

at constant volume. For the quantum Otto cycle, SE is used to define

the inverse internal temperature 1/Tint =
(

∂SE
∂E

)
ω

. Tint is a generalized temperature appropriate
for non equilibrium density operators ρ̂. Using this definition, the internal temperature Tint of the
oscillator working medium can be calculated implicitly from the energy expectation:

E =
1
2

h̄ω coth
(

h̄ω

2kBTint

)
, (31)

which is identical to the equilibrium relation between temperature and energy in the harmonic oscillator.
This temperature defines the work required to generate the coherence: Wc = kBTint(SE − SVN) [39].
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4. The Dynamics of the Quantum Otto Cycle

A quantum heat engine is a dynamical system subject to the tradeoff between efficiency and
power. The dynamics of the reciprocating Otto cycle can be partitioned to the four strokes and later
combined to generate the full cycle. Each of the segments influences the final performance: power
extraction or refrigeration. The performance of the cycle can be optimized with respect to efficiency
and power. Each segment can be optimized separately, and finally a global optimization is performed.
The first step is to describe the dynamics of each segment in detail.

4.1. Heisenberg Dynamics of Thermalisation on the Isochores

The task of the isochores is to extract and reject heat from thermal reservoirs. The dynamics
of the working medium is dominated by an approach to thermal equilibrium. In the Otto cycle,
the Hamiltonian Ĥ is constant (ω = ωh/c is constant). The Heisenberg equations of motion generating
the dynamics for an operator X̂ become:

d
dt

X̂ =
i
h̄
[Ĥ, X̂] + k↓(â†X̂â− 1

2
{â†â, X̂}) + k↑(âX̂â† − 1

2
{ââ†, X̂}) . (32)

Equation (32) is the analogue of (8) and (9) in the Schrödinger frame.
For the dynamical set of observables, the equations of motion become:

d
dt


Ĥ
L̂
Ĉ
Î

 (t) =


−Γ 0 0 Γ〈Ĥ〉eq

0 −Γ −2ω 0
0 2ω −Γ 0
0 0 0 0




Ĥ
L̂
Ĉ
Î

 (t) , (33)

where Γ = k↓ − k↑ is the heat conductance and k↑/k↓ = e−h̄ω/kBT obeys detailed balance where
ω = ωh/c and T = Th/c are defined for the hot or cold bath, respectively. From (11), the heat current
can be identified as:

Q̇ = −Γ(〈Ĥ〉 − 〈Ĥ〉eq) = Γ
h̄ω

2

(
coth(

h̄ω

2kBTB
)− coth(

h̄ω

2kBTint
)

)
, (34)

where TB is the bath temperature. In the high temperature limit, the heat transport law becomes
Newtonian [22]: Q̇ = Γ(kBTB − KBTint).

The solution of isochore dynamics (33) generates the propagator defined on the vector space of the
observables Ĥ, L̂, Ĉ, Î: The propagator on the isochore has the form [68,72]:

Uh/c =


R 0 0 Heq(1− R)
0 Rc −Rs 0
0 Rs Rc 0
0 0 0 1

 , (35)

where R = e−Γt. c = cos(2ωt), s = sin(2ωt), and Heq = h̄ω

e
h̄ω
kT −1

. It is important to note that the

propagator on the isochores does not generate coherence from energy Ĥ. The coherence Equation (19) is
a function of the expectations of L̂, Ĉ, which are not coupled to Ĥ.

4.2. The Dynamics on the Adiabats and Quantum Friction

The dynamics on the adiabats is generated by a time-dependent Hamiltonian. The task is to change
the energy scale of the working medium from one bath to the other. The oscillator frequency changes
from ωh to ωc on the power expansion segment and from ωc to ωh on the compression segment.
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The Hamiltonian—which is explicitly time-dependent—does not commute with itself at different times
[Ĥ(t), Ĥ(t′)] 6= 0. As a result, coherence is generated with an extra cost in energy.

The Heisenberg equations of motion (10) for the dynamical set of operators are expressed
as [68,72]:

d
dt


Ĥ
L̂
Ĉ
Î

 (t) = ω(t)


µ −µ 0 0
−µ µ −2 0
0 2 µ 0
0 0 0 0




Ĥ
L̂
Ĉ
Î

 (t) , (36)

where µ = ω̇
ω2 is a dimensionless adiabatic parameter. In general, all operators in (36) are dynamically

coupled. This coupling is characterized by the non-adiabatic parameter µ. When µ→ 0, the energy
decouples from the coherence and the cycle can be characterized by pn—the probability of occupation
of energy level εn.

Power is obtained from the first-law (11) as:

P = µω
(
〈Ĥ〉 − 〈L̂〉

)
. (37)

Power on the adiabats (37) can be decomposed to the “useful” external power Pex = µω〈Ĥ〉 and
to the power invested to counter friction P f = −µω〈L̂〉 if 〈L̂〉 > 0. Under adiabatic conditions µ→ 0,
〈L̂〉 = 0, since no coherence is generated; therefore, P f = 0. Generating coherence consumes power
when the initial state is diagonal in energy [ρ̂, Ĥ] = 0 [73,74].

Insight on the adiabatic dynamics can be obtained from the closed-form solution of the dynamics
when the non-adiabatic parameter µ = ω̇

ω2 is constant. This leads to the explicit time dependence of the

control frequency ω: ω(t) = ω(0)
1−µω(0)t . Under these conditions, the matrix in Equation (36) becomes

stationary. This allows a closed-form solution to be obtained by diagonalizing the matrix. Under these
conditions, the adiabatic propagator Ua has the form:

Ua =
ω(t)
ω(0)

1
Ω2


4− µ2c −µΩs −2µ(c− 1) 0
−µΩs Ω2c −2Ωs 0

2µ(c− 1) 2Ωs 4c− µ2 0
0 0 0 1

 , (38)

where Ω =
√

4− µ2 and c = cos(Ωθ(t)), s = sin(Ωθ(t)), and θ(t) = − 1
µ log( ω(t)

ω(0) ) [68]. For |µ| < 2,
the solutions are oscillatory. For |µ| > 2, the sin and cos functions become sinh and cosh. More on the
transition point from damped to over-damped dynamics is presented in Section 4.5.

The difference between the expansion adiabats Uhc and compression adiabats Uhc is in the sign of µ

and the ratio ω(t)/ω(0). The propagator Ua can be viewed as a product of a changing energy scale by
the factor ω(t)

ω(0) and a propagation in a moving frame generated by a constant matrix. The fraction of
additional work on the adiabats with respect to the adiabatic solution is causing extra energy invested in
the woking medium, which is defined as:

δ f =
ωi
ω f

(Ua(1, 1)−
ω f

ωi
) . (39)

For the case of µ constant:

δ f =
2µ2 sin( θΩ

2 )2

4− µ2 (40)

and δ f ≥ 0.
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A different approach to the deviation from adiabatic behaviour has been based on a general
propagator for Gaussian wavefunctions of the form [75]:

ψ(x, t) = exp
(

i
2h̄

(a(t)x2 + b(t)x + c(t))
)

. (41)

a(t) can be mapped to a time-dependent classical harmonic oscillator: a(t) = MẊ/X, where:

m
d2

dt2 X + ω(t)2X = 0 . (42)

The local adiabatic parameter is defined as:

Q∗(t) =
1

2ωiω f

(
ω2

i (ω
2
f X(t)2 + Ẋ(t)2) + (ω2

f Y(t)2 + Ẏ(t)2)
)

, (43)

where X(t) and Y(t) are the solution of Equation (42) with the boundary conditions X(0) = 0, Ẋ(0) = 1
and Y(0) = 1, Ẏ(0) = 0 for a constant frequency Q∗ = 1. In general, the expectation value of the
energy at the end of the adiabats becomes:

〈Ĥ〉 f =
ω f

ωi
Q∗〈Ĥ〉i , (44)

where i/ f correspond to the beginning and end of the stroke. In general, Q∗(t) can be obtained directly
from the solution of Equation (42). Q∗(t) is related to δ f by: Q∗(t) = 1 + δ f . For the case of µ, constant
Q∗(t) can be obtained from Equation (40). In addition, Q∗(t) can be obtained by the solution of the
Ermakov equation (Equation (49)) [76].

The general dynamics described in Equation (38) mixes energy and coherence. As can be inferred
from the Casimir Equation (16), generating coherence costs energy. This extra cost gets dissipated
on the isochores, and is termed quantum friction [39,77]. The energy cost scales as µ2; therefore, slow
operation (i.e., |µ| � 1) will eliminate this cost. The drawback is large cycle times and low power.
Further analysis of Equation (38) shows a surprising result. Coherence can be generated and consumed,
resulting in periodic solutions in which the propagator becomes diagonal. As a result, mixing between
energy and coherence is eliminated. These solutions appear when cos(Ωθ(τa)) = 1, where τa is the
expansion or compression stroke time allocation. These periodic solutions can be characterised by
a quantization relation [68]:

µ∗ = − 2 log(C)√
4π2l2 + log(C)2

, (45)

where C = ωc
ωh

is the engine’s compression ratio, and l the quantization number l = 1, 2, 3, ...,
accompanied by the time allocation τ∗hc:

τ∗hc =
1− C
µ∗ωc

. (46)

A frictionless solution with the shortest time is obtained for l = 1, and it scales as τhc ∝ 1/ωc.
This observation raises the question: are there additional frictionless solutions in finite time?

What is the shortest time that can achieve this goal?
The general solution of the dynamics depends on an explicit dependence of ω(t) on time. ω(t) can

be used as a control function to optimise the performance, obtaining a state ρ̂ diagonal in energy at
the interface with the isochores. Such a solution will generate a frictionless performance. Operating at
effective adiabatic conditions has been termed shortcut to adiabaticity [78–82].
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The search for frictionless solutions has led to two main directions. The first is based on a
time-dependent invariant operator Î(t) [82]:

d
dt

Î(t) =
∂

∂t
I(t) +

i
h̄
[Ĥ(t), Î(t)] = 0 . (47)

For the harmonic oscillator, the invariant is [78]:

Î(t) =
1
2

(
1
b2 Q̂

2mω2
0 +

1
m

ß̂
2
)

, (48)

where ß̂ = bP̂ − mḃQ̂. The invariant must satisfy [Ĥ, Î] = 0 for the initial τi and final τf times,
then at these times the eigenstates of the invariant at the initial and final time of the adiabat are
identical to those of the Hamiltonian [83,84]. This is obtained if b(0) = 1 and ḃ(0) = 0, b̈(0) = 0,
as well as b(τf ) =

√
ω0/ω f and ḃ(τf ) = 0, b̈(τf ) = 0. In addition, the function b(t) satisfies the

Ermakov equation:
b̈ + ω(t)2b = ω2

0/b3 . (49)

The instantaneous frequency becomes ω(t) = ω0/b2 for b̈(0) = 0. There are many solutions to the
Ermakov equation, and additional constraints must be added—for example, that the frequency is at all
times real and positive. These equations can be used to search for fast frictionless solutions. To obtain
a minimal time τa, some constrains have to be imposed. For example, limiting the average energy
stored in the oscillator. In this case, τhc scales as τ∗hc ∝ 1/

√
ωc [80]. Other constraints on ω(t) have

been explored. For example, the use of imaginary frequency corresponding to an inverted harmonic
potential. These schemes allow faster times on the adiabat [80,85]. If the peak energy is constrained,
τhc scales logarithmically with 1/ωc; however, if the average energy is constrained, then the scaling
becomes τ∗hc ∝ 1/

√
ωc.

The second approach to obtain frictionless solutions is based on optimal control theory: finding
the fastest frictionless solution where the control function is ω(t) [68,85–90]. Optimal control theory
reveals that the problem of minimizing time is linear in the control, which is proportional to ω(t) [68].
As a result, the optimal control solution depends on the constraints ωmax and ωmin. If these are set as
ωmax = ωh and ωmin = ωc, then the optimal time scales as τ∗a ∝ 1

(
√

ωc
√

ωc)
. Other constraints will lead

to faster times, but their energetic cost will diverge. This scaling is consistent considering the cost of
the counter-adiabatic terms in frictionless solutions leading to the same scaling [91].

The optimal solution can be understood using a geometrical description [87]. The derivative of
the change of 〈Q̂2〉 with respect to the change in 〈P̂2〉 becomes:

d〈Q̂2〉
d〈P̂2〉

= −ω2(t) ≡ v . (50)

The time allocated to the change τ becomes:

τ =
∫ 〈P̂2〉 f

〈P̂2〉i

d〈P̂2〉√
〈P̂2〉〈Q̂2〉 − 〈Ĝ〉

, (51)

where Ĝ is the Casimir defined in Equation (16). In addition, the control v is constrained by ω2
c ≤ v ≤ ω2

h.

The initial and final 〈P̂2〉i/ f = mEi/ f , since the initial and final 〈L̂〉 and 〈Ĉ〉 are zero. The minimum time

is obtained by maximizing the product 〈P̂2〉〈Q̂2〉 along the trajectory. The minimum time optimization
leads to a bang-bang solution where the frequency is switched instantly from ωh to ωc, as in the sudden
limit Equation (58) is followed by a waiting period then switched back to ωh until the target is reached
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and switched finally to ωc. The relation between the geometric optimization and the Ermakov equation
of the shortcuts to adiabaticity has been obtained based on the geometrical optimization [92,93].

To summarize, frictionless solutions can be obtained in finite time. As a result, the engine can
be completely described by the population of the energy eigenvalues or for the harmonic working
medium by the expectation value of number operator N̂. Employing reasonable constraints on the
control function ω(t) results in the minimum time τ∗a scalling as O( 1√

ωc
√

ωh
).

4.3. The Influence of Noise on the Adiabats

The frictionless adiabat requires a very accurate protocol of ω(t) as a function of time. For any
realistic devices, such a protocol will be subject to fluctuations in the external control. The controllers are
subject to noise, which will induce friction-like behaviour. Can this additional friction be minimized?
Insight on the effects of noise on the performance of the Otto cycle can be obtained by analysing a simple
model based on the frictionless protocol with constant µ [94]. The obvious source of external noise is
induced by fluctuations in the control frequency ω(t). This noise is equivalent to Markovian random
fluctuations in the frequency of the harmonic oscillator. These errors are modelled by a Gaussian white
noise. The dissipative Lindbland term generating such noise has the form [42,95]:

LNa(Â) = −γaω2[B̂, [B̂, Â]], (52)

where B̂ = mωQ̂2/(2h̄).
The influence of the amplitude noise generated by LNa(Â) = −γaω2[B̂, [B̂, Â]] is obtained by

approximating the propagator by the product form Uhc = UaUan. The equations of motion for the
amplitude noise Uan are obtained from the interaction picture in Liouville space:

d
ωdt
Uan(t) = Ua(−t)Na(t)Ua(t)Uan(t)

= Wan(t)Uan(t) , (53)

where Wan is the interaction propagator in Liouville space [94] and Ua is the adiabatic propagator,
Equation (38). A closed-form solution is obtained in the frictionless limit µ→ 0 whenWa is expanded
up to zero order in µ:

Wa(t) ≈ γaω0


1 −c s 0
c −c2 cs 0
−s cs −s2 0
0 0 0 0

 , (54)

where s = sin(ΩΘ) c = cos(ΩΘ). The Magnus expansion [96] is employed to obtain the l period
propagator U3a(X = 2lπ), where the periods are of the adiabatic propagator Ua of Equation (38):

U3a(X = 2lπ) ≈ eB1+B2+... , (55)

where B1 =
∫ 2nπ

0 dXWa(X), B2 = 1
2

∫ 2nπ
0

∫ X
0 dXdX′[Wa(X),Wa(X′)], and so on. The first-order

Magnus term leads to the propagator

Uan(X = 2lπ)B1 =


eγaF/µ 0 0 0

0 e−γaF/(2µ) 0 0
0 0 e−γaF/(2µ) 0
0 0 0 1

 ,
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where F =
(

16ω0
(−16+3µ2)

) (
e2πlµΩ − 1

)
. For large l, in Equation (45) the limit from hot to cold simplifies

to: F = (ωh −ωc). The solution of Equation (53) shows that the fraction of work against friction δ f
will diverge when l → ∞ or µ→ 0, nulling the adiabatic solution for even a very small γa. The best
way to eliminate amplitude noise is to choose the shortest frictionless protocol. Nevertheless, some
friction-like behaviors will occur.

Next, phase noise is considered. It occurs due to errors in the piecewise process used for
controlling the scheduling of ω in time. For such a procedure, random errors are expected in the
duration of the time intervals. These errors are modeled by a Gaussian white noise. Mathematically,
the process is equivalent to a dephasing process on the adiabats [97]. The dissipative operator LN has
the form given by [42,95]:

LNp(Â) = −
γp

h̄2 [Ĥ, [Ĥ, Â]] . (56)

In this case, the interaction picture for the phase noise Up becomes

d
ωdt
Upn(t) = Ua(−t)Np(t)Ua(t)Upn(t) = Wp(t)Upn(t) ,

which at first order in µ can be approximated as

Wp(t) ≈ 2γpω0 ×


0 µs µ(1− c) 0
µs −(2 + µX) 0 0

µ(c− 1) 0 −(2 + µX) 0
0 0 0 0

 .

Again, using the Magnus expansion for one period of X leads to

U3p(X = 2π)B1 =


1 0 (1− e8πγpω0 )µ/2 0
0 e8πγpω0 (1− 4π2µγpω0) 0 0

(−1 + e8πγpω0 )µ/2 0 e8πγpω0 (1− 4π2µγpω0) 0
0 0 0 1

 .

At first order in µ, this evolution operator maintains δ f (1) = 0, so the frictionless case holds.
The second-order Magnus term leads to the noise correction

U3p(X = 2π)B2 =


cosh β − sinh β 0 0
− sinh β cosh β 0 0

0 0 1 0
0 0 0 1

 , (57)

where β =
16ω2

0γ2
p

4+3µ2

(
e2πlµΩ − 1

)
. In the limit of l → ∞, β = 4γ2(ω2

h−ω2
c ). The propagator U3p(X = 2π)B2

mixes energy and coherence, even at the limit µ → 0 and τa → ∞, where one would expect
frictionless solutions.

We can characterize the fraction of additional energy generated by a parameter δ. Asymptotically
for amplitude noise: δa = eγaF/µ > 0, and for phase noise δ f (1) = eγpFµ − 1 ≈ 0, and the second-order
correction δ f (2) = cosh(β)− 1 > 0. Imperfect control on the adiabats will always lead to δ f > 0 and
additional work invested in friction.
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4.4. The Sudden Limit

The limit of vanishing time on the adiabats τa � 1/ωc leads to the sudden propagator; therefore,
µ→ ±∞. Such dynamics is termed sudden quench. The propagator Ua has an explicit expression:

Ua =


1
2(1+ α) 1

2(1− α) 0 0
1
2(1− α) 1

2(1+ α) 0 0
0 0 1 0
0 0 0 1

 , (58)

where α = (
ω f
ωi
)2 is related to the compression ratio αch = C2 and αhc = C−2. The propagator mixes Ĥ

and L̂ when the compression ratio deviates from 1. As a result coherence is generated. The sudden
propagator is an integral part of the frictionless bang-bang solutions [68,87]. Equation (58) can be
employed as part of a bang-bang adiabat or as part of a complete sudden cycle.

4.5. Effects of an Exceptional Point on the Dynamics on the Adiabat

Exceptional points (EPs) are degeneracies of non-Hermitian dynamics [98,99] associated with
the coalescence of two or more eigenstates. The studies of EPs have substantially grown due to the
observation of (space-time reflection symmetry) PT symmetric Hamiltonians [100]. These Hamiltonians
have a real spectrum, which becomes complex at the EP. The main effect of EPs (of any order) on the
dynamics of PT-symmetric systems is the sudden transition from a real spectrum to a complex energy
spectrum [101,102].

The adiabatic strokes are generated by a time-dependent Hamiltonian Equation (4). We therefore
expect the propagator Ua to be unitary, resulting in eigenvalues with the property |uj| = 1. These
properties are only true for a compact Hilbert space. We find surprising exceptions for the non-compact
harmonic oscillator with an infinite number of energy levels. We can remove the trivial scaling ω(t)

ω(0) in
Equation (36) which originates from the diagonal part. The propagator can be written as Ua = U0U1,
where U0 = ω(t)

ω(0)I is a rescaling of the energy unit. The equation of motion for U1 becomes:

d
dθ
U1(θ) =

 0 −µ 0
−µ 0 −2
0 2 0

U1(θ) , (59)

where the trivial propagation of the identity is emitted and the time is rescaled θ(t) =
∫ t

ω(t′)dt′.
Diagonalising Equation (59) for constant µ, we can identify three eigenvalues: λ1 = 0 and
λ23 = ±i

√
4− µ2. For µ ≤ 2, as expected, Equation (59) generates a unitary propagator. The three

eigenvalues become degenerate when µ = 2, and become real for µ ≥ 2 λ23 [103]. This is possible
because the generator Equation (59) is non-Hermitian. At the exceptional point, the matrix in
Equation (59) has a single eigenvector corresponding to λ1 = λ23, which is self-orthogonal. To show
this property, it is necessary to multiply the right and left eigenvectors of the non-symmetric matrix
at the EP. Their product is equal to zero, showing that the eigenvector is self-orthogonal [104].
The propagator Equation (38) changes character at the EP; Ω =

√
4− µ2 changes from a real to an

imaginary number. As a result, the dynamics at the EP changes from oscillatory to exponential [103].
This effect can also be observed in the classical parametric oscillator Equation (42). By changing

the time variable d
dt = ω(t) d

dτ , and for constant µ, the equation of motion becomes(
d2

dτ2 + µ
d

dτ
+ 1
)

X(τ) = 0 , (60)

which is the well-known equation of motion of a damped harmonic oscillator. Note that the original
model (given by Equation (42)) does not involve dissipation, and a priori one would not expect the
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appearance of an EP. The rescaling of the time coordinate allows us to identify an EP at |µ| = 2,
corresponding to the transition between an underdamped and an over-damped oscillator [105].

Exceptional points are also expected in the eigenvalues and eigenvectors of the total propagator Ucyc,
which posses complex eigenvalues. Such points will indicate a drastic change in the cycle performance.

5. Closing the Cycle

Periodically combining the four propagators leads to the cycle propagator. Depending on the
choice of parameters, we get either an engine cycle where heat flow is converted to power:

U e
cyc = UchUcUhcUh where

ωc

ωh
>

Tc

Th
, (61)

or a refrigerator cycle where power drives a heat current from the cold to the hot bath:

U r
cyc = UchUcUhcUh where

ωc

ωh
<

Tc

Th
. (62)

In both cases, ωh > ωc. Frictionless cycles are either refrigerators or engines. Friction adds another
possibility. When the internal friction dominates both, the engine cycle and the refrigeration cycle will
operate in a dissipative mode, where power is dissipated to both the hot and cold baths. For an engine,
this dissipative mode will occur when the internal temperature of the oscillator Equation (31) after the
expansion adiabat (cf. Figure 3 point D) will exceed Th and in a refrigerator cycle when the internal
temperature exceeds Tc (cf. Figure 4 point C).

ωhωc

AB

C D

Th

Tc

0.5 1.0 1.5 2.0

2

3

4

5

6

7

ω

S
E

Figure 3. Typical engine cycle SE vs. ω. Expansion adiabat A→ B. Cold isochore B→ C. Compression
adiabat C → D. Hot isochore D → A. The hot and cold isotherms are indicated. The cycle parameters
are ωc = 0.5, Tc = 5, ωh = 2, Th = 200, τc = τh = 2.1, |µ| = 0.8, Γ = 1.
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Figure 4. Typical frictionless refrigerator cycle SE vs. ω. Expansion adiabat D → C. Cold isochore
C → B. Compression adiabat B→ A. Hot isochore A→ D. The hot and cold isotherms are indicated.
The cycle parameters are ωc = 0.5, Tc = 1.5, ωh = 3, Th = 3, τc = τh = 2.1, |µ| = 0.5, Γ = 1.
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5.1. Limit Cycle

When a cycle is initiated, after a short transient time it settles to a steady-state operation mode.
This periodic state is termed the limit cycle [14,106]. An engine cycle converges to a limit cycle when
the internal variables of the working medium reach a periodic steady state. As a result, no energy
or entropy is accumulated in the working medium. Figure 2 is an example of a periodic limit cycle.
Subsequently, a balance is obtained between the external driving and dissipation. When the cycle
time is reduced, friction causes additional heat to be accumulated in the working medium. The cycle
adjusts by increasing the temperature gap between the working medium and the baths, leading to
increased dissipation. Overdriving leads to a situation where heat is dissipated to both the hot and
cold bath and power is only consumed. When this mechanism is not sufficient to stabilise the cycle,
one can expect a breakdown of the concept of a limit cycle, resulting in catastrophic consequences [72].

The properties of a completely positive (CP) map can be used to prove the existence of a limit cycle.
Lindblad [107] has proven that the conditional entropy decreases when applying a trace-preserving
completely positive map Λ to both the state ρ̂ and the reference state ρ̂re f :

D(Λρ̂||Λρ̂re f ) ≤ D(ρ̂||ρ̂re f ) ,

where D(ρ̂||ρ̂′) = Tr(ρ̂(log ρ̂− log ρ̂′)) is the conditional entropy distance. A CP map reduces the
distinguishability between two states. This can be employed to prove the monotonic approach
to steady-state, provided that the reference state ρ̂re f is the only invariant of the CP map Λ
(i.e., Λρ̂re f = ρ̂re f ) [108–110]. This reasoning can prove the monotonic approach to the limit cycle.
The mapping imposed by the cycle of operation of a heat engine is a product of the individual
evolution steps along the segments composing the cycle propagator. Each one of these evolution
steps is a completely positive map, so the total evolution Ucyc Equation (1) that represents one cycle of
operation is also a CP map. If then a state ρ̂lc is found that is a single invariant of Ucyc (i.e., Ucycρ̂lc = ρ̂lc),
then any initial state ρ̂init will monotonically approach the limit cycle.

The largest eigenvalue of Ucyc with a value of 1 is associated with the invariant limit cycle state
Ucycr ρ̂lc = 1ρ̂lc, the fixed point of Ucyc. The other eigenvalues determine the rate of approach to the
limit cycle.

In all cases studied of a reciprocating quantum heat engine, a single non-degenerate eigenvalue
of 1 was the only case found. The theorems on trace preserving completely positive maps are all based
on C∗ algebra, which means that the dynamical algebra of the system is compact. Can the results be
generalized to discrete non-compact cases such as the harmonic oscillator? In his study of the Brownian
harmonic oscillator, Lindblad conjectured: “in the present case of a harmonic oscillator, the condition that L
is bounded cannot hold. We will assume this form for the generator with Ĥ and L unbounded as the simplest
way to construct an appropriate model” [45]. The master equation in Lindblad’s form Equation (9) is well
established. Nevertheless, the non-compact character of the resulting map has not been challenged.

A nice demonstration is the study of Insinga et al. [72], which shows conditions where a limit
cycle is not obtained. This study contains an extensive investigation of the limit cycles as a function of
the parameters of the system [72].

5.2. Engine Operation and Performance

The engine’s cycle can operate in different modes, which are: adiabatic, frictionless,
friction-dominated, and the sudden cycle. In addition, one has to differentiate between two limits:
high temperature kBT � h̄ω, where the unit of energy is kBT, to low temperature h̄ω � kBT, where
the unit of energy is h̄ω.

In the adiabatic and frictionless cycles [111], the performance can be completely determined by
the value of energy at the switching point between strokes.



Entropy 2017, 19, 136 20 of 36

5.2.1. Optimizing the Work per Cycle

The adiabatic limit with infinite time allocations on all segments maximises the work.
No coherence is generated, and therefore the cycle can be described by the change in energy. On the
expansion adiabat EB = ωc

ωh
EA, and on the compression adiabat ED = ωh

ωc
EC. As a result, when the cycle

is closed, the heat transferred to the hot bath Qh = EA − ED and to the cold bath Qc = EB − EC are
related: Qc

Qh
= ωc

ωh
.

The efficiency for an engine becomes the Otto efficiency:

η =
W
Qh

= 1− ωc

ωh
≤ 1− Tc

Th
. (63)

Choosing the compression ratio C = ωh
ωc

= Th
Tc

maximises the work and leads to Carnot efficiency
ηo = ηc. Since for this limit the cycle time τcyc is infinite, the power P = W/τcyc of this cycle is
obviously zero.

5.2.2. Optimizing the Performance of the Engine for Frictionless Conditions

Frictionless solutions allow finite time cycles with the same efficiency ηo = 1− ωc
ωh

as the adiabatic
case. A different viewpoint is to account as wasted work the average energy invested in achieving the
frictionless solution, termed superadiabatic drive [112]:

η =
W

Qh + 〈Hch〉+ 〈Hhc〉
, (64)

where 〈Hch〉 is the average additional energy during the adiabatc stroke. Using for example Equation (38),

the average additional energy becomes 〈Hch〉 = ωh
ωc

EC
µ2

4−µ2 , which vanishes as the non-adiabatic parameter
µ → 0. This additional energy 〈Hch〉 in the engine is the price for generating coherence. Coherence
is exploited to cancel friction. This extra energy is not dissipated, and can therefore be viewed as a
catalyst. For this reason, we do not accept the viewpoint of [112].

In our opinion, what should be added to the accounting is the additional energy generated by
noise on the controls:

η =
W

Qh + ECδch + EAδhc
≤ ηo , (65)

where δhc = δa + δ f for the power adiabat and δa and δ f are generated by amplitude and phase noise on
the controller (cf. Section 4.3). A similar relation is found for the compression adiabat.

Optimizing power requires a finite cycle time τcyc. Optimisation is carried out with respect to
the time allocations on each of the engine’s segments: τh, τhc, τc, and τch. This sets the total cycle time
τcyc = τh + τhc + τc + τch. The time allocated to the adiabats is constrained by the frictionless solutions
τ∗hc and τ∗ch. The resulting optimization is very close to the unconstrained optimum [72], especially
in the interesting limit of low temperatures. The frictionless conditions are obtained either from
Equation (45) or from other shortcuts to adiabaticity methods Equation (47). In the frictionless regime,
the number operator is fixed at both ends of the adiabat. The main task is therefore to optimize the time
allocated to thermalisation on the isochores. This heat transport is the source of entropy production.

The time allocations on the isochores determine the change in the number operator N = 〈N̂〉 = 1
h̄ω 〈Ĥ〉

(cf. Equation (33)): NB = e−Γhτh
(

NA− Nh
eq

)
+ Nh

eq on the hot isochore, where NB is the number

expectation value at the end of the hot isochore, NA at the beginning, and Nh
eq is the equilibrium value

point E. A similar expression exists for the cold isochore.
Work in the limit cycle becomes

Wq = EC− EB + EA− ED = h̄(ωc −ωh)(NB− ND) , (66)
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where the convention of the sign of the work for a working engine is negative, in correspondance with
Callen [33], and we use the convention of Figure 3 to mark the population and energy at the corners of
the cycle.

The heat transport from the hot bath becomes

Qh = EB− ED = h̄ωh(NB− ND) . (67)

In the limit cycle for frictionless conditions, NB = NA, which leads to the relation

NB =
(eΓcτc − 1)

1− eΓcτc+Γhτh
(Nh

eq − Nc
eq) + Nh

eq . (68)

In the periodic limit cycle, the number operator change NB − ND is equal on the hot and cold
isochores, leading to the work per cycle:

Wq = h̄(ωh −ωc)(Nh
eq − Nc

eq)
(exc − 1)(exh − 1)

1− exc+xh
(69)

≡ −GW(Tc, ωc, Th, ωh)F(xc, xh) ,

where the scaled time allocations are defined xc ≡ Γcτc and xh ≡ Γhτh. The workWq Equation (69)
becomes a product of two functions: GW , which is a function of the static constraints of the engine, and
F, which describes the heat transport on the isochores. Explicitly, the function GW is

GW(Tc, ωc, Th, ωh) =
h̄
2
(ωh −ωc)

(
coth

(
h̄ωh

2kBTh

)
− coth

(
h̄ωc

2kBTc

))
. (70)

The function F in Equation (69) is bounded 0 ≤ F ≤ 1; therefore, for the engine to produce work,
GW ≥ 0. The first term in (70) is positive. Therefore, GW ≥ 0 requires that ωc

ωh
≥ Tc

Th
, or in terms of the

compression ratio, 1 ≤ C ≤ Th
Tc

. This is equivalent to the statement that the maximum efficiency of the
Otto cycle is smaller than the Carnot efficiency ηo ≤ ηc.

In the high temperature limit when h̄ω
kBT � 1, GW simplifies to

GW = kBTc(1−C) + kBTh(1−C−1) . (71)

In this case, the work Wq = −GW F can be optimized with respect to the compression ratio

C = ωh
ωc

for fixed bath temperatures. The optimum is found at C =
√

Th
Tc

. As a result, the efficiency at
maximum power for high temperatures becomes

ηq = 1−

√
Tc

Th
, (72)

which is the well-known efficiency at maximum power of an endo-reversible engine [6,9,13,21,22,113].
Note that these results indicate greater validity to the Novikov–Curzon–Ahlbourn result from what
their original derivation [22] indicates.

The function F defined in (69) characterizes the heat transport to the working medium.
As expected, F maximizes when infinite time is allocated to the isochores. The optimal partitioning of
the time allocation between the hot and cold isochores is obtained when:

Γh(cosh(Γcτc)− 1) = Γc(cosh(Γhτh)− 1) . (73)

If (and only if) Γh = Γc, the optimal time allocations on the isochores becomes τh = τc.
Optimising the total cycle power output P is equivalent to optimizing F/τcyc, since GW is

determined by the engine’s external constraints. The total time allocation τcyc = τiso + τadi is partitioned
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to the time on the adiabats τadi, which is limited by the adiabatic frictionless condition, and the time τiso
allocated to the isochores.

Optimising the time allocation on the isochores subject to (73) leads to the optimal condition

Γcτcyc(cosh(Γhτh)− 1) = sinh(Γhτh + Γcτc)− sinh(Γcτc)− sinh(Γhτh) . (74)

When Γh = Γc ≡ Γ, this expression simplifies to:

2x + Γτadi = 2 sinh(x) , (75)

where x = Γcτc = Γhτh. For small x, Equation (75) can be solved, leading to the optimal time allocation

on the isochores: τc = τh ≈ (Γτadi/3)
1
3 /Γ. Considering the restriction due to frictionless condition [86],

this time can be estimated to be: τc = τh ≈ 1
Γ

(
Γ√

ωcωh

) 1
3 . When the heat transport rate Γ is sufficiently

large, the optimal power conditions lead to the bang-bang solution where vanishingly small time is
allocated to all segments of the engine [14] and τcyc ≈ 2τadi.

The entropy production ∆SU reflects the irreversible character of the engine. In frictionless
conditions, the irreversibility is completely associated with the heat transport. ∆SU can also be
factorized to a product of two functions:

∆Su = GS(Tc, ωc, Th, ωh)F(xc, xh) , (76)

where F is identical to the F function defined in (69). The function GS becomes:

GS(Tc, ωc, Th, ωh) =
1
2

(
h̄ωh
kBTh

− h̄ωc

kBTc

)(
coth

(
h̄ωc

2kBTc

)
− coth

(
h̄ωh

2kBTh

))
. (77)

Due to the common F(xc, xh) function, the entropy production has the same dependence on the
time allocations τh and τc as the workW [114]. As a consequence, maximizing the power will also
maximize the entropy production rate ∆Su/τcyc. Note that entropy production is always positive,
even for cycles that produce no work, as their compression ratio C is too large, which is a statement of
the second law of thermodynamics.

The dependence of the Gs function on the compression ratio can be simplified in the high
temperature limit, leading to:

GS = C Tc

Th
+ C−1 Th

Tc
− 2 , (78)

which is a monotonic decreasing function in the range 1 ≤ C ≤ Th
Tc

that reaches a minimum at the Carnot

boundary when C = Th
Tc

. When power is generated, the entropy production rate in the frictionless
engine is linearly proportional to the power:

Su =

(
h̄ωh
kBTh

− h̄ωc

kBTc

)(
1

ωh −ωc

)
P . (79)

Frictionless harmonic cycles have been studied under the name of superadiabatic driving [111].
The frictionless adiabats are obtained using the methods of shortcut to adiabaticity [82] and the invariant
Equation (47). An important extension applies shortcuts to adiabaticity to working mediums composed
of interacting particles in a harmonic trap [76,115–117].

A variant of the Otto engine is an addition of projective energy measurements before and after
each adiabat. This construction is added to measure the work output [118]. As a result, the working
medium is always diagonal in the energy basis. In the frictionless case, the cycle is not altered by this
projective measurement of energy.
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5.2.3. The Engine in the Sudden Limit

The extreme case of the performance of an engine with zero time allocation on the adiabats is
dominated by the frictional terms. These terms arise from the inability of the working medium to
adiabatically follow the external change in potential. A closed-form expression for the sudden limit
can be derived based on the adiabatic branch propagator Uhc and Uch in Equation (58).

To understand the role of friction, we demand that the heat conductance terms Γ are very large,
thus eliminating the thermalisation time. In this limiting case, the work per cycle becomes:

Ws =
(ωc −ωh)(ωc + ωh)

4ωcωh

(
h̄ωc coth(

h̄ωh
2kBTh

)− h̄ωh coth(
h̄ωc

2kBTc
)

)
. (80)

The maximum produced work −Ws can be optimised with respect to the compression ratio C.
At the high temperature limit:

Ws =
1
2

kBTh(C2− 1)(
Tc

Th
− 1
C2 ) . (81)

For the frictionless optimal compression ratio C =
√

Th
Tc

,Ws is zero. The optimal compression ratio

for the sudden limit becomes: C =
(

Th
Tc

)1/4
, leading to the maximal work in the high temperature limit

Ws = − 1
2

kBTc

(
1−

√
Th
Tc

)2

. (82)

The efficiency at the maximal work point becomes:

ηs =
1−

√
Th
Tc

2+
√

Th
Tc

. (83)

Equation (83) leads to the following hierarchy of the engine’s maximum work efficiencies:

ηs ≤ ηq ≤ ηc . (84)

Equation (84) leads to the interpretation that when the engine is constrained by friction its
efficiency is smaller than the endo-reversible efficiency, where the engine is constrained by heat
transport that is smaller than the ideal Carnot efficiency. At the limit of Tc → 0, we have ηs =

1
2 and

ηq = ηc = 1 [119].
An upper limit to the work invested in friction W f is obtained by subtracting the maximum

work in the frictionless limit Equation (69) from the maximum work in the sudden limit Equation (80).
In both these cases, infinite heat conductance is assumed, leading to NB = Nh

eq and ND = Nc
eq. Then,

the upper limit of work invested to counter friction becomes:

W f = h̄ωh
(C − 1)2(1+ C + 2CNc

eq + 2Nh
eq)

4C2 . (85)

At high temperature, Equation (85) changes to:

W f =
1
2

kbTh(C − 1)2(C−2 +
Tc

Th
) . (86)
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The maximum produced work at the high temperature limit of the frictionless and sudden limits

differ by the optimal compression ratio. For the frictionless case, C∗ =
√

Th
Tc

, and for the sudden case,

C∗ = (Th
Tc
)1/4.

The work against frictionW f (Equation (86)) is an increasing function of the temperature ratio.
For the compression ratio that optimises the frictionless limit, the sudden work is zero. At this
compression ratio, all the useful work is balanced by the work against frictionW f =Wq. Beyond this
limit, the engine transforms to a dissipator, generating entropy at both the hot and cold baths. This is
in contrast to the frictionless limit, where the compression ratio C = Th

Tc
leads to zero power.

The complete sudden limit assumes short time dynamics on all segments including the isochores.
These cycles with vanishing cycle times approach the limit of a continuous engine. The short time
on the isochores means that coherence can survive. Friction can be partially avoided by exploiting
this coherence, which—unlike the frictionless engine—is present in the four corners of the cycle.
The condition for such cycles is that the time allocated is much smaller than the natural period set by
the frequency τc, τh � 2π/ω and by heat transfer τc, τh � 1/Γ. The heat transport from the hot and
cold baths in each stroke becomes very small. For simplicity, Γhτh = Γcτc is chosen to be balanced.
Under these conditions, the cycle propagator becomes:

Ucyc =


(1− g)2 0 0 [g(1− g) 1

2(1+ C2)h̄ωcNeq
c + gh̄ωhNeq

h ]

0 (1− g)2 0 (1− g)g 1
2(1−C2)h̄ωcNeq

c
0 0 (1− g)2 0
0 0 0 1

 , (87)

where the degree of thermalisation is g = 1− R ≈ Γhτh. Observing Equation (87), it is clear that the
limit cycle vector contains both Ĥ and L̂.

The work output per cycle becomes:

WS = −h̄ωh
g

2− g
C2 − 1

2C2

(
Neq

h − CNeq
c

)
. (88)

Extractable work is obtained in the compression range of 1 < C <
Neq

h
Neq

c
. The maximum work is

obtained when C∗ =
(

Neq
h

Neq
c

)1/4
. At high temperature, the work per cycle simplifies to:

WS ≈ −kBTc
Γτ

2
C2 − 1

2C2

(
Th
Tc
− C2

)
. (89)

The work vanishes for the frictionless compression ratio C =
√

Th
Tc

. The optimal compression ratio

at the high temperature limit becomes: C∗ =
(

Th
Tc

)1/4
.

The entropy production becomes:

∆Su = h̄ωh
g

2− g
C2 − 1

2C

(
Neq

h (
1 + C2

2CTc
− C

Th
) + Neq

c (
1 + C2

2Th
− 1

Tc
)

)
. (90)

Even for zero power (e.g., C = 1), the entropy production is positive, reflecting a heat leak from
the hot to cold bath.

The power of the engine for zero cycle time τh → 0 and τc → 0 is finite:

PS = − h̄ωhΓ
2
C2 − 1

2C2

(
Neq

h − CNeq
c

)
. (91)
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This means that we have reached the limit of a continuously operating engine. This observation is
in accordance with the universal limit of small action on each segment [35,36]. When additional
dephasing is added to Equation (87), no useful power is produced and the cycle operates in
a dissipator mode.

The efficiency of the complete sudden engine becomes:

ηS =
C2 − 1

2C2

1− C Neq
c

Neq
h

2− (1 + C2) 1
C

Neq
c

Neq
h

. (92)

The extreme sudden cycle is a prototype of a quantum phenomenonan engine that requires global
coherence to operate. At any point in the cycle, the working medium state is non-diagonal in the
energy representation.

5.2.4. Work Fluctuation in the Engine Cycle

Fluctuations are extremely important for a single realisation of a quantum harmonic engine.
The work fluctuation can be calculated from the fluctuation of the energy at the four corners of the
cycle [120,121]. The energy fluctuations for a generalised Gibbs state (Equation (20)) is related to the
internal temperature (Equation (31)) Var(E) = (kBTint)

2. For frictionless cycles, the variance of the
work becomes:

Var(W) = (kBTh
int)

2(1 +
1
C2 ) + (kBTc

int)
2(1 + C2) , (93)

where Th
int and Tc

int are the internal temperatures at the end of the hot and cold thermalisation. For the
case of complete thermalisation when the oscillator reaches the temperature of the bath, the work
variance is smallest for the Carnot compression ratio C = Th/Tc. Generating coherence will increase
the energy variance (cf. Equation (18)), and with it the work variance [120].

5.2.5. Quantum Fuels: Squeezed Thermal Bath

Quantum fuels represent a resource reservoir that is not in thermal equilibrium due to quantum
coherence or quantum correlations. The issue is how to exploit the additional out-of-equilibrium
properties of the bath. The basic idea of quantum fuels comes from the understanding that coherence
can reduce the von Neumann entropy of the fuel. In principle, this entropy can be exploited to increase
the efficiency of the engine without violating the second-law [122]. An example of such a fuel is
supplied by a squeezed thermal bath [123–130]. Such a bath delivers a combination of heat and
coherence. As a result, work can be extracted from a single heat bath without violating the laws of
thermodynamics. An additional suggestion for a quantum fuel is a non-Markovian hot bath [131].

The model of this engine starts from a squeezed boson hot bath where ĤB = ∑k h̄Ωkb̂
†
k b̂k.

This bath is coupled to the working medium by the interaction ĤSB = ∑k igk(âb̂
†
k − â†b̂k). As a result,

the master equation describing thermalisation (Equation (9)) is modified to [126,132]:

LD(ρ̂) = k↑(ŝ†ρ̂ŝ − 1
2
{ŝŝ†, ρ̂}) + k↓(ŝρ̂ŝ† − 1

2
{ŝ†ŝ, ρ̂}) , (94)

where ŝ = â cosh(γ) + â† sinh(γ) = ŜâŜ
†
. Ŝ is the squeezing operator (Equation (25)) and γ the

squeezing parameter.
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Under squeezing, the equation of motion of the hot isochore thermalisation (Equation (33)) is
modified to:

d
dt


Ĥ
L̂
Ĉ
Î

 (t) =


−Γ 0 0 Γ〈Ĥ〉sq

0 −Γ −2ω 0
0 2ω −Γ Γ〈Ĉ〉sq

0 0 0 0




Ĥ
L̂
Ĉ
Î

 (t) , (95)

where Γ = k↓ − k↑ is the heat conductance and k↑/k↓ = e−h̄ωh/kBTh obeys detailed balance.
The difference from the normal thermalisation dynamics Equation (33) is in the equilibrium values:

〈Ĥ〉sq = cosh2(γ)〈Ĥ〉eq + sinh2(γ)h̄ωh
k↓
Γ , where 〈Ĥ〉eq is the equlibrium value of the oscillator at

temperature Th. In addition, the invariant state of Equation (95) contains coherence: 〈Ĉ〉sq =

− sinh(2γ)
k↑+k↓

Γ . This coherence is accompanied by additional energy that is transferred to the system.
The squeezed bath delivers extra energy to the working fluid as if the hot bath has a higher temperature,
since 〈Ĥ〉sq ≥ 〈Ĥ〉eq. This temperature can be calculated from Equation (31). The thermalization to the
squeezed bath generates mutual correlation between the system and bath [132].

The coherence transferred to the system 〈Ĉ〉 ≤ 〈Ĉ〉sq can be cashed upon to increase the work of
the cycle. This requires an adiabatic protocol which is similar to the frictionless case. In the frictionless
case, the protocol of ω(t) was chosen to cancel the coherence generated during the stroke and to reach
a state diagonal in energy. This protocol can be modified to exploit the initial coherence and to reach
a state diagonal in energy but with lower energy, thus producing more work. The coherence thus serves
as a source of quantum availability, allowing more work to be extracted from the system [130,133,134].
For example, using the propagator on the adiabat Equation (38) based on µ = constant, the stroke

period τhc can be increased from the frictionless value to add a rotation cos(ΩΘ(t)) = µ2

4 , which will
null the coherence and reduce the final energy. Other frictionless solutions could be modified to reach
the same effect.

5.3. Closing the Cycle: The Performance of the Refrigerator

A refrigerator or heat pump employs the working medium to shuttle heat from the cold to hot
reservoir. A prerequisite for cooling is that the expansion adiabat should cause the temperature of the
working medium to be lower than the cold bath. In addition, at the end of the compression adiabat,
the temperature should be hotter than the hot bath (cf. Figure 4). To generate a refrigerator, we use the
order of stroke propagators in Equation (62). The heat extracted from the cold bath becomes:

Qc = EB − EC = h̄ωc(NB − NC) . (96)

The interplay between efficiency and cooling power is the main theme in the performance analysis.
The efficiency of a refrigerator is defined by the coefficient of performance (COP):

COP =
Qc

W =
ωc

ωh −ωc
≤ Tc

Th − Tc
. (97)

The cooling powerRc is defined as:

Rc =
Qc

τcyc
. (98)

Optimising the performance of the refrigerator can be carried out by a similar analysis to the
one employed for the heat engine. Insight into the ideal performance can be gained by examining
the expansion adiabat. The initial excitation should be minimized, requiring the hot bath to cool the
working medium to its ground state. This is possible if h̄ωh � kBTh. Next, the expansion should be as
adiabatic as possible so that at the end the working medium is still as close as possible to its ground
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state EC ≈ h̄ωc
2 . The frictionless solutions found in Section 4.2 can be employed to achieve this task in

minimum time.

5.3.1. Frictionless Refrigerator

The adiabatic refrigerator is obtained in the limit of infinite time µ → 0, leading to constant
population N and SE. Then, EC = ωc

ωh
ED. At this limit, since τ → ∞, the cooling rate vanishesRc = 0.

The Carnot efficiency can be obtained when C = Th
Tc

.
Frictionless solutions require that the state ρ̂ is diagonal in energy in the beginning and at the end

of the adiabat. The analytic propagator on the expansion adiabat (Equation (38)) describes the expansion
adiabat: D→ C :

EC =
1
C

1
Ω2

(
4− µ2c

)
· ED , (99)

where c = cos(Ωθc) and θc = − 1
µ log (C).

Frictionless points are obtained whenever NC = ND. The condition is c = 1 in Equation (99).
Then, µ < 2, leading to the critical frictional points (Equation (45)). These solutions have optimal
efficiency Equation (97) with finite power. The optimal time allocated to the adiabat becomes
(cf. Equation (46)) τ∗hc = (1− C)/(µ∗ωh).

This frictionless solution with a minimum time allocation τ∗hc scales as the inverse frequency ω−1
c ,

which outperforms the linear ramp solution ω(t) = ωi + gt.
Other faster frictionless solutions can be obtained using the protocols of Section 4.2, such as the

superadiabatic protocol or by applying optimal control theory [86]. Both cases lead to the scaling of
the adiabatic expansion time as τhc ∝ 1√

ωcωh
.

Once the time allocation on the adiabats is set, the time allocation on the isochores is optimised for
the thermalisation using the method of [24], and the optimal cooling power becomes:

R∗c =
ez

(1 + ez)2 Γh̄ωc(Neq
c − Neq

h ) , (100)

where z = Γhτh = Γcτc. The optimal z is determined by the solution of the equation 2z+ Γ(τhc + τch) =

2 sinh(z).

5.3.2. The Sudden Refrigerator

Short adiabats generally lead to the excitation of the oscillator and result in friction (cf. Section 4.2).
Nevertheless, a refrigerator can still operate at the limit of vanishing cycle time. In a similar fashion
to the sudden engine, coherence can be exploited and leads to a finite cooling power when τcyc → 0.
The cooling power for the sudden limit becomes:

Rc = −h̄ωcΓ
(

Neq
c −

1
2C (1 + C

2)Neq
h

)
. (101)

Note that the cooling rate in this sudden-limit becomes zero at a sufficiently low cold bath
temperature so that Neq

c = (1 + C2)Neq
h . This formula loses its meaning and should not be used below

this temperature.

5.3.3. The Quest to Reach Absolute Zero

The quantum harmonic refrigerator can serve as a primary model to explore cooling at very low
temperatures. A necessary condition is that the internal temperature of the oscillator (Equation (31))
should be lower than the cold bath. Tint < Tc when Tc → 0. This condition imposes very high
compression ratios C � Th

Tc
so that at point D (cf. Figure 4), at the end of the hot thermalization,

the oscillator is very close to the ground state.
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An important feature of the model is that the cooling power vanishes as Tc approaches zero.
Qualitatively, Rc → 0 means that the adiabatic expansion from point D → C for high compression
ratios requires a significant amount of time. Another issue is the rate of cold thermalisation C → B
and its scaling with Tc when the oscillator extracts heat from the cold bath. These issues can be made
quantitative by exploring the scaling exponent α of the optimal cooling power with the cold bath
temperature Tc:

Rc =
Qc

τcyc
∝ T1+α

c . (102)

The vanishing of the cooling powerRc as Tc → 0 is related to a dynamical version of the third-law
of thermodynamics [25,135].

Walther Nernst formulated two independent formulations of the third-law of
thermodynamics [136–138]. The first is a purely static (equilibrium) one, also known as the
“Nernst heat theorem”, phrased:

• The entropy of any pure substance in thermodynamic equilibrium approaches zero as the
temperature approaches zero.

The second formulation is dynamical, known as the unattainability principle [135,139–142]:

• It is impossible by any procedure—no matter how idealised—to reduce any assembly to absolute
zero temperature in a finite number of operations [138].

The second law of thermodynamics already imposes a restriction on α [25,135,143]. In steady-state,
the entropy production rate is positive. Since the process is cyclic, it takes place only in the baths:
σ = Ṡc + Ṡh ≥ 0. When the cold bath approaches the absolute zero temperature, it is necessary to
eliminate the entropy production divergence at the cold side because Ṡc =

Rc
Tc

. Therefore, the entropy
production at the cold bath when Tc → 0 scales as:

Ṡc ∼ −Tα
c , α ≥ 0 . (103)

For the case when α = 0, the fulfillment of the second-law depends on the entropy production
of the other baths, which should compensate for the negative entropy production of the cold bath.
The first formulation of the third-law slightly modifies this restriction. Instead of α ≥ 0, the third-law
imposes α > 0, guaranteeing that the entropy production at the cold bath is zero at absolute zero:
Ṡc = 0. This requirement leads to the scaling condition of the heat currentRc ∼ Tα+1

c , α > 0.
The second formulation of the third-law is a dynamical one, known as the unattainability principle:

no refrigerator can cool a system to absolute zero temperature at finite time. This formulation is more
restrictive, imposing limitations on the system bath interaction and the cold bath properties when
Tc → 0 [135]. The rate of temperature decrease of the cooling process should vanish according to the
characteristic exponent ζ:

dTc(t)
dt

∼ −Tζ
c , Tc → 0 . (104)

In order to evaluate Equation (104), the heat current can be related to the temperature change:

Jc(Tc(t)) = −cV(Tc(t))
dTc(t)

dt
. (105)

This formulation takes into account the heat capacity cV(Tc) of the cold bath. cV(Tc) is determined
by the behaviour of the degrees of freedom of the cold bath at low temperature. Therefore, the scaling
exponents can be related ζ = 1 + α− η, where cV ∼ Tη

c when Tc → 0.
The harmonic quantum refrigerator is a primary example to explore the emergence of quantum

dynamical restrictions that result in cooling power consistent with the third-law of thermodynamics.
Analysis of the adibatic expansion will lead to insight on the cooling rateRc and the exponent α.
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The frictionless solutions lead to an upper bound on the optimal cooling rate (Equation (98)).
For the limit Tc → 0, Γτhc is large; therefore, z is large, leading to:

R∗c ≈
Γ(τhc + τch)

(1 + Γτhc)2 Γh̄ωc(Neq
c − Neq

h ) . (106)

At high compression ratio, Neq
h → 0, and in addition ωc � Γ one obtains:

R∗c ≈
1

τhc
Γh̄ωcNeq

c . (107)

Optimizing Rc with respect to ωc leads to a linear relation between ωc and Tc, h̄ωc = kBTc;
therefore:

Rc ≤ AωνNeq
c , (108)

where A is a constant and the exponent ν is either ν = 2 for the µ = const solution or ν = 3
2 for the

optimal control solution. Therefore:
R∗c ≈ h̄ω2

c Neq
c (109)

for the µ = const frictionless solution, and

R∗c ≈
1
2

h̄ω
3
2
c
√

ωhNeq
c (110)

for the optimal control frictionless solution. Due to the linear relation between ωc and Tc,
Equations (109) and (110) determine the exponent α, where α = 1 for the frictionless scheduling
with constant µ, and α = 1

2 for the optimal control frictionless scheduling. In all cases, the dynamical
version of Nernst’s heat law is observed based only on the adiabatic expansion.

If one is forced to spend less time on the adiabat than the minimal time required for a shortcut
solution, the oscillator cannot reach arbitrarily low energies or temperatures at the end of the
expansion [92,93]. At the limit, one approaches the sudden adiabat limit. In this case, the refrigerator
cannot cool below a minimal (T∗c > 0) temperature, and the refrigerator thus satisfies the unattainability
principle trivially.

The unattainability principle is related to the scaling of the heat transport Γc with Tc. This issue
has been explored in [25,135], and is related to the scaling of the heat conductivity with temperature.
The arguments of [135] are applicable to the quantum harmonic refrigerator.

6. Overview

Learning from example has been one of the major sources of insight in the study of thermodynamics.
A good example can bridge the gap between concrete and abstract theory. The harmonic oscillator
quantum Otto cycle serves as a primary example of a quantum thermal device inspiring experimental
realisation [2,144]. On the one hand, the model is very close to actual physical realisations in many
scenarios [19]. On the other hand, many features of the model can be obtained as closed-form
analytic solutions.

Many of the features obtained for the quantum harmonic Otto engine have been observed in
stochastic thermodynamics [121,144–147]. The analytic properties of the harmonic oscillator—in
particular, the Gaussian form of the state—have motivated studies of classical stochastic models of
harmonic heat engines [144,148,149]. When comparing the two theories, the results seem identical
in many cases. Observing the Heisenberg equations of motion for the thermodynamical variables,
h̄ does not appear. Planck’s constant in the commutators is cancelled by the inverse Planck constant in
the equation of motion. This raises the issue of what is quantum in the quantum harmonic oscillator,
or a related issue—what is quantum in quantum thermodynamics [31]?
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In this review, we emphasized the power of the generalized Gibbs state in allowing a concise
description of an out-of-equilibrium situation of non-commuting operators. Using properties of
Lie algebra of operators, we could obtain a dynamical description of the state based on only three
variables: Ĥ, L̂, and Ĉ. In the spirit of open quantum systems, we could describe the cycle propagator
as a catenation of stroke propagators. All these propagators were cast in the framework of the operator
algebra, showing the power of Heisenberg representation. The quantum variables were chosen to
have direct thermodynamical relevance as energy and coherence. In this review, we emphasized the
connections between the algebraic approach and other popular methods that have been employed to
obtain insight on the harmonic engine.

This formalism allows the cycles to be classified according to the role of coherence. If the coherence
vanishes at the points where the strokes meet, frictionless cycles are obtained. Such cycles require
special scheduling of ω(t) so that the coherence generated at the beginning of the stroke can be cashed
upon at the end. We reviewed the different approaches to obtain such scheduling and the minimum
time that such moves can be generated. This period is related to quantum speed limits [150–154],
which are in turn related to the energy resources available to the system. We chose the geometric mean
τa ∝ 1/

√
ωhωc to represent the minimum time allocation. Faster scheduling requires unreasonable

constraints on the stored energy in the oscillator during the stroke. We also assume that this extra
energy required to achieve the fast control is not dissipated and can be accounted for as a catalyst.

For these frictionless solutions on the adiabats, the optimal time allocation for thermalisation is
finite, leading to incomplete thermalisation. This allows the minimum cycle time for frictionless cycles
to be estimated. Avoiding friction completely is an ideal that practically cannot be obtained. Using
a simple noise model, we show that some friction will always be present.

The model demonstrates the fundamental tradeoff between efficiency and power. The frictionless
solutions are a demonstration that quantum coherence which is related to friction can be cashed
upon, using interference to cancel this friction. As a result, the maximum efficiency of the engine
can be obtained in finite cycle time. Nevertheless, the Otto efficiency is smaller than the reversible
Carnot efficiency ηo = 1− ωc

ωh
≤ ηc = 1− Tc

Th
, and operating at the Carnot efficiency will lead to

zero power. The entropy production can be associated with the heat transport, and for this case
the entropy production is linearly related to the power. Maximum power also implies maximum
entropy production. This finding is consistent with the study of Shiraishi et al. [155]. Any finite
power cycle requires out-of-equilibrium setups that lead to dissipation. In the sudden limit, there is
no reversible choice. Even at zero power the entropy production is positive. This could be the cost of
maintaining coherence.

Beyond a minimum time allocation on the adiabats τa, friction cannot be avoided. The transition
point is the exceptional point of the non-hermitian degeneracy on the adiabatic propagator [103].
These short time cycles are in the realm of the sudden cycles. The sudden cycles are an example of
an engine or refrigerator with no classical analogue. Power production requires coherence. A sudden
model without coherence operates as a dissipator generating entropy on both the hot and cold baths.
The sudden cycle is composed of non-commuting propagators with small action. Such cycles are
universal and have a common continuous limit [35,36]. In the continuous limit, friction and heat leaks
cannot be avoided [39,156].

An obvious direction to look for quantum effects is to go to low temperatures where the unit of
energy changes from kBT to h̄ω. The adiabatic expansion is the bottleneck for cooling to extremely
low temperatures. The zero point energy plays an important role. We can approach the ground state
on the hot side by increasing the frequency, leading to the minimal initial energy EA = 1

2 h̄ωh. This is
a large amount of energy compared to the cold side, which has to be eliminated adiabatically or by
using frictionless protocols. Any small error in these protocols will null the cooling.

The Otto quantum refrigerator is a good example for gaining insight into the limits of cooling
when operating at extremely low temperatures. Such refrigerators are an integral part of any quantum
technology. In the reciprocating Otto cycle, the cooling power is restricted either by the adiabatic
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expansion or by vanishing of the heat transport when Tc → 0 [135]. The adiabatic expansion time
is an intrinsic property of the working medium. For optimal frictionless solutions, it scales as

τhc = O(T
1
2

c ), which gives a maximum rate of entropy production σ = O(T
1
2

c ), thus vanishing when
Tc → 0. This is a demonstration of a dynamical version of the Nernst heat law [25,68,135].

The quantum harmonic Otto cycle has been a template for many models of quantum heat devices
due to its analytic properties—for example, Otto cycles with interacting particles [115,116] or operating
with many modes [157]. The protocols developed for the harmonic case are generalised to eliminate
friction in many-body dynamics.

The quantum harmonic Otto cycle has been a source of inspiration for theory and experiment.
The model incorporates generic features of irreversible operation which includes friction and heat
transport. The system can bridge the conceptual gap between a single microscopic device to
a macroscopic heat engine.
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