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Abstract:



An abstract, quantitative theory which connects elements of information—key ingredients in the cognitive proces—is developed. Seemingly unrelated results are thereby unified. As an indication of this, consider results in classical probabilistic information theory involving information projections and so-called Pythagorean inequalities. This has a certain resemblance to classical results in geometry bearing Pythagoras’ name. By appealing to the abstract theory presented here, you have a common point of reference for these results. In fact, the new theory provides a general framework for the treatment of a multitude of global optimization problems across a range of disciplines such as geometry, statistics and statistical physics. Several applications are given, among them an “explanation” of Tsallis entropy is suggested. For this, as well as for the general development of the abstract underlying theory, emphasis is placed on interpretations and associated philosophical considerations. Technically, game theory is the key tool.
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1. Introduction


Originally, the driving force behind this study was to extend the clear and convincing operational interpretations associated with classical information theory as developed by Shannon [1] and followers, to the theory promoted by Tsallis for statistical physics and thermodynamics, cf., [2,3]. That there are difficulties is witnessed by the fact that, despite its apparent success, some well known physicists still find grounds for criticism. Evidence of this attitude may be found in Gross [4].



A possible solution to the problem is presented towards the end of our study, in Theorem 18. It is based on the idea that, possibly, what the physicist perceives as the essence in a particular situation could be a result of both the true state of the situation and the physicists preconceptions as expressed by his beliefs. In case there is no deformation from truth and belief to perception, i.e., if “what you see is what is true”, you regain the classical notions of Boltzmann, Gibbs and Shannon.



The approach indicated in Theorem 18 rests on philosophical considerations and associated interpretations. As it turns out, this approach is applicable in a far more abstract setting than needed for the discussion of the particular problem. As a result, a general abstract, quantitative theory is developed. This theory, presented in Section 2, with its many subsections is the main contribution of our research. A number of possible applications, including Theorem 18, are listed in Section 3, which has a number of sub-sections covering applications from different areas. They serve as justification for the work which has gone into the development of the general abstract theory. The conclusions are collected in Section 4.



The theory may be seen as an extension of classical Shannon theory. One does not achieve the same degree of clarity as in the classical theory, where coding provides a solid reference. However, the results developed in Section 2 and Section 3 demonstrate that the extension to a more abstract framework is meaningful and opens up for new areas of research. In addition, previous results are consolidated and unified.



The theory of Section 2 is an abstract theory of information without probability. Inspiration from Shannon Theory and from the theory of inference within statistics and statistical physics is apparent. However, the ideas are presented here as an independent theory.



Previous endeavours in the direction taken include research by Ingarden and Urbanik [5] who wrote “... information seems intuitively a much simpler and more elementary notion than that of probability ... [it] represents a more primary step of knowledge than that of cognition of probability ...”. We also point to Kolmogorov, cf., [6,7] who in the latter reference (but going back to 1970, it seems) stated “Information theory must precede probability theory and not be based on it”. The ideas by Ingarden and Urbanik were taken up by Kampé de Fériet, see the survey in [8]. The work of Kampé de Fériet is rooted in logic. Logic is also a key ingredient in comprehensive studies over some 40 years by Jaynes, collected posthumously in [9]. Although many philosophically-oriented discussions are contained in the work of Jaynes, the situations he deals with are limited to probabilistic models and intended mainly for a study of statistical physics.



The work by Amari and Nagaoka in information geometry, cf., [10], may also be viewed as a broad attempt to free oneself from a tie to probability. There are many followers of the theory developed by Amari and Nagaoka. Here we only mention the recent thesis by Anthonis [11] which has a base in physics.



In complexity theory as developed by Solomonoff, Kolmogorov and others, cf., the recent survey [12] by Rathmanner and Hutter, we have a highly theoretical discipline which aims at inference not necessarily tied to probabilistic modeling. The Minimum Description Length Principle may be considered an important spin-off of this theory. It is mainly directed at problems of statistical inference and was developed, primarily, by Rissanen and by Barron and Yu, cf., [13]. We also point to the treatise [14] by Grünwald. In this work you find discussions of many of the issues dealt with here, including a discussion of the work of Jaynes.



Still other areas of research have a bearing on “information without probability”, e.g., semiotics, philosophy of information, pragmatism, symbolic linguistics, placebo research, social information and learning theory. Many areas within psychology are also of relevance. Some specific works of interest include Jumarie [15], Shafer and Vovk [16], Gernert [17], Bundesen and Habekost [18], Benedetti [19] and Brier [20]. The handbook [21] edited by Adriaans and Bentham and the encyclopaedia article [22] by Adriaans collect views on the very concept of “information”. Over the years, an overwhelming amount of thought has been devoted to that concept in one form or another. Most of this bulk of material is entirely philosophical and not open to quantitative analysis. Part of it is impractical and presently mainly of theoretical interest. Moreover, some is far from Shannon’s theory which we hold as a cornerstone of quantitative information theory. In fact, we consider it a requirement of any quantitative theory of information to be downward compatible with basic parts of Shannon theory. This requirement is largely respected in the present work, but not entirely. For example, we do not know if one can meaningfully lift the concept of coding as known from Shannon theory to a more abstract level.



In many respects, our endeavours go “beyond Shannon”. So does, e.g., Brier in his development of cybersemiotics, cf., [20,23]. Brier goes deeper into some of the philosophical aspects than we do and also attempts a broad coverage by incorporating not only the exact natural sciences but also life science, the humanities and the social sciences. Though not foreign to such a wider scope, our study aims at more concrete results by basing the study more directly on quantitative elements. Both studies emphasize the role of the individual in the cognitive process.



A special feature of our development is the appeal to game theoretical considerations, cf., especially Section 2.10, Section 2.12 and Section 2.13. To illuminate the importance we attach to this aspect we quote from Jaynes’ preface to [9] where he comments on the maximum entropy principle, the central principle of inference promoted by Jaynes:


“... it [maximum entropy] predicts only observable facts (functions of future or past observations) rather than values of parameters which may exist only in our imagination ... it protects us against drawing conclusions not warranted by the data. But when the information is extremely vague, it may be difficult to define any appropriate sample space, and one may wonder whether still more primitive principles than maximum entropy can be found. There is room for much new creative thought here.”







This is one central place where game theory comes in. It represents a main addition, so we claim, to Jaynes’ work In passing, it is noted that at the conference “Maximum Entropy and Bayesian Methods”, Paris 1992, the author had much hoped to discuss the impact of game theoretical reasoning with professor Jaynes. Unfortunately, Jaynes, who died in 1998, was too ill at the time to participate. He never incorporated arguments such as those in [24] which can be conceived as supportive of his own theory.



The merits of game theory in relation to information theoretical inference were first indicated in the probabilistic, Shannon-like setting, independently of each other, by Pfaffelhuber [25] and by the author [26]. More recent references include Harremoës and Topsøe [27], Grünwald and Dawid [28], Friedman et al. [29] (a utility-based work) and Dayi [30]. As sources of background material [31,32,33] may be helpful.



The quantitative elements we work with are brought into play via a focus on description effort—or just effort. From this concept, general notions of entropy and redundancy (and the close to equivalent notion of divergence) are derived. The information triples we shall take as the key object of study are expressions of the concepts effort/entropy/redundancy (or effort/entropy/divergence). By a “change of sign”, the triples may, just as well, concern utility/max-utility/divergence.



Apart from introducing game theory into the picture, a main feature of the present work lies in its abstract nature with a focus on interpretations rather than on axiomatics which was the emphasis of many previous authors, including Jaynes.



The set of interpretations we shall emphasize in Section 2 is not be the only one possible. Different sets of interpretations are briefly indicated in Appendix B and Appendix C. Though some of this played a role in the development, in statistics, of the notion of properness, we have relegated the material to the appendices, not to disturb the flow of presentation and also as we consider this material to be of lesser significance when comparing it with the main line of thought.



Section 3 may be viewed as a justification of the partly speculative deliberations of Section 2.1, Section 2.2, Section 2.3, Section 2.4, Section 2.5, Section 2.6, Section 2.7, Section 2.8, Section 2.9, Section 2.10, Section 2.11, Section 2.12, Section 2.13, Section 2.14, Section 2.15 and Section 2.16. Also, in view of the rather elaborate theory of Section 2 with many new concepts and unusual notation, it may well be that occasional reference to the material in Section 3 will ease the absorption of the theoretical material.



In Section 3.1, the natural building stones behind the information triples is presented. This is closely related to the well-known construction associated with Bregman’s name. The construction may be expanded by allowing non-smooth functions as “generators”. Pursuing this leads to situations where the standard notion of properness breaks down and needs a replacement by weaker notions. Such notions are introduced at the end of Section 2.10 but may only be appreciated after acquaintance with the less abstract material in Appendix A.



The applications presented—or indications of potential applications—come from combinatorial geometry, probabilistic information theory, statistics and statistical physics. For most of them, we focus on providing the key notions needed for the theory to work, thus largely leaving concrete applications aside. The aim is to provide enough details in order to demonstrate that our modeling can be applied in quite different contexts. For the case of discrete probabilistic models we do, however, embark on a more thorough analysis. The reason for this is, firstly, that this is what triggered the research reported on and, secondly, with a thorough discussion of modeling in this context, virtually all elements introduced in the many sub-sections of Section 2 have a clear and natural interpretation. In fact, full appreciation of the abstract theory may only be achieved after reading the material in Section 3.6 and Section 3.7.



Our treatment is formally developed independently of previous research. However, unconsciously or not, it depends on earlier studies as referred to above and on the tradition developed over time. More specifically, we mention that our focus on description effort, especially the notion of properness, cf., Section 2.6, is closely related to ideas first developed for areas touching on meteorology, statistics and information theory.



Previous relevant writings of the author include [34,35,36,37,38]. The present study is here published as a substantial expansion of the latter. For instance, elements related to control—modeling an observer’s active response to belief—and a detailed discussion of Jensen-Shannon divergence as well as more cumbersome technical details were left out in [38]. Thus, [38] may best serve as an easy-to-read appetizer to the present more heavy and comprehensive theory.




2. Information without Probability


2.1. The World and You


By [image: there is no content] we denote the actual world, perhaps one among several possible worlds. Two fictitious persons play a major role in our modeling, “Nature” and “Observer”. These “persons” behave quite differently and, though stereotypical, the reader may associate opposing sexes to them, say female for Nature, male for Observer. The interplay between the two takes place in relation to studies of situations from the world. Observer’s aim is to gain insight about situations studied. It may be helpful to think of Observer as “you”, say a physicist, psychologist, statistician, information theoretician or what the case may be. Nature is seen as an expression of the world itself and reflects the rules of the world. Mostly, such rules may be identified with laws of nature. However, we shall consider models where the rules express an interplay between Nature and Observer and as such may not be absolutes, independent of observer’s interference.



The insight or knowledge sought by Observer will be focused on inference concerning particular situations under study. A different form of inference not focused on any particular situation may also be of relevance if Observer does not know which world he is placed in. Of course, the actual world is a possible world or it could not exist. So Observer may, based on experience gained from situations encountered, attempt to ascertain which one out of a multitude of possible worlds is actualized.



The notions introduced are left as loose indications. They will take more shape as the modeling progresses. The terminology chosen here and later on is intended to provoke associations to common day experiences of the cognitive process. In addition, the terminology is largely consistent with usage in philosophy.




2.2. Truth and Belief


Nature is the holder of truth. Observer seeks the truth but is relegated to belief. However, Observer possesses a conscious and creative mind which can be exploited in order to obtain knowledge as effortlessly as possible. In contrast, Nature does not have a mind—and still, the reader may find it helpful to think of Nature as a kind of “person”!



We introduce a set X, the state space, and a set Y, the belief reservoir. Elements of X, generically denoted by x, are truth instances or states of truth or just states, whereas elements of Y, generically denoted by y, are belief instances. We assume that [image: there is no content]. Therefore, in any situation, it is conceivable that Observer actually believes what is true. Mostly, [image: there is no content] will hold. Then, whatever Observer believes, could be true.



Typically, in any situation, we imagine that Nature chooses a state and that Observer chooses a belief instance. This leads to the introduction of certain games which will be studied systematically later on, starting with Section 2.10.



Though there may be no such thing as absolute truth, it is tempting to imagine that there is and to think of Natures choice as an expression of just that. This then helps to maintain a distinction between Nature and Observer. However, a closer analysis reveals that what goes on at Natures side is most correctly thought of as another manifestation of Observer. Thus the two sides cannot be separated. Rather, a key to our modeling is the interplay between the two.



For some models it may be appropriate to introduce a set [image: there is no content] of realistic states. States not in [image: there is no content] are considered unrealistic, out of reach for Observer, typically because they would involve availability of unlimited resources. Moreover, some models involve a set [image: there is no content] of certain beliefs. Beliefs from [image: there is no content] are chosen by Observer if he is quite determined on what is going on—but of course, he could be wrong. If nothing is said to the contrary, you can take [image: there is no content] and [image: there is no content].



In a specific situation, Nature’s choice may not be free within all of X. Rather, it may be restricted to a non-empty subset [image: there is no content] of X, the preparation. The idea is that Observer, perhaps a physicist, can “prepare” a situation, thereby forcing Nature to restrict the choice of state accordingly. For instance, by placing a gas in a heat bath, Nature is restricted to states which have a mean energy consistent with the prescribed temperature.



A situation is normally characterized by specifying a preparation [image: there is no content]. A state x is consistent—viz., consistent with the preparation [image: there is no content] of the situation—if [image: there is no content]. Later on, we shall consider preparation families which are sets, generically denoted by [image: there is no content], whose members are preparations.



Faced with a specific situation with preparation [image: there is no content], Observer speculates about the state of truth chosen by Nature. Observer may express his opinion by assigning a belief instance to the situation. If this is always chosen from the preparation [image: there is no content], Observer will only believe what could be true. Sometimes, Observer may prefer to assign a belief instance in Y\P to the situation. Then this instance cannot possibly be one chosen by Nature. Nevertheless, it may be an adequate choice if an instance inside [image: there is no content] would contradict Observer’s subjective beliefs. Therefore, the chosen instance may be the “closest” to the actual truth instance in a subjective sense. Anyhow, Observer’s choice of belief instance is considered a subjective choice which takes available information into account such as general insight and any prior information. Qualitatively, these thoughts agree with Bayesian thinking, and as such enjoy the merits, but are also subject to the standard criticism, which applies to this line of thought, cf., [12,39].




2.3. A Tendency to Act, a Wish to Control


Two considerations will lead us to new and important structural elements.



First, we point to the mantra that belief is a tendency to act. This is a rewording taken from Good [40] who suggested this point of view as a possible interpretation of the notion of belief. In daily life, action appears more often than not to be a spontaneous reaction in situations man is faced with, rather than a result of rational considerations. Or reaction depends on psychological factors or brain activity largely outside conscious control. In contrast, we shall rely on rational thinking based on quantitative considerations. As a preparation we introduce a set [image: there is no content], the action space, and a map from Y into [image: there is no content], referred to as response. Elements of [image: there is no content] are called actions. We use the notation [image: there is no content] to indicate the action which is Observer’s response in situations where Observer’s belief is represented by the belief instance y. Note that as we have assumed that [image: there is no content], [image: there is no content] is well defined for every state x.



Response need not be injective, thus it is in general not possible to infer Observer’s belief from Observer’s action. Response need not either be surjective, though for most applications it will be so. Actions not in the range are idle for the actual model under discussion but may become relevant if the setting is later expanded.



Belief instances, say [image: there is no content] and [image: there is no content], with the same response are response-equivalent, notationally written [image: there is no content].



If the model contains certain beliefs, i.e., if [image: there is no content], we assume that [image: there is no content] contains a special element, the empty action, and that this action is chosen by Observer in response to any certain belief instance. In such cases, Observer sees no reason to take any action. If Observer finds several actions equally attractive, one could allow response to be a set-valued map. However, for the present study we insist that response is an ordinary map defined on all of Y. This will actually be quite important.



For a preparation [image: there is no content], [image: there is no content] denotes the set of [image: there is no content] with [image: there is no content].



Let us turn to another tendency of man, the wish to control. This makes us introduce a set W, the control space. The elements of W are referred to as controls. For the present modeling, this will not, formally, lead to further complications as we shall take W and [image: there is no content] to be identical: [image: there is no content]. This simplification may be defended by taking the point of view that in order to exercise control, you have to act, typically by setting up appropriate experiments. Moreover, you may consider it the purpose of Observer’s action to exercise control. Thus, in an idealized and simplified model as here presented, we simply identify the two aspects, action and control. Later elaborations of the modeling may lead to a clear distinction between action and the more passive concept of control. As [image: there is no content] and W are identified, we shall often use w as a generic element of [image: there is no content] and we shall denote the empty action—the same as the empty control—by [image: there is no content].



The simplest models are obtained when response is an injection or even a bijection. Moreover, simplest among these models are the cases when [image: there is no content] and response is the identity map. This corresponds to a further identification of belief with action or control. Even then it makes a difference if you think about an element as an expression of belief, as an expression of action or as an expression of control.



Although many models do not need the introduction of [image: there is no content] (or W), the further development will to a large extent refer first and foremost to [image: there is no content]-related concepts. Technically, this results in greater generality, as response need not be injective. Belief-type concepts, often indicated by referring to the “Y-domain”, will then be derived from action- or control-based concepts, often indicated by pointing to the “[image: there is no content]-domain”. The qualifying indication may be omitted if it is clear from the context whether we work in the one domain or the other.




2.4. Atomic Situations, Controllability and Visibility


Two relations will be introduced. Controllability is the primary one from which the other one, visibility, will be derived. These relations constitute refinements which may be disregarded at a first reading. This can be done by taking the relations to be the diffuse relations , in notation below, [image: there is no content] and [image: there is no content]. The reader may recall that in general mathematical jargon, a diffuse relation is one without restrictions, i.e., one for which any element is in relation to any other element.



Pairs of states and belief instances or pairs of states and controls are key ingredients in situations from the world. However, not all such pairs will be allowed. Instead, we imagine that offhand, Observer has some limited insight into Natures behaviour and therefore, Observer takes care not to choose “completely stupid” belief instances or controls, as the case may be.



We express these ideas in the [image: there is no content]-domain by introducing a relation from X to [image: there is no content], called controllability and denoted [image: there is no content]. Thus [image: there is no content] is a subset of the product set [image: there is no content]. Elements of [image: there is no content] are atomic situations (in the [image: there is no content]-domain). If a preparation [image: there is no content] is given, it may suffice to consider the restriction [image: there is no content] which consists of all atomic situations [image: there is no content] with [image: there is no content].



For an atomic situation [image: there is no content], we write [image: there is no content] and say that w controls x or that x can be controlled by w. An atomic situation [image: there is no content] is an adapted pair if w is adapted to x in the sense that [image: there is no content].



For a preparation [image: there is no content] we write [image: there is no content], and call w a control of [image: there is no content], if w controls every state in [image: there is no content] ([image: there is no content]). We also express this by saying that w controls [image: there is no content]. By [image: there is no content] we denote the set of all controls of [image: there is no content]. We write [image: there is no content] if [image: there is no content] is the singleton set [image: there is no content]. In case [image: there is no content] is the diffuse relation, [image: there is no content] for any preparation [image: there is no content].



For [image: there is no content], [image: there is no content] denotes the control region of [image: there is no content], the set of [image: there is no content] for which [image: there is no content] for some [image: there is no content]. We write [image: there is no content] if [image: there is no content] is the singleton set [image: there is no content]. Clearly, the statements [image: there is no content], [image: there is no content] and [image: there is no content] are equivalent.



We assume that the following conditions hold:


∀x∈X:x^≻x,



(1)






∀w∈Y^:]w[≠∅,



(2)




and normally also that


∃y∈Y:y^≻X.



(3)







The first condition is essential and the second one is rather innocent. The third condition is introduced when we want to ensure that X (or Y) is not “too large”. Models where (3) does not hold are considered unrealistic, beyond what man (Observer) can grasp. If response is surjective, it amounts to the condition [image: there is no content]. It is illuminating to have models of classical Shannon theory in mind, cf., Section 3.7.



For a preparation [image: there is no content], we define the centre of [image: there is no content] ([image: there is no content]-domain) as the set of controls in [image: there is no content] which control [image: there is no content]:


[image: there is no content]



(4)







From controllability we derive the relation of visibility for the Y-domain, denoted [image: there is no content], and given by


[image: there is no content]



(5)







Restrictions [image: there is no content] are at times of relevance.



If [image: there is no content], we say that [image: there is no content] is an atomic situation (in the Y-domain) and write [image: there is no content]. Such a situation is an adapted pair if [image: there is no content] is so in the [image: there is no content]-domain, i.e., if [image: there is no content] and [image: there is no content] is a perfect match if [image: there is no content]. The two notions coincide if response is injective. An atomic situation [image: there is no content] is certain if [image: there is no content].



Note that we use the same sign, ≻, for visibility and for controllability. The context will have to show if we work in the Y- or in the [image: there is no content]-domain. We see that [image: there is no content] if and only if [image: there is no content]. If this is so, we also say that y covers x or that x is visible from y.



By (1) and by the defining relation (5), [image: there is no content] for all [image: there is no content], thus [image: there is no content] contains the diagonal [image: there is no content]. The outlook (or view) from [image: there is no content] is the set [image: there is no content]. Clearly, [image: there is no content]. By (2) and (5), this set is non-empty and, when (3) holds, for at least one belief instance, the outlook is all of X.



For a preparation [image: there is no content] we write [image: there is no content], and call y a viewpoint of [image: there is no content], if [image: there is no content] for every [image: there is no content]. The set of all viewpoints of [image: there is no content] is denoted [image: there is no content]. We write [image: there is no content] if [image: there is no content] is the singleton [image: there is no content]. By [image: there is no content], the centre of [image: there is no content] (Y-domain), we denote the set of viewpoints in the preparation:


[image: there is no content]



(6)







Note that [image: there is no content].



In any situation, Observer should ensure that from his chosen belief instance, every state which could conceivably be chosen by Nature is visible. Therefore, in a situation where the preparation [image: there is no content] is known to Observer, Observer should only consider belief instances in [image: there is no content].



In the sequel we shall often consider bivariate functions, generically denoted by either [image: there is no content] ([image: there is no content]-domain) or by f (Y-domain). The [image: there is no content]-type functions are defined either on [image: there is no content] or on some subset of the form [image: there is no content] for some preparation [image: there is no content]. The range of [image: there is no content] may be any abstract set but will often be a subset of the extended real line. Given [image: there is no content], it is understood that f without the hat denotes the derived function defined by [image: there is no content] for pairs [image: there is no content] for which [image: there is no content] is in the domain of definition of [image: there is no content]. The domain of definition of the derived function is either [image: there is no content] or the set [image: there is no content] if [image: there is no content] is defined on [image: there is no content].



Every derived function depends only on response in the sense that [image: there is no content] if only [image: there is no content]. If response is a surjection, there is a natural one-to-one relation between [image: there is no content]-type functions and Y-type functions which depend only on response.



Consider an f-type function defined on all of [image: there is no content]. For [image: there is no content], [image: there is no content] denotes the marginal function given y, defined on [image: there is no content] by [image: there is no content]. The marginal function given [image: there is no content] is the function [image: there is no content] defined by [image: there is no content] for [image: there is no content]. We write [image: there is no content] on [image: there is no content] to express, firstly, that [image: there is no content] so that [image: there is no content] is well defined on all of [image: there is no content] and, secondly, that this marginal function is finite on [image: there is no content]. We write [image: there is no content] if [image: there is no content] on X.




2.5. Knowledge, Perception and Deformation


Observer strives for knowledge, conceived as the synthesis of extensive experience. Referring to probabilistic thinking, we could point to situations where accidental experimental data are smoothed out over time as you enter the regime of the law of large numbers. However, Observer’s endeavours may result in less definitive insight, a more immediate reaction which we refer to as perception. It reflects how Observer perceives situations from the world or, with a different focus, how situations from the world are presented to Observer.



In the same way as we have introduced truth- and belief instances, we consider knowledge instances, also referred to as perceptions. Typically, they are denoted by z and taken from a set denoted Z, the knowledge base or perception base.



A simplifying assumption for our modeling is that the rules of the world [image: there is no content] contain a special function, [image: there is no content], which maps [image: there is no content] into Z, generically,


[image: there is no content]



(7)







The derived function, [image: there is no content], then maps [image: there is no content] into Z. Both functions are referred to as the deformation. The context will show which one we have in mind, [image: there is no content] or [image: there is no content].



Thus knowledge can be derived deterministically from truth and belief alone, and as far as belief is concerned, we only have to know the associated response. In terms of perception, Observer’s perception z of an atomic situation [image: there is no content] is given by [image: there is no content].



In our modeling, the world is characterized by the deformation. We may thus talk about the world with deformation [image: there is no content], [image: there is no content]. The rules of the world may contain other structural elements, but such elements are not specified in the present study. Possibilities which could be considered in future developments include context, noise from the environment, and dynamics. To some extent, such features can be expressed in the present modeling by defining [image: there is no content] and Z appropriately and by introducing suitable interpretations.



In case response is a bijection and Z contains X as well as Y we may consider the deformations [image: there is no content] and [image: there is no content] defined by [image: there is no content], respectively [image: there is no content]. The associated worlds are [image: there is no content] and [image: there is no content]. In [image: there is no content], “what you see is what is true”, whereas in [image: there is no content], “you only see what you believe”—or, in some interpretations, you only see what you want to see. The world [image: there is no content] is the classical world where, optimistically, truth can be learned, whereas, in [image: there is no content], you cannot learn anything about truth. We refer to [image: there is no content] as a black hole. It is a narcissistic world, a world of extreme scepticism, only reflecting Observer’s beliefs and bearing no trace of Nature. If Z is provided with a linear structure, we can consider further deformations [image: there is no content] depending on a parameter q by putting [image: there is no content]. Worlds associated with deformations of this type are denoted [image: there is no content]. These are the worlds we find of relevance for the discussion of Tsallis entropy, cf., Section 3.6.



The simplest world to grasp is the classical world, but also the worlds [image: there is no content] and even a black hole contain elements which are familiar to us from daily experience, especially in relation to certain psychological phenomena. In this connection we point to placebo effects, cf., Benedetti [19], and to visual attention, cf., Bundesen and Habekost [18]. Presently, the relevance of our modeling in relation to these phenomena is purely qualitative.



Considering examples as indicated above, it is natural to expect that knowledge is of a nature closely related to the nature of truth and of belief. A key case to look into is that [image: there is no content]. However, we shall not make any general assumption in this direction. What we shall do is to follow the advice of Shannon, as far as possible avoiding assumptions which depend on concrete semantic interpretations. As a consequence we shall only in Section 3.6 introduce more specific assumptions about the representation of knowledge.




2.6. Effort and Description


We turn to the introduction of the key quantitative tool we shall work with. In so doing, we will be guided by the view that perception requires effort. Expressed differently, knowledge is obtained at a cost. Since, according to the previous section, knowledge can be derived from truth and belief alone, or from truth and action, no explicit reference to knowledge is necessary. Instead, we model effort (in the [image: there is no content]-domain) by a certain bivariate function, the effort function, defined on [image: there is no content].



The rules of the world [image: there is no content] may not point directly to an effort function which Observer can favorably work with. Or there may be several sensible functions to choose from. The actual selection is considered a task for Observer.



Effort, description, experiment and measurement are related concepts. We put emphasis on the notion of description, which is intended to aid Observer in his encounters with situations from the world. Logically, description comes before effort. Effort arises when specific ideas about description are developed into a method of description, which you may here identify with an experiment. The implementation of such a method or the performance of the associated experiment involves a cost and this is what we conceive as specified quantitatively by the effort function.



Description depends on semantic interpretations and is often thought of in loose qualitative terms. However, in order to develop precise concepts which can be communicated among humans, quantitative elements will inevitably appear, typically through a finite set of certain real-valued functions, descriptors. The descriptors of Section 3.6 give an indication of what could be involved.



Imagine now that somehow Observer has chosen all elements needed—response, actions, experiments—and settled for an effort function, [image: there is no content] defined on [image: there is no content]. Let us agree on what a “good” effort function should mean. Generally speaking, Observer should aim at experiments with low associated effort. Consider a fixed truth instance x and the various possible actions, in principle free to be any action which controls x. It appears desirable that the action adapted to x should be the one preferred by Observer. Thus effort should be minimal in this case, i.e., [image: there is no content] should hold. Further, if the inequality is sharp except for the adapted action, this will have a training effect which, over time, will encourage Observer to choose the optimal action, [image: there is no content].



Formally, we define an effort function (in the [image: there is no content]-domain) as a function [image: there is no content] on [image: there is no content] with values in [image: there is no content] such that, for all [image: there is no content] and all [image: there is no content],


[image: there is no content]



(8)







Thus, for all [image: there is no content], x^∈arg minΦ^x. The minimal value of [image: there is no content] is the entropy of x for which we use the notation [image: there is no content]:


[image: there is no content]



(9)







This quantity will be discussed more thoroughly in the sequel. If [image: there is no content], it is to be expected that [image: there is no content] when [image: there is no content].



The effort function is proper, if, for any [image: there is no content] with [image: there is no content], the minimum of [image: there is no content] is only achieved for the control [image: there is no content] adapted to x. As opposed to this notion we have the notion of a degenerate effort function which is one which only depends on the first argument x, i.e., for all [image: there is no content], [image: there is no content] is a constant function.



Note that effort may be negative (but not [image: there is no content]). This flexibility will later be convenient as it will allow us to pass freely from notions of effort to notions of utility by a simple change of sign. However, for more standard applications, effort functions will be non-negative.



The set of effort functions and the set of proper effort functions over [image: there is no content] are ordered positive cones in a natural way. You may note that if, in a sum of effort functions, one of the summands is proper, so is the sum. Two effort functions [image: there is no content] and [image: there is no content], which only differ from each other by a positive finite factor are scalarly equivalent. If an effort function is proper, so is every scalarly equivalent one. There may be many non-scalarly equivalent effort functions. The choice among scalarly equivalent ones amounts to a choice of unit.



Proper effort functions could have been taken as the key primitive concept on which other concepts, especially response, can be based. To illustrate this, assume that [image: there is no content] and consider a function [image: there is no content] such that, for every state x for which [image: there is no content] is not identically [image: there is no content], arg minΦ^x is a singleton. The minimal value of [image: there is no content] is again the entropy [image: there is no content] and we may define the set of realistic states by [image: there is no content] and, more importantly, response [image: there is no content] by the requirement that [image: there is no content]. This defines response uniquely on [image: there is no content] and for [image: there is no content], the definition of [image: there is no content] is really immaterial and any element in [image: there is no content] which controls x will do.



Turning to the Y-domain, we define an effort function (Y-domain), as a function [image: there is no content] such that


[image: there is no content]



(10)







Entropy is given by [image: there is no content]. If there are certain atomic situation, it is natural to expect that effort vanishes for such situations. The effort function is proper if equality in (10) only holds if either [image: there is no content] or else [image: there is no content]. We also express this by saying that [image: there is no content] satisfies the perfect match principle. An effort function is degenerate if, for every [image: there is no content], [image: there is no content].



The notions just introduced were defined directly with reference to the Y-domain. However, it lies nearby also to consider functions which can be derived from [image: there is no content]-effort functions [image: there is no content]. They are derived effort functions and, in case [image: there is no content] is proper, proper derived effort functions. The two strategies for definitions, intrinsic and via derivation, give slightly different concepts. In case response is injective, the resulting notions are equivalent. In general, derived effort functions depend only on response, i.e., if [image: there is no content] and [image: there is no content] and if [image: there is no content] then [image: there is no content]. In the other direction, for a proper derived effort function, you can only conclude response-equivalence, [image: there is no content], if [image: there is no content] and [image: there is no content].



Formally, the definitions related to Y-effort functions may be conceived as a special case of the definitions pertaining to the [image: there is no content]-domain (put [image: there is no content] and take the identity map as response).



We shall talk about effort functions without a qualifying prefix, [image: there is no content] or Y, if it is clear from the context what we have in mind. We shall always point out if we have derived functions in mind.



The effort functions introduced determine net effort. However, the implementation of the method of description—which we imagine lies behind—may, in addition to a specific cost, entail a certain overhead and, occasionally, it is appropriate to include this overhead in the effort. We refer to Section 3.6 for instances of this.



We imagine that the choice of effort function involves considerations related to knowledge and to the rules of the world. However, once [image: there is no content], hence also [image: there is no content] are fixed, these other elements are only present indirectly. The ideas of Section 2.5 have thus mainly served as motivation for the further abstract development. The ideas will be taken up again when in Section 3.6 we turn to a study of probabilistic models.



The author was led to consider proper effort functions in order to illuminate certain aspects of statistical physics, cf., [34,37]. However, the ideas have been around for quite some time, especially among statisticians. For them it has been more natural to work with functions taken with the reverse sign by looking at “score” rather than effort. Our notion of proper effort functions, when specialized to a probabilistic setting, matches the notion of proper scoring rules as you find it in the statistical literature. As to the literature, Csiszár [41] comments on the early sources, including Brier [42], a forerunner of research which followed, cf., Good [40], Savage [43] (see e.g., Section 9.4) and Fischer [44]. See also the reference work [45] by Gneiting and Raftery. For research of Dawid and collaborators—partly in line with what you find here—see [28,46,47,48].




2.7. Information Triples


As advocated in the last section, effort is a notion of central importance. However, this notion should not stand alone but be discussed together with other fundamental concepts of information. This point of view will be emphasized by the introduction of a notion of information triples, the main notion of the present study. We start by philosophizing over the very concept of information.



Information in any particular situation concerns truth. If [image: there is no content] is a preparation, “[image: there is no content]” signifies that the true state is to be found among the states in [image: there is no content]. If [image: there is no content] is a singleton, we talk about full information and use the notation “x” rather than “[image: there is no content]”; otherwise, we talk about partial information.



We shall not be concerned with how information can be obtained—if at all. Perhaps, Observer only speculates about the potential possibility of acquiring information, either through his own activity or otherwise, e.g., via the involvement of an aid or a third party, an informer.



Information will be related to quantitatively defined concepts. As our basis we take a proper effort function [image: there is no content]. Following Shannon we disregard semantic content. Instead, we focus on the possibility for Observer to benefit from information by a saving of effort. Accordingly, we view [image: there is no content] as the information content of “x” in an atomic situation with x as truth instance and w as action or control—indeed, if you are told that x is the true state, you need not allocate the effort [image: there is no content] to the situation which you were otherwise prepared to do. The somewhat intangible and elusive concept of “information” is, therefore, measured by the more concrete and physical notion of effort, hence the unit of information is the same as the unit used for effort.



There is a huge literature elucidating what information really “is”. Suffice it here to refer to [21] and, as an example of a discussion more closely targeted on our main themes, we refer to Caticha [49] who maintains that “Just as a force is defined as that which induces a change in motion, so information is that which induces a change in beliefs”. One may just as well—or even better—focus on action. Then we can claim that “information” is that which induces a change of action.



The central concept of the theory developed by Shannon is that of entropy. This concept was already introduced in the preceding section. Here, we elaborate on possible interpretations. One view is that entropy is guaranteed saving of effort. With effort given by [image: there is no content] we are led to define the entropy [image: there is no content] associated with the information “x” as the minimum over w of [image: there is no content]. Thus, by (8), (9) holds.



The considerations above make most sense if, one way or another, Observer eventually obtains full information about the true state. However, if, instead, you view entropy as necessary allocation of effort, understood as the effort you have to allocate in order to have a chance to obtain full information, it does not appear important actually to obtain that information. In passing, one may think that a more neutral terminology such as “necessity” could have been chosen in place of “entropy”. That could be less awkward when you turn to other applications of the abstract theory than classical Shannon theory or statistical physics.



As yet a third route to entropy we suggest to view it as a quantitative expression of the complexity of the various states, maintaining that to evaluate complexity, Observer may use minimal accepted effort, the effort he is willing to allocate to the various states in order to obtain the information in question.



Entropy may also be obtained with reference only to the Y-domain. Indeed, with [image: there is no content] the derived effort function, for each state x, [image: there is no content].



Whichever route to entropy you take—including the game theoretical route of Section 2.10—it appears that subjective elements are involved, typically through Observer’s choice of description and associated experiments. If, modulo scalar equivalence, the actual world only allows one proper effort function, then entropy and notions related to entropy are of a more objective nature. We shall later see examples of such worlds but also for such worlds subjective elements may enter if Observer is considering which world is the actual one.



Apart from effort itself, and the derived notion of entropy, we turn to the introduction of two other basic concepts which make sense in our abstract setting, viz., redundancy for the [image: there is no content]-domain and its counterpart, divergence, for the Y-domain.



To define redundancy, consider an atomic situation [image: there is no content]. Then redundancy [image: there is no content] between x and w is measured by the difference between actual and minimal effort, i.e., ideally, as


[image: there is no content]



(11)







Assume, for a moment, that entropy is finite-valued. Then redundancy in (11) is well defined. Furthermore, redundancy is non-negative and only vanishes if [image: there is no content] is an adapted pair.



However, we find it important to be able to deal with models for which entropy may be infinite. We do that by simply assuming that appropriate versions of redundancy and divergence exist with desirable properties. The simple device we shall apply in order to reach a sensible definition is to rewrite the defining relation (11), isolating effort on the left hand side.



With the above preparations, we are ready to introduce the key concepts of our study. We start with concepts for the [image: there is no content]-domain and follow up after that by parallel concepts for the Y-domain.



We consider certain triples [image: there is no content] of functions taking values in [image: there is no content] with [image: there is no content] and [image: there is no content] defined on [image: there is no content] and H defined on X. If need be we may talk about triples over [image: there is no content] or we may point to the [image: there is no content]-domain. Such triples must satisfy special conditions in order to be of interest. The most important properties to consider are the following four:


Φ^(x,w)=H(x)+D^(x,w)(linkingidentity,L);



(12)






D^(x,w)≥0(fundamentalinequality,F);



(13)






D^(x,x^)=0(soundness,S);



(14)






w≠x^⇒D^(x,w)>0(properness,P).



(15)







The properties (12), (13) and (15) are considered for all [image: there is no content] and (14) for all [image: there is no content]. The linking identity (12) may be written shortly as [image: there is no content] or, formally correct with [image: there is no content] the projection of [image: there is no content] onto X, as [image: there is no content].



An information triple is a triple [image: there is no content] which satisfies the three first conditions (L, F and S). For such triples the function [image: there is no content] is the associated effort function, H the associated entropy and [image: there is no content] the associated redundancy. This does not conflict with previous terminology. In particular, the associated effort function is indeed an effort function in the sense of Section 2.6.



Information triples with the same redundancy are said to be equivalent. Equivalent triples may have quite different properties and one may search for representatives with good properties.



A proper information triple in the Y-domain is an information triple for which redundancy is proper, i.e., (15) holds. Clearly, the effort function of a proper information triple is proper in the sense of Section 2.6. Moreover, if a triple is proper, so is any equivalent one.



An information triple is degenerate if redundancy vanishes: [image: there is no content] for all [image: there is no content]. The effort function of a degenerate information triple is degenerate.



Among the four defining properties, the last three (FSP) only involve redundancy. Accordingly, a function [image: there is no content] defined on [image: there is no content] is a general redundancy function if it satisfies the fundamental inequality as well as the requirements of soundness and properness. Note that for such a redundancy function, [image: there is no content] is a proper information triple and that any equivalent information triple may be obtained from [image: there is no content] by a natural process of addition related to any function on X with values in [image: there is no content], taking this function as the entropy function. To be precise, what is involved structurally is that you add information triples, one of which is proper and the other degenerate, viz., you add [image: there is no content] and [image: there is no content]. For further details on this theme, see Section 3.1.



Normally, given a proper effort function [image: there is no content], there is a natural way to extend the redundancy function as defined by (11) when [image: there is no content], so that a proper information triple emerges. For this reason, we may talk about the information triple generated by [image: there is no content]. Then, the problem of indeterminacy of redundancy disappears. The slightly strengthened assumption that redundancy can be defined “appropriately” on all of [image: there is no content] will, as it turns out, present no limitation in concrete cases of interest.



We turn briefly to Y-type triples. They are triples [image: there is no content] with [image: there is no content] and D defined on [image: there is no content] and H defined on X. Key properties to consider are quite parallel to what we have discussed for the [image: there is no content]-domain:


Φ(x,y)=H(x)+D(x,y)(linkingidentity,L);



(16)






D(x,y)≥0(fundamentalinequality,F);



(17)






D(x,x^)=0(soundness,S);



(18)






y≠x⇒D(x,y)>0(properness,P).



(19)







An information triple in the Y-domain is a triple which satisfies the conditions L, F and S. For such triples, [image: there is no content] is the associated effort, H the associated entropy and D the associated divergence.



A proper information triple is one for which divergence is proper. Such triples are intrinsically defined in the sense that they do not depend on any action space or response function. If divergence vanishes, the triple is degenerate. The effort function of a proper information triple is proper in the sense of Section 2.6 and the effort function of a degenerate triple is degenerate.



A triple [image: there is no content] is a derived information triple, respectively a derived proper information triple, if there exists a triple [image: there is no content] satisfying the corresponding properties for the [image: there is no content]-domain such that [image: there is no content] is derived from [image: there is no content] and D from [image: there is no content]. Note that a derived proper information triple need not be a proper information triple according to the intrinsic definition. Indeed, from [image: there is no content] you can only conclude that x and y are response equivalent. Of course, if response is injective, the two types of proper information triples for the Y-domain—intrinsically defined or defined via derivation—are equivalent concepts.



A general divergence function D on [image: there is no content] is a function on [image: there is no content] which satisfies the F, S and P-requirements. Note that we include the property of properness in the definition. A general derived divergence function is one which can be derived from a general redundancy function.



For the Y-domain, notions of equivalence (same divergence!) and of addition of information triples are defined in the obvious manner.



Instead of taking triples as introduced above as the basis, it is quite often more natural to focus on triples of the “opposite nature”. This refers to situations where it is appropriate to focus on a positively oriented quantity such as utility or pay-off rather than on effort. Typically, this is the case for studies of economy, meteorology and statistics where one also meets the notion of “score” as previously indicated. In order to distinguish the two types of triples from each other, we may refer to them as being effort-based, respectively utility-based.



For the [image: there is no content]-domain, [image: there is no content] is a utility-based information triple if [image: there is no content] is so as an effort-based triple and, for the Y-domain, [image: there is no content] is a utility-based information triple if [image: there is no content] is so as an effort-based triple. Properness and other concepts introduced for effort-based triples carry over in the obvious way to utility-based triples.



For utility-based triples, [image: there is no content] and U are called utility, M is called max-utility. As for effort-based triples, [image: there is no content] is redundancy and D divergence. The linking identity takes the form [image: there is no content] ([image: there is no content]) which can never result in the indeterminate form [image: there is no content] since, by definition, [image: there is no content] and U, hence also M, can never assume the value [image: there is no content].



In view of the main examples we have in mind, we have found it most illuminating to take effort rather than utility as the basic concept to work with, and hence to develop the main results for effort-based quantities. Anyhow, even if you are primarily interested in considerations based on effort, you are easily led to consider also utility-based quantities as we shall see right away in the next section.



The concept of proper information triples is, except for minor technical details, equivalent to the concept of proper effort functions. Apart from a slight technical advantage, the triples constitute a preferable base for information theoretical investigations as the three truly basic notions of information are all emphasized together with their basic interrelationship—the linking identity. Historically, the notions arose for classical probabilistic information theoretical models, cf., Section 3.7. Effort functions go back to Kerridge [50] who coined the term inaccuracy, entropy goes back to Shannon [1] and divergence to Kullback [51]. The term “redundancy” which we have used for another side of divergence, corresponds to one usage in information theory, though there the term is used in several other ways which are not expressed in our abstract setting.



As an aside, it is tempting for the author to point to the pioneering work of Edgar Rubin going back to the twenties. Unfortunately, this was only published posthumously in 1956, cf., [52,53,54]. Rubin made experiments over human speech and focused on what he called the reserve of understanding. This is a quantitative measure of the amount you can cut out of a persons speech without seriously disrupting a listeners ability to understand what has been said. It can be conceived as a forerunner of the notion of redundancy.



Our way to information triples was through effort and one may ask why we did not go directly to the triples. For one thing, triples lead to a smooth axiomatic theory, as will be demonstrated in the present research, compare also with our previous contribution [55]. However, though axiomatization can be technically attractive, we find that a focus on interpretation as in our more philosophical and speculative approach, is of primary importance and contributes best to an understanding of central concepts of information. Axiomatics only comes in after basic interpretations are in place.



A comment on the choice of terminology in relation to the concept of properness is in place. This concept is at times considered to be unnecessarily strong and we shall later, at the end of Section 2.10 and in Appendix A, develop weaker notions. When only a redundancy function or a divergence function is given and not a full information triple, we have chosen to incorporate the requirement of properness in its usual form in the definition of what we understand by a general redundancy function or a general divergence function.




2.8. Relativization, Updating


In this section we shall work entirely in the Y-domain. We start by considering a proper effort-based information triple [image: there is no content] over [image: there is no content]. Often, it is natural to measure effort relative to some standard performance rather than by [image: there is no content] itself. An especially important instance of this kind of relativization concerns situations where Observer originally fixed a prior, say [image: there is no content], but now wants to update his belief by replacing [image: there is no content] with a posterior y. Perhaps Observer—through his own actions or via an informer—has obtained the information “[image: there is no content]” for some preparation [image: there is no content]. If [image: there is no content], Observer may want to replace [image: there is no content] by a posterior [image: there is no content]. In a first attempt of a reasonable definition, the associated updating gain is given by the quantity [image: there is no content] obtained by comparing performance under the posterior with performance under the prior:


[image: there is no content]



(20)







A difficulty with (20) concerns the possible indeterminate form [image: there is no content]. If we ignore the difficulty and apply the linking identity (16) to both terms in (20), entropy [image: there is no content] cancels out and we find the expression


[image: there is no content]



(21)







This is less likely to be indeterminate. When not of the indeterminate form [image: there is no content], we therefore agree to use (21) as the formal definition of updating gain, more precisely of relative updating gain with [image: there is no content] as prior. For the present study, we shall only work with updating gain when the marginal function [image: there is no content] (defined in accordance with concepts and notation introduced in Section 2.4) is finite on some preparation [image: there is no content] under consideration. Assuming that this is the case, we realize that


[image: there is no content]



(22)




is a proper utility-based information triple over [image: there is no content]. For such triples we put [image: there is no content], i.e., we take [image: there is no content] as the only certain belief instance. Max-utility is identified as the marginal function [image: there is no content] on [image: there is no content] and divergence is the original divergence function restricted to [image: there is no content].



It is important to note that the triples which occur in this way by varying [image: there is no content] and [image: there is no content] do not require the full effort function [image: there is no content] in order to make sense. It suffices to start out with a general divergence function on [image: there is no content]. When the construction is based on a general divergence function D, we refer to (22) as the updating triple generated by D and with [image: there is no content] as prior.



Though rather trivial, the observations regarding updating gain are important as they show that results in that setting may be obtained from results based on effort. To emphasize this, we introduce—based only on a general divergence function D—the effort-based information triple associated with (22) as the triple


[image: there is no content]



(23)




with [image: there is no content] given by


[image: there is no content]



(24)







This is a perfectly feasible effort-based triple over [image: there is no content] whenever [image: there is no content] is finite on [image: there is no content]. Clearly, it is proper.



In Section 2.13 and Section 2.15 we shall derive results about minimum divergence (information projections) from results about maximum entropy by exploiting the simple facts here uncovered.



As we have seen, natural information triples may be derived from a general divergence function by a simple process of relativization. While we are at it, we note that in case [image: there is no content], also reverse divergence [image: there is no content] defines a genuine divergence function on [image: there is no content] (in contrast, reverse description effort need not define a genuine effort function). Therefore, if [image: there is no content] and we put [image: there is no content],


[image: there is no content]



(25)




defines a genuine proper information triple (when restricting the variables x and y appropriately). However, these triples are not found to be that significant.




2.9. Feasible Preparations, Core and Robustness


We claim that description is a key to obtainable information, to what can be known. Not every possible information “[image: there is no content]” for any odd preparation [image: there is no content] can be expected to reflect a realistic situation. The question we ask is “what can Observer know?” or “what kind of information can Observer hope to obtain?”. We thus want to investigate “limits to knowledge” and “limits to information”. In order to provide an answer, we shall identify classes of preparations which represent feasible information. These classes will be defined with reference to an effort function [image: there is no content]. For this section, [image: there is no content] need not be proper.



Given [image: there is no content] and a level [image: there is no content], we define the level set [image: there is no content] and the sub level set [image: there is no content] by


Pw(h)={Φ^w=h};Pw(h↓)={Φ^w≤h},



(26)




i.e., as the set of states which are controlled by w, either at the level h or at the maximum level h. These sets are genuine preparations whenever they are non-empty. When w is the response of a state [image: there is no content], [image: there is no content] is non-empty whenever [image: there is no content]. As level- and sub level sets for other functions will appear later on, cf., Section 2.14, we may for clarity refer to [image: there is no content] and to [image: there is no content] as, respectively, [image: there is no content]-level sets and [image: there is no content]-sub level sets.



The preparations in (26) we call primitive strict, respectively primitive slack preparations. A general strict, respectively a general slack preparation is a finite non-empty intersection of primitive strict, respectively primitive slack preparations. The genus of these preparations is the smallest number of primitive preparations (either strict or slack as the case may be) which can enter into the definition just given. Thus primitive preparations are of genus 1.



If [image: there is no content] are elements of [image: there is no content] and [image: there is no content] are real numbers, the sets


[image: there is no content]



(27)




define strict, respectively slack preparations of genus at most n whenever they are non-empty. The set [image: there is no content] is the corona of [image: there is no content] whenever it is non-empty.



The preparations introduced above via the representation (27) are those we consider to be feasible and we formally refer to them as the feasible preparations. They provide the answer to the question about what can be known. They are the key ingredients in situations which Observer can be faced with. In any such situation a main problem concerns inference, an issue we shall take up in the next section.



Often, families of feasible preparations are of interest. Given [image: there is no content], we denote by [image: there is no content], respectively [image: there is no content], the families which consist of all preparations [image: there is no content], respectively [image: there is no content], which can be obtained by varying [image: there is no content].



Clearly, the feasible preparations can also be expressed by reference to the derived effort function [image: there is no content] rather than [image: there is no content]. We use the notation [image: there is no content] and [image: there is no content] for, respectively, the [image: there is no content]-level set [image: there is no content] and the [image: there is no content]-sub level set [image: there is no content]. If [image: there is no content], [image: there is no content] and [image: there is no content] (note that for an expression such as [image: there is no content], the nature of q determines if this is a [image: there is no content]- or a [image: there is no content]-level set). For finite sequences [image: there is no content] of elements of Y and [image: there is no content] of real numbers, the sets [image: there is no content] and [image: there is no content] are defined in the obvious manner as are the families of preparations [image: there is no content], respectively [image: there is no content].



The level sets may be used to define certain special belief instances or controls which will later, theoretically as well as for applications, play a significant role. Given is a certain preparation [image: there is no content]. Then, the core of [image: there is no content] consists of all belief instances y for which the effort [image: there is no content] is finite and independent of x as long as x is consistent. This notion, appropriately adjusted, also makes sense for the [image: there is no content]-domain. Notation and defining requirements are given as follows:


[image: there is no content]



(28)






[image: there is no content]



(29)







If [image: there is no content], respectively [image: there is no content], we also say that y, respectively w, is robust.



We shall refine the notions above in two ways. Firstly, for a family [image: there is no content] of preparations—such as a family of the form [image: there is no content] defined above—the core is defined as the intersection of the individual cores:


[image: there is no content]



(30)






[image: there is no content]



(31)







The second refinement we have in mind depends on on an auxiliary preparation [image: there is no content], assumed to be a subset of the given preparation [image: there is no content]. For the [image: there is no content]-domain, a control [image: there is no content] is a [image: there is no content]-robust strategy for Observer if there exists a finite constant h, such that the following two conditions hold:


Φ^(x,w*)=h for all x∈E,



(32)






Φ^(x,w*)≤h for all x∈P



(33)







When [image: there is no content] we recover the original notion of robustness. The similar notion for belief instances is defined in the obvious way. Notation and defining relations for the corresponding adjustments of the notion of core are as follows:


core(E|P)={y≻P|∃h<∞:E⊆Py(h),P⊆Py(h↓)},



(34)






core^(E|P)={w≻P|∃h<∞:E⊆Pw(h),P⊆Pw(h↓)}.



(35)







From a formal point of view, it does not matter if we use [image: there is no content]-type sets or [image: there is no content]-type sets as the basis for the definition of feasible preparations. However, entering into more speculative interpretations, the [image: there is no content]-type sets which emphasize control seem preferable. Individual controls [image: there is no content] or a collection of such controls point to experiments which Observer may perform. An experimental setup identifies a certain preparation, and thus determines what is known to Observer. Determining all preparations which can arise in this way, we are led to the class of feasible preparations as defined above.



As to the nature of the various controls, we imagine that they are derived from description. To control a situation, you must be able to describe it, and with a description you have the key to control. We may imagine that, corresponding to a control w, Observer can realize a certain experimental setup consisting of various parts – measuring instruments and the like. In particular, there is a special handle which is used to fix the level of effort. If the level, perhaps best thought of as a kind of temperature, is fixed to be h, the states available to Nature are those in the appropriate feasible preparation. Several experiments can be carried out with the same equipment by adjusting the setting of the handle. If Observer wants to constrain the states by other means, he can add equipment corresponding to another control [image: there is no content] and choose a level [image: there is no content] for the experimental setup constructed based on [image: there is no content]. The result is a restriction of the available states to the intersection of the two preparations involved. If the preparation is [image: there is no content] and the actual state is not inside this preparation, you may imagine that the result is overheating and breakdown of the experimental setup! Thus you must keep the state inside the preparation and this may well be what requires an effort as specified by [image: there is no content].




2.10. Inference via Games, Some Basic Concepts


For this section, [image: there is no content] is an effort-based information triple over [image: there is no content] and [image: there is no content] the derived triple over [image: there is no content]. Further, a preparation [image: there is no content] is given, conceived as the partial information “[image: there is no content]”. In practice, [image: there is no content] will be a feasible preparation, but we need not assume so for this section.



The process of inference concerns the identification of “sensible” states in [image: there is no content]—ideally only one such state, the inferred state. In many cases, this can be achieved by game theoretical methods involving a two-person zero-sum game. As it turns out, this will result in double inference where also either control instances or belief instances will be identified—ideally, only one such instance, the inferred control or the inferred belief instance as the case may be.



An inferred state, say [image: there is no content], brings Observer as close as possible to the truth in a way specified by the method applied. The same may be said about an inferred belief instance—or you may find it more appropriate to view an inferred belief instance as a final representation of Observers subjective views and conviction. Turning to controls, an inferred control is conceived as an invitation to Observer to act, say regarding the setup of experiments and performance of subsequent observations. In this way, actions by Observer as dictated by an inferred control [image: there is no content] is conceived as that which is needed for Observer in order to justify the inference [image: there is no content] about truth. In short, double inference gives Observer information both about what can be inferred about truth and how.



Given [image: there is no content], we shall study two closely related two-person zero-sum games, the control game [image: there is no content], and the belief game [image: there is no content], also referred to as the derived game. If need be, we may write [image: there is no content] and [image: there is no content]. The games have Nature and Observer as players and [image: there is no content], respectively [image: there is no content] as objective function. Nature is understood to be a maximizer, Observer a minimizer. For both games, strategies for Nature involve the choice of a consistent state. Observer strategies for [image: there is no content] are controls from which every state in [image: there is no content] can be controlled. For [image: there is no content], Observer strategies are belief instances from which every state in [image: there is no content] is visible, in other words, they are viewpoints of [image: there is no content]. Thus pairs of permissible strategies for the two games are either pairs [image: there is no content] with [image: there is no content] and [image: there is no content] (with the understanding that [image: there is no content]) or pairs [image: there is no content] with [image: there is no content] and [image: there is no content] (with the understanding that [image: there is no content]). In consistency with the discussion in Section 2.4, an observer strategy may be thought of as a strategy which is not “completely stupid” whatever the strategy of Nature, as long as that strategy is consistent. The choice of strategy for Observer may be a real choice, whereas, for Nature, it is often more appropriate to have a fictive choice in mind which reflects Observer’s speculations over what the truth could be.



A remark is in order regarding models where it is unnatural to work with controls and only belief is involved. Then the basis will be an effort-based information triple [image: there is no content] over [image: there is no content] and only one type of game, [image: there is no content] will be involved. Formally, this may be considered a derived game by artificially introducing [image: there is no content], [image: there is no content], by taking response to be the identity map and by taking [image: there is no content] to be identical with [image: there is no content] Thus the approach we shall take with a primary focus on the control games, based on objects for the [image: there is no content]-domain is, formally, the more general one.



Following standard philosophy of game theory, Observer should always be prepared for a choice by Nature which is least favourable to him. One can argue that in our setting anything else would mean that Observer would not have used all available information. The line of thought goes well with Jaynes thinking as collected in [9], though there you find no reference to game theory.



In order for our exposition to be self-contained and also because our games are slightly at variance with what is normally considered, we shall here give full details regarding definitions and proofs. As references to game theory and applications to the physical sciences, ref. [32,56,57] may be useful.



Let us introduce basic notions for the control game and then comment more briefly on the derived game. The two values of [image: there is no content] are, for Nature,


[image: there is no content]



(36)




and, for Observer,


[image: there is no content]



(37)







Note the slight deviation from usual practice in that w in the infimum in (36) varies over [image: there is no content] and not just over [image: there is no content] or some other set independent of x. Philosophically, one may argue that Nature does not know of the restriction to [image: there is no content]—this is something Observer has arranged—and hence cannot know of any restriction besides the natural one [image: there is no content]. As the infimum in (36) is nothing but the entropy [image: there is no content], the value for Nature is the maximum entropy value, also referred to as the MaxEnt-value:


[image: there is no content]



(38)







Problems on the determination of [image: there is no content] and associated strategies are classical problems known from information theory or statistical physics. If [image: there is no content] and [image: there is no content], [image: there is no content] is an optimal strategy for Nature, also referred to as a MaxEnt-state or MaxEnt-strategy. The archetypal concrete problems of this nature are discussed in Section 3.7.



As to the value for Observer, we identify the supremum in (37) with the risk associated with the strategy w and denote it by [image: there is no content]:


[image: there is no content]



(39)







The value for Observer then is the minimal risk of the game, also referred to as the MinRisk-value:


[image: there is no content]



(40)







An optimal strategy for Observer is a control [image: there is no content] with [image: there is no content], also referred to as a MinRisk-control or a MinRisk-strategy. Note the general validity of the minimax inequality:


[image: there is no content]



(41)







Indeed, for arbitrary [image: there is no content] and arbitrary [image: there is no content],


[image: there is no content]








and taking supremum over x and infimum over w, (41) follows. If (41) holds with equality and defines a finite quantity, the game is said to be in game theoretical equilibrium, or just in equilibrium, and the common value of [image: there is no content] and [image: there is no content] is the value of the game.



A further notion of equilibrium is attached to Nash’s name. It should, however, be said that for the relatively simple case here considered (two players, zero sum), the ideas we need originated with von Neumann, see [58,59] and, for a historical study, Kjeldsen [60]. A pair of permissible strategies [image: there is no content] is a Nash equilibrium pair for [image: there is no content] if, with these strategies, none of the players have an incentive to change strategy—provided the opponent does not do so either. This means, for Nature, that


∀x∈P:Φ^(x,w*)≤Φ^(x*,w*),



(42)




and, for Observer, that


∀w≻P:Φ^(x*,w)≥Φ^(x*,w*).



(43)







The inequalities (42) and (43) constitute a special case of the celebrated saddle-value inequalities of game theory. Note that, in our case, one of these inequalities (43), is automatic if [image: there is no content] is an adapted pair. This implies that [image: there is no content] and that [image: there is no content] as follows from the following trivial observation:



Proposition 1.

If [image: there is no content] and [image: there is no content] are permissible strategies for the two players in [image: there is no content] and if [image: there is no content] is adapted to [image: there is no content], then [image: there is no content] and [image: there is no content].





Proof. 

By hypothesis, [image: there is no content], [image: there is no content] and [image: there is no content], hence [image: there is no content], equivalent to the statement [image: there is no content]. ☐





Key notions and definitions for the belief game [image: there is no content] are quite parallel to what we have discussed for the control game. Briefly, the values of [image: there is no content] are [image: there is no content] (for Nature) and [image: there is no content] (for Observer) and notions of strategies and optimal strategies are defined in an obvious manner. We notice that the value for Nature in [image: there is no content] is [image: there is no content], the same as the value for Nature in [image: there is no content] and that the notion of optimal strategies for Nature in the two games are equivalent notions. We use Ri as notation for risk in [image: there is no content], i.e., for [image: there is no content]


[image: there is no content]



(44)







Clearly, for any [image: there is no content],


[image: there is no content]



(45)







Therefore, if [image: there is no content] and one of these belief instances is a viewpoint of [image: there is no content], then so is the other and the associated risks are the same. The value for Observer in [image: there is no content] is


[image: there is no content]



(46)







The game [image: there is no content] is in equilibrium if the two values of the game coincide and are finite. A pair [image: there is no content] of permissible strategies is a Nash equilibrium pair for [image: there is no content] if the two saddle-value inequalities hold:


∀x∈P:Φ(x,y*)≤Φ(x*,y*),



(47)






∀y≻P:Φ(x*,y)≥Φ(x*,y*).



(48)







Basic relationships between the values for the players in the belief game and the control game may be summarized as follows.



Proposition 2.

The values for Nature in [image: there is no content] and in [image: there is no content] coincide and are equal to the MaxEnt value [image: there is no content]. The corresponding values for Observer in the two games are [image: there is no content], respectively [image: there is no content]. In general,


[image: there is no content]



(49)







If response is surjective, equality holds in (49). Equality also holds if [image: there is no content] is in equilibrium. In that case also [image: there is no content] is in equilibrium and the values for the two games coincide: [image: there is no content].





Proof. 

The first statement regarding the values for Nature is trivial and also noted above. The inequality (49) follows by (45), which also implies that equality holds in case response is surjective. If [image: there is no content] is in equilibrium, apply the minimax inequality to [image: there is no content], exploit equilibrium of [image: there is no content] as well as the inequality (49) and you find that


[image: there is no content]











It follows that also [image: there is no content] is in equilibrium. Clearly, the values for the two games coincide. ☐





As it will turn out, in a great many cases of relevance for the applications, it is possible rather directly to identify optimal strategies for the players and to show that the games considered are in equilibrium. Furthermore, in many cases there is a natural relationship between the [image: there is no content]- and the [image: there is no content]-type games with the effect that, typically, there is a unique optimal strategy for Observer in [image: there is no content] and this strategy, a certain control, is adapted to any optimal strategy for Nature in the games [image: there is no content] and [image: there is no content]. Even more so, there is a tendency for the unique optimal control to be robust.



Results to support these claims will be taken up in Section 2.12. The results require that somehow you have good candidates for the hoped-for optimal strategies. For this, the indicated tendency towards robustness is a clue to how such candidates can actually be found in concrete cases of interest. In fact, a search for optimal objects via robustness is very efficient and more natural than the usual approach via the differential calculus as we shall also comment on in Section 2.12.




2.11. Refined Notions of Properness


The discussion to follow may appear unnecessary since normally, the standard notion of properness will apply. However, there are interesting cases where this is not so. Therefore, there is a need to look for suitable weaker notions which are still strong enough to have desirable consequences especially regarding properties of optimal strategies. As justification of the good sense in considering also the weaker notions of properness presented below we point to the general results of Section 2.12 and to the extended applicability of a a well-known construction due to Bregman, cf., Section 3.1 and Appendix A.



With assumptions as in Section 2.10, let us assume that [image: there is no content] is in equilibrium and, for simplicity, that there is a unique MaxEnt-state [image: there is no content]. Let us think of the system which Observer is studying as a physical system subject to the laws of statistical physics. Then Observer will expect that after some lead-in time, the system will stabilize and [image: there is no content] will represent the true state of the system. Observer aims at choosing a control which is optimal and at the same time adapted to Natures choice, [image: there is no content]. Unfortunately, Observer does not know which state this is among the consistent states. So Observer cannot just choose the control [image: there is no content] adapted to [image: there is no content], but has to somehow choose some control of [image: there is no content], say w.



At this point we introduce a built-in learning mechanism operating over time which may lead Observer in the right direction. The idea is illuminated by introducing an all-knowing being, Guru. Guru will not reveal the truth to Observer directly but may respond to specific questions. With this option, Observer may eventually end up by a choice of just the right control.



The three questions we shall consider all concern the entropy [image: there is no content] which Observer expects to be the MaxEnt-value. The questions are all related to the inequality


[image: there is no content]



(50)







The questions put higher and higher demands on the chosen control w and are as follows:

	[image: there is no content]:

	
Does (50) hold for [image: there is no content]?




	[image: there is no content]:

	
Does (50) hold for all consistent x?




	[image: there is no content]:

	
Does (50) even hold with equality for all consistent x?









With Question [image: there is no content], Observer wants to know if the effort he applies is minimal. Clearly, in view of the linking identity and the fundamental inequality—and as [image: there is no content] by the assumed equilibrium of [image: there is no content]—the question is equivalent to asking if [image: there is no content]. If the reply is negative, Observer knows that his choice cannot be optimal and he will then choose another control. But even with an affirmative answer, i.e., when [image: there is no content], Observer may not be satisfied and may, therefore, continue the questioning. If the information triple is proper, an affirmative answer to [image: there is no content] will tell Observer that [image: there is no content] and he may be satisfied—even though it could still happen, as examples will show, that w is not optimal. Further questioning may thus only be needed if the information triple is not proper—or not known to be proper.



For the second question, [image: there is no content], Observer is worried about his risk in case the state should somehow change. The question is equivalent to asking if [image: there is no content]. With a negative reply, Observer will dismiss the choice of w, if for no other reason, because w cannot be optimal then. If the reply is positive, w is optimal and one may wonder if Observer will still find any further checking necessary. The suggested third question [image: there is no content] reflects the ambition of Observer that he wants the control to be robust at the level [image: there is no content].



Motivated by our considerations, we shall say that the information triple [image: there is no content] is [image: there is no content], [image: there is no content] or [image: there is no content]-proper over [image: there is no content] if, with [image: there is no content], we can conclude that w is adapted to [image: there is no content] from affirmative answers to, respectively, question [image: there is no content], [image: there is no content] or [image: there is no content]. If we just talk about, say [image: there is no content]-properness, it is understood that the conditions hold with [image: there is no content]. If the entropy function is finite-valued, [image: there is no content]-properness is equivalent to (standard) properness.



Concerning questions being asked to Guru, one may wonder why Observer does not simply ask directly either if the chosen control is optimal or if it is adapted to the truth. In this connection, we remark that questions which can be asked to Guru must depend on the possibilities for Observer’s communication with the system. For a further discussion of this, one should replace Guru with some mathematically defined rules for this communication. Such rules may reflect the kind of experiments and associated measurements which Observer can perform on the system.




2.12. Inference via Games, Some Basic Results


We shall investigate the possibility to identify optimal strategies based on a suggestion of possible candidates. Moreover, when optimal strategies exist, we shall look at the ensuing consequences. This approach will involve problems which are easy to handle technically and yet, it may be argued that from an applied point of view the results obtained are of greater significance than theoretically more sophisticated results, such as those developed in Section 2.16. Several examples illustrating this point of view are listed in Section 3.



As in the previous section, an effort-based information triple [image: there is no content] over [image: there is no content], the underlying triple, is given together with a preparation [image: there is no content].



When we speak about an optimal state without any further specification it is understood that we have an optimal strategy for Nature in one of the games [image: there is no content] or [image: there is no content] in mind. As we observed in the previous section it does not matter which game we think of. Moreover, when we speak of an optimal belief instance, respectively an optimal control it is also clear what we have in mind, viz., an optimal strategy for Observer in [image: there is no content], respectively in [image: there is no content].



In our first result we investigate situations where, in addition to a requirement of equilibrium, there exist optimal strategies for both players.



Theorem 1 (Optimal strategies, basics).

(i): If [image: there is no content] is in equilibrium and both players have optimal strategies in this game, then also [image: there is no content] is in equilibrium and optimal strategies for both players in that game exist. Further, the values of the two games agree and, if [image: there is no content] are optimal strategies in [image: there is no content], then [image: there is no content] are optimal strategies in [image: there is no content] (but there may be many other optimal strategies).



(ii): Now assume that [image: there is no content] is proper. Then, if [image: there is no content] is in equilibrium and both players have optimal strategies, say [image: there is no content] and [image: there is no content], then [image: there is no content], [image: there is no content] and [image: there is no content]. It follows that the optimal control is unique. Furthermore, also [image: there is no content] is in equilibrium and both players have optimal strategies. A belief instance is optimal in [image: there is no content] if and only if it has [image: there is no content] as response. If response is injective, each of the three optimal strategies associated with [image: there is no content] and [image: there is no content]—the optimal state [image: there is no content], the optimal belief instance [image: there is no content] and the optimal control [image: there is no content]—are unique and [image: there is no content].





Proof. 

(i): Assume that [image: there is no content] is in equilibrium and that [image: there is no content] are optimal strategies for this game. A bit parallel to the reasoning in the proof of Proposition 2, we find that under the stated conditions


[image: there is no content]








and the claimed assertions follow readily.



(ii): Now assume that [image: there is no content] is in equilibrium and that [image: there is no content] are optimal strategies for this game. By the defining relations (8) and (9), by the assumed equilibrium, by optimality of [image: there is no content] and of [image: there is no content] and by the definition (39) of risk, we find that


[image: there is no content]



(51)




hence equality must hold throughout. Further, as [image: there is no content], we conclude that [image: there is no content], hence by properness that [image: there is no content]. Then, by Proposition 1, [image: there is no content] and [image: there is no content].



Since [image: there is no content] above was an arbitrary optimal strategy for Nature and [image: there is no content] an arbitrary optimal strategy for Observer, and by the fact [image: there is no content] just established, we conclude that the optimal Observer strategy is unique and further, that all optimal strategies for Nature are response-equivalent, lie in [image: there is no content] and have the optimal control as response.



We leave it to the reader to establish the stated results for [image: there is no content], say by noting that [image: there is no content] is equivalent with [image: there is no content] and that [image: there is no content] and by using the first facts established.



In case response is injective, the uniqueness assertions are easily established and the identity of [image: there is no content] and [image: there is no content] follows as these belief instances are response-equivalent. ☐





Some remarks are in order.



Remark 1.

Simple and very concrete “toy examples” over discrete sets—either finite or countably infinite—may be constructed to illuminate various assumptions and to investigate the limits of the conclusions. This involves matrix games which are easy to visualize. In this way one realizes that the games may be in equilibrium and yet there may be no optimal strategy for any of the players or there may be one or several optimal strategies for one of the players and none for the other. Three such examples for games in equilibrium and with an underlying proper information triple are indicated in Figure 1 where the rows are states and the columns controls (or belief instances). In case (a) there is a unique optimal control but no optimal state, in case (b) there is a unique optimal state but no optimal control and in case (c) all controls are optimal but there is no optimal state. It is also easy to construct an example where all states are optimal but no control is so.

Figure 1. Matrix games where one of the players does not have an optimal strategy.



[image: Entropy 19 00143 g001]









Remark 2.

Regarding the necessity of injectivity of response in the last part of the theorem, note that if this condition does not hold, there may be strategies for Nature with the optimal control [image: there is no content] as response which are not optimal. Simple examples, say with “collapse of response”, i.e., with [image: there is no content] a singleton, will demonstrate that.





Remark 3.

Several remarks on the assumption of properness are in place. First note that we did not have to assume that response is surjective in order to prove that the optimal strategy [image: there is no content] in the second part of the theorem is in the range of this map. The assumed properness takes care of that. However, we need not assume that properness in its strongest form holds but may work with the weaker forms introduced in Section 2.11.



To make this more precise, first note that all assertions of the second part of Theorem 1 continue to hold if properness is replaced by [image: there is no content]-properness. This follows from the discussion in Section 2.11 by noting that from the relations in (51) one can conclude, not only that [image: there is no content], but also that [image: there is no content]. In this way some of the concrete models discussed in Appendix A, can be handled—but not all.



We add, without going through the details, that if we assume that the weaker [image: there is no content]-properness holds in conjunction with an assumption of robustness, viz., that all controls which are adapted to an optimal state are robust, then uniqueness of a robust optimal control is secured. The robustness condition appears to be related to a requirement that response be defined “appropriately”. For the models of Appendix A this requires that special care is taken when defining response at boundary points of the state space.



In the sequel some results are proved under the assumption of [image: there is no content]-properness. This is, so we claim, a simple, worth while and natural extension over results proved only under an assumption of standard [image: there is no content]-properness. Even more general results involving also robustness as just indicated may well be possible. However, it seems that before that will make much sense, one should develop results and constructions going beyond what is indicated in Appendix A and in Corollary 6 further on.





Inspired by Theorem 1, a pair [image: there is no content] of permissible strategies is said to be a bi-optimal pair, if [image: there is no content] and if [image: there is no content] is the only optimal control. As follows from the theorem and from Remark 3, the required uniqueness property of [image: there is no content] is automatic under an assumption of [image: there is no content]-properness of the underlying information triple and further, [image: there is no content] must be adapted to [image: there is no content].



If we have only given a state [image: there is no content], we say that the state is bi-optimal if [image: there is no content] is a bi-optimal pair with [image: there is no content] adapted to [image: there is no content].



Whereas it may be difficult to find optimal strategies, it is often easy to check if given candidates are in fact optimal:



Theorem 2.

[Identification] Under the assumptions of [image: there is no content]-properness, let [image: there is no content] be a state in [image: there is no content] with finite entropy and let [image: there is no content] be a control of [image: there is no content].



Then a necessary and sufficient condition that the pair [image: there is no content] is bi-optimal is that it is a Nash equilibrium pair. If this is so, [image: there is no content] is adapted to [image: there is no content].





Proof. 

First note that (42) is equivalent with the requirement [image: there is no content] and that, because [image: there is no content] is known to hold (as [image: there is no content]), (43) is equivalent with the requirement [image: there is no content].



Thus, when (42) and (43) hold, we find, also invoking the minimax inequality, that


[image: there is no content]








hence, recalling that [image: there is no content], both [image: there is no content] and [image: there is no content] follow. By [image: there is no content]-properness, we then realize that [image: there is no content] is adapted to [image: there is no content]. Collecting facts established, we conclude that [image: there is no content] is a bi-optimal pair. This proves sufficiency.



The necessity and the last part of the theorem follow from Theorem 1 and the above noticed equivalent forms of the saddle-value inequalities. ☐





Elaborating slightly, we obtain the following corollary:

Corollary 1.

Under the assumption of [image: there is no content]-properness, if [image: there is no content] are permissible strategies for [image: there is no content] with [image: there is no content], [image: there is no content] and with [image: there is no content] adapted to [image: there is no content], then a necessary and sufficient condition that [image: there is no content] and [image: there is no content] are in equilibrium with [image: there is no content] as bi-optimal state is that [image: there is no content], i.e., that


[image: there is no content]



(52)









Proof. 

Under the conditions stated, (43) is automatic and (52) is a reformulation of (42). Thus (52) implies that [image: there is no content] is a Nash equilibrium pair and the result follows from Theorem 2. ☐







An important and trivial consequence of the existence of a bi-optimal state is the validity of the Pythagorean inequalities. Let [image: there is no content] be a bi-optimal state and [image: there is no content] its response. The direct Pythagorean inequality, or just the Pythagorean inequality, is the inequality [image: there is no content], typically considered for [image: there is no content]. This is nothing but a trivial rewriting of (52). When it holds, [image: there is no content] and the inequality for an individual state [image: there is no content] is, therefore, a sharper form of the trivial inequality [image: there is no content]. The dual Pythagorean inequality is the inequality [image: there is no content], typically considered for [image: there is no content]. When it holds, [image: there is no content], and the inequality for an individual strategy [image: there is no content] is, therefore, a sharper form of the trivial inequality [image: there is no content].



Theorem 3.

[Pythagorean inequalities] Under the assumption of [image: there is no content]-properness, if [image: there is no content] and [image: there is no content] are in equilibrium with [image: there is no content] as bi-optimal state then, with [image: there is no content], the direct as well as the dual Pythagorean inequalities hold:


∀x∈P:H(x)+D^(x,w*)≤H(x*),



(53)






∀w≻P:Ri^(w*|P)+D^(x*,w)≤Ri^(w|P).



(54)









Proof. 

As to (53), this follows from Corollary 1. Also (54) must hold since, for [image: there is no content],


[image: there is no content]








☐





The Pythagorean flavour of (53) is more pronounced when one turns to models of updating, cf., Section 2.13 and Section 3.2.



Let us elaborate on the direct Pythagorean inequality. First, let us agree that a control w of [image: there is no content] is a Pythagorean control for [image: there is no content] if, for every [image: there is no content],


[image: there is no content]



(55)







This notion will be used whether or not [image: there is no content] is in equilibrium and whether or not this game has optimal strategies. In particular, it applies in cases when no MaxEnt-state exists. Of course, the notion is only of interest if [image: there is no content].



Translating to the Y-domain, we say that y is a Pythagorean belief instance for [image: there is no content] if [image: there is no content] and if, for every [image: there is no content],


[image: there is no content]



(56)







Theorem 4.

Under the assumption of [image: there is no content]-properness, assume that a MaxEnt-state exists for the preparation [image: there is no content] and that [image: there is no content]. Then the following three conditions are equivalent:

	
a Pythagorean control for [image: there is no content] exists;



	
a Pythagorean belief instance for [image: there is no content] exists;



	
The games [image: there is no content] and [image: there is no content] are in equilibrium and a bi-optimal state for these games exist.








If these conditions are fulfilled, the Pythagorean control, [image: there is no content], is unique and identical to the optimal strategy for Observer in [image: there is no content]. Further, a belief instance, [image: there is no content] with [image: there is no content] is a Pythagorean belief instance if and only if it has [image: there is no content] as response.





Proof. 

Assume that w is a Pythagorean control. Then, by (55), [image: there is no content]. Choose a MaxEnt-state [image: there is no content]. Then [image: there is no content] and (55) with [image: there is no content] implies that [image: there is no content]. As [image: there is no content] also holds, [image: there is no content]-properness shows that [image: there is no content]. Then, by Corollary 1, [image: there is no content] and [image: there is no content] are in equilibrium with [image: there is no content] as bi-optimal state. Appealing also to previous results, all statements of the theorem follow. ☐





The three results to follow are often useful in applications.



Theorem 5.

[Robustness theorem] Under the assumption of [image: there is no content]-properness, let [image: there is no content] be an adapted pair and assume that [image: there is no content] is robust for [image: there is no content], say at the level h of robustness, and that [image: there is no content] is consistent. Then [image: there is no content] is in equilibrium with h as value and with [image: there is no content] as bi-optimal state. Furthermore, for any [image: there is no content], the Pythagorean inequality holds with equality:


[image: there is no content]



(57)







Similarly, if [image: there is no content] and [image: there is no content] are response-equivalent, if [image: there is no content] is robust for [image: there is no content] and if [image: there is no content] is consistent, then [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state and, for [image: there is no content],


[image: there is no content]



(58)









The equality (57) or (58) for [image: there is no content] is the Pythagorean equality, here in an abstract version. A more compact geometry flavored formulation of the first part of Theorem 5 in the direction of Corollary 1 runs as follows:



Corollary 2.

Under the assumption of [image: there is no content]-properness, if h is finite and [image: there is no content], then [image: there is no content] and [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state.





In case response is injective, the second part of Theorem 5 really only involves one element, [image: there is no content], as the other element, [image: there is no content], has to be identical to [image: there is no content]. The two essential conditions are one on [image: there is no content] as a strategy for Nature, viz., that it is consistent, and one on [image: there is no content] as a strategy for Observer, viz., that it is robust. There can only be one such element. If we drop the condition of consistency, there may be many more such elements. They form the previously defined core of [image: there is no content].



For preparation families we find the following result:

Theorem 6.

Under the standard assumption on properness, consider a preparation family [image: there is no content] with [image: there is no content]. Let [image: there is no content] be a state, put [image: there is no content] and assume that [image: there is no content]. Further, put [image: there is no content] with [image: there is no content] for [image: there is no content] and assume that these constants are finite. Then [image: there is no content] and [image: there is no content] is in equilibrium and has [image: there is no content] as bi-optimal state. In particular, [image: there is no content] is the MaxEnt strategy for [image: there is no content].







This follows directly from the involved definitions and from Theorem 5. The reader will easily establish an analogous result for the [image: there is no content]-domain.



The notions of robustness and core also make sense for games defined in terms of proper or just [image: there is no content]-proper utility-based information triples. If [image: there is no content] is such a triple, we simply apply the above definitions to the associated effort-based triple [image: there is no content].



Theorem 2 points to a strategy which is often fruitful in the search for a MaxEnt-strategy, viz., first to determine the core of the given preparation and then to select that element (if any) in the core which is consistent. This route to determine MaxEnt strategies does not involve the infinitesimal calculus, in particular, it does not need the use of Lagrange multipliers. Researchers of statistical physics may claim that you need the Lagrange multipliers as they are of special physical significance, see e.g., Kuic [61]. In that connection, one will find that these quantities turn up anyhow and in a more natural way if you follow the approach via robustness, cf., [62].



The notion of robustness has not received much attention in a game theoretical setting. It is implicit in [26,63] and perhaps first formulated in [24]. Apparently, the existence of suitable robust strategies is a strong assumption. However, for typical models appearing in applications, the assumption is often fulfilled when optimal strategies exist. Results from [27] point in that direction.



Dual versions of the notions and results indicated above could be introduced, depending on (54) rather than on (53). However, it seems that the notions related to the direct Pythagorean inequality are the more useful ones.



For the result to follow we need an abstract version of Jeffrey’s divergence given, for two states [image: there is no content] and [image: there is no content], by


[image: there is no content]



(59)







Corollary 3.

[transitivity inequality] Assume that [image: there is no content] is a [image: there is no content]-proper information triple. If [image: there is no content] is in equilibrium with [image: there is no content] as a bi-optimal state, then, for every state [image: there is no content] and every belief instance [image: there is no content], the inequality


[image: there is no content]



(60)




holds. In particular, for every [image: there is no content],


[image: there is no content]



(61)









Proof. 

First note that also [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state. Then, putting [image: there is no content], (53) and (54) hold. Therefore, and as [image: there is no content], for [image: there is no content] and [image: there is no content],


[image: there is no content]



(62)







To a given belief instance y with [image: there is no content] we then apply (62) with [image: there is no content]. As [image: there is no content], [image: there is no content] and [image: there is no content], (60) follows. ☐





We refer to (60) as the transitivity inequality. It is a sharper version of the minimax inequality [image: there is no content]. It combines both Pythagorean inequalities and these are easily derived from it. If [image: there is no content], the inequality holds with equality if and only if both Pythagorean inequalities (53) and (54) hold with equality.



As to the last part of Corollary 3, we note that if you put [image: there is no content], then the bi-optimal state has Jeffrey divergence at most r from x.



For the final result of this section we shall work in the Y-domain based on the derived triple [image: there is no content].



First we point to an extra property of bi-optimal states which follows from (53). In order to formulate this in a convenient way we need some definitions. A sequence [image: there is no content] of states converges in divergence to the state x, written [image: there is no content], if [image: there is no content]. This requires that [image: there is no content] for all n (or for all n sufficiently large). If [image: there is no content] for all n, we say that [image: there is no content] is asymptotically optimal, more precisely asymptotically optimal for Nature in the game [image: there is no content], if [image: there is no content] as [image: there is no content]. Finally, a state x (not necessarily in [image: there is no content]) is a maximum entropy-attractor for [image: there is no content] with respect to convergence in divergence, more briefly, a [image: there is no content]-attractor for [image: there is no content] wrt D-convergence, if [image: there is no content] for every asymptotically optimal sequence [image: there is no content].



We can now state a trivial corollary to Theorem 3 (transformed to the Y-domain):



Corollary 4.

Any bi-optimal state [image: there is no content] for a game [image: there is no content] in equilibrium, is a [image: there is no content]-attractor for [image: there is no content] wrt D-convergence.





We shall later demonstrate the existence of attractors in certain cases when the bi-optimal state may not exist. However, that will also involve a variant of the notion of attractor which relates to a different kind of convergence, convergence in Jensen-Shannon divergence, rather than convergence in divergence. The two concepts are identical in key cases as we shall later demonstrate (discussion after the proof of Theorem 11).




2.13. Games Based on Utility, Updating


In the previous section we investigated games related to an effort-based information triple. Similar notions and results apply when we start-out with a utility-based triple. Let us work in the Y-domain and base the first part of our discussion on a proper utility-based information triple [image: there is no content] over [image: there is no content]. Then, given a preparation [image: there is no content], the associated game [image: there is no content] has Observer as maximizer and Nature as minimizer and the two values of the game are, for Nature, the minimax utility [image: there is no content]:


[image: there is no content]



(63)




and, for Observer, the corresponding maximin value


[image: there is no content]



(64)







For [image: there is no content], the infimum occurring here is the guaranteed utility associated with the strategy y. We denote it [image: there is no content]. The maximin value (64) is also referred to as the maximal guaranteed utility. We denote it [image: there is no content]:


[image: there is no content]



(65)







Notions and results, e.g., related to equilibrium, to optimal or bi-optimal states etc. are developed in an obvious manner, either by following Section 2.12 in parallel or by applying the results of Section 2.12 to the effort-based triple [image: there is no content]. The reader who wishes so will also be able to relax the assumption of properness to [image: there is no content]-properness.



Here, we limit the discussion to an elaboration of the important case of updating, cf., Section 2.8. For updating, according to Section 2.8, we do not need a full information triple. Therefore, for the remainder of the section we take as our basis a general divergence function D on [image: there is no content], a preparation [image: there is no content] and a prior [image: there is no content] with [image: there is no content] on [image: there is no content]. The game associated with the utility-based information triple [image: there is no content] we denote [image: there is no content]. According to (63), the value for Nature in this game is [image: there is no content], also denoted [image: there is no content] and referred to as the minimum divergence value or the MinDiv-value:


[image: there is no content]



(66)







An optimal strategy for Nature is here called a D-projection of [image: there is no content] on [image: there is no content]. Consider an Observer strategy [image: there is no content], i.e., a possible posterior. We use the same notation as in the general case, “Gtu” , to indicate Observer’s evaluation of the performance of the posterior. Incidentally, the letters can here be taken to stand for “guaranteed updating (gain)”. Thus


[image: there is no content]



(67)




is the guaranteed updating gain associated with the choice of y as posterior, and


[image: there is no content]



(68)




is Observer’s value of the game, the maximum guaranteed updating gain, or the MaxGtu-value of [image: there is no content].



The basic results for the updating game may be summarized as follows:



Theorem 7.

Let D be a general divergence function on [image: there is no content], [image: there is no content] a preparation and [image: there is no content] a belief instance with [image: there is no content] on [image: there is no content]. Consider the updating game [image: there is no content].



If [image: there is no content], then γ is in equilibrium with [image: there is no content] as bi-optimal state if and only if the Pythagorean inequality


[image: there is no content]



(69)




holds for every [image: there is no content]. Moreover, if this condition is satisfied, [image: there is no content] is the D-projection of [image: there is no content] on [image: there is no content]. Furthermore, the dual Pythagorean inequality


[image: there is no content]



(70)




holds for every [image: there is no content].





The proof can be carried out by applying Corollary 1 and Theorem 3 to the effort function [image: there is no content] associated with the updating game considered, cf., (24). Details are left to the reader.



The concept of attractors also makes sense for updating games. Then the relevant notion is that of a relative attractor given [image: there is no content], also referred to as the [image: there is no content]-attractor, which is defined as a state [image: there is no content] such that, for every sequence [image: there is no content] in [image: there is no content] with [image: there is no content] it holds that [image: there is no content]. In the situation covered by Theorem 7—assuming also that limit states for convergence in divergence are unique—the relative attractor exists and coincides with the bi-optimal state.



The Pythagorean inequality originated with Chentsov [64] and Csiszár [63] where updating in a probabilistic setting was considered. Further versions, still probabilistic in nature can be found in Csiszár [65] and in Csiszár and Matús [66]. In [67] these authors present a general abstract study, adapting a functional analytical approach building technically on meticulous exploitation of tools of convex analysis, partly developed by the authors. This source may also be consulted for information about the historical development and related works. As a work depending on a reversed Pythagorean inequality related to the triple (25), we mention Glonti et al. [68].



The reader should be aware that our notation deviates from what is most commonly found in the literature and promoted by Csiszár, mainly for classical Shannon Theory. Thus a relative attractor is mostly called a generalized I-projection (information projection). We have chosen to stick to the terminology with attractors, partly as their discussion is based on the primary results involving MaxEnt-analysis for which a terminology of projection is less natural.




2.14. Formulating Results with a Geometric Flavour


The results of Section 2.12 are formulated analytically. In this section we make a translation to results which have a certain geometric flavour. We shall work entirely in the Y-domain. No mention of controls or response will occur. This corresponds to a model with [image: there is no content] and where response is the identity map. Throughout the section results are based on a proper effort-based information triple [image: there is no content].



In the previous sections, we had a fixed preparation in mind. Here, we shall also discuss to which extent you can change a preparation without changing the optimal strategy.



Sub Level sets of the form [image: there is no content] play a a key role. These sets appeared before as primitive feasible preparations. Here they have a different role and we prefer to use the bracket notation as above.



Proposition 3.

Let [image: there is no content] be a state with finite entropy [image: there is no content]. Then, given a preparation [image: there is no content], the necessary and sufficient condition that the game [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state is that [image: there is no content] is squeezed in between [image: there is no content] and [image: there is no content], i.e., that [image: there is no content]. In particular, [image: there is no content] is the largest such preparation.





This follows directly from Theorem 2 and Corollary 1.



For a fixed preparation [image: there is no content], we can express the two values of [image: there is no content], [image: there is no content] and [image: there is no content], in a geometrically flavoured way. This can be done whether or not the game is in equilibrium and the result can thus be used to check if the game is in fact in equilibrium. It is convenient to introduce some preparatory terminology.



Firstly, a subset of X is an entropy sub level set if it is a (non-empty) set of the form [image: there is no content]. The size of such a set is the smallest number a which can occur in this representation, clearly equal to the MaxEnt-value associated with the preparation [image: there is no content]. Given a preparation [image: there is no content], the associated enveloping entropy sub level set is the smallest entropy sub level set containing [image: there is no content].



Secondly, and quite analogously in view of (38) and (39), we introduce the size of the [image: there is no content]-sub level set [image: there is no content] as the smallest number a which can occur in this representation. And we define the enveloping [image: there is no content]-sub level set associated with [image: there is no content] to be the smallest [image: there is no content]-sub level set containing [image: there is no content].



Proposition 4.

Consider the game [image: there is no content] associated with a preparation [image: there is no content]. Then:

	(i) 

	
The MaxEnt-value [image: there is no content] is the size of the enveloping entropy sub level set associated with [image: there is no content];




	(ii) 

	
For fixed [image: there is no content], [image: there is no content] is the size of the enveloping [image: there is no content]-sub level set associated with [image: there is no content].




	(iii) 

	
The MinRisk-value [image: there is no content] is the infimum over [image: there is no content] of the sizes of the enveloping [image: there is no content]-sub level sets associated with [image: there is no content].











In view of (38)–(40), this is obvious. Some comments on the result are in order. In (i) it is understood that the size is infinite if no entropy sub level set exists which contains [image: there is no content]. A similar convention applies to (ii). Also note that the result gives rise to a simple geometrically flavoured proof of the minimax inequality (41) by noting that for each [image: there is no content] and each h, [image: there is no content].



There are two families of sets involved in Proposition 4, the entropy sub level sets and the [image: there is no content]-sub level sets. As the proposition shows, both families give valuable information about the games we are interested in. From the second family alone, one can in fact obtain rather complete information. Indeed, if [image: there is no content] contains a given preparation for appropriately chosen y and a, the associated game is well behaved:



Proposition 5.

Given a preparation [image: there is no content], a necessary and sufficient condition that [image: there is no content] is in equilibrium and has a bi-optimal state is that [image: there is no content] for some [image: there is no content] with [image: there is no content] and [image: there is no content]. When the condition is fulfilled, a is the value of the game and y the bi-optimal state.





The simple proof is left to the reader. It is the sufficiency which is most useful in practical applications.



The results above translate without difficulty to results about games associated with a utility-based information triple [image: there is no content]. For this, superlevel sets of the form [image: there is no content] as well as strict sub level sets of the form either [image: there is no content] or [image: there is no content] play an important role. The notion of size of these latter sets, those defined by strict inequality, is defined as the largest value of a which can occur in the representations given.



We shall consider the largest sets of the form [image: there is no content], respectively [image: there is no content], which are contained in the complement [image: there is no content] or, as we shall consistently prefer to say below, which are external to [image: there is no content].



Either directly—or as corollaries to Propositions 3–5 applied to the effort-based triple [image: there is no content]—one derives the following results:



Proposition 6.

Let [image: there is no content] be a utility-based information triple and consider a state [image: there is no content] with [image: there is no content]. Then, for any preparation [image: there is no content], the game [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state if and only if [image: there is no content]. In particular, the largest such preparation is the superlevel set [image: there is no content].





Proposition 7.

Let [image: there is no content] be a utility-based information triple and consider a preparation [image: there is no content] and the associated game [image: there is no content]. Then:

	(i) 

	
The value [image: there is no content] is the size of the largest strict sub level set [image: there is no content] which is external to [image: there is no content].




	(ii) 

	
For fixed [image: there is no content], [image: there is no content] is the size of the largest strict sub level set [image: there is no content] which is external to [image: there is no content].




	(iii) 

	
The value [image: there is no content], as the supremum of [image: there is no content], is the supremum of all sizes of sets of the form [image: there is no content] with [image: there is no content] which are external to [image: there is no content].











Proposition 8.

Let [image: there is no content] be a utility-based information triple and consider a preparation [image: there is no content]. Then a necessary and sufficient condition that [image: there is no content] is in equilibrium and has a bi-optimal state is that [image: there is no content] is external to [image: there is no content] for some [image: there is no content] with [image: there is no content] and [image: there is no content]. When the condition is fulfilled, a is the value of the game and y the bi-optimal state.





We also note that the minimax inequality [image: there is no content] follows from Proposition 7 by applying the fact that, generally, [image: there is no content].



Let us look specifically at models of updating, cf., Section 2.13.



Given is a general divergence function D on [image: there is no content] and we consider preparations [image: there is no content] and priors [image: there is no content] for which [image: there is no content] on [image: there is no content]. The sets we shall focus on related to the games [image: there is no content] are of two types, which we associate with, respectively “balls” and “half-spaces”. Firstly, for [image: there is no content], consider the open divergence ball with radius r and centre [image: there is no content], defined as the [image: there is no content]-sub level set


[image: there is no content]



(71)







In case [image: there is no content] for some state [image: there is no content], we write this set as [image: there is no content]:


[image: there is no content]



(72)







And, secondly, we consider sets—all referred to as half-spaces—of one of the following forms


σ+(y,a|y0)={x|U|y0<a}={x|D(x,y0)−D(x,y)<a}



(73)






σ−(y,a|y0)={x|U|y0≥a}={x|D(x,y0)−D(x,y)≥a}



(74)






σ+(y|y0)={x|U|y0<D(y,y0)}={x|D(x,y0)−D(x,y)<D(y,y0)}



(75)






σ−(y|y0)={x|U|y0≥D(y,y0}={x|D(x,y0)−D(x,y)≥D(y,y0)}



(76)







Associated with the sets introduced we define certain “boundary sets” , respectively peripheries and hyper-spaces. Notation and definition for the former type of sets is given by


[image: there is no content]








and for the latter type we use


[image: there is no content]











When translating basic parts of Propositions 6–8 to the setting we are now considering, we find the following result:



Proposition 9.

Let D be a general divergence function on [image: there is no content] and consider a belief instance [image: there is no content] such that [image: there is no content]. Then the following results hold for the associated updating games with [image: there is no content] as prior:

	(i) 

	
For any [image: there is no content], the largest preparation [image: there is no content] for which [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal state, hence with [image: there is no content] as the D-projection of [image: there is no content] on [image: there is no content], is the half-space [image: there is no content].




	(ii) 

	
For a fixed updating game [image: there is no content], the MinDiv-value [image: there is no content] is the size of the largest strict divergence ball [image: there is no content] which is external to [image: there is no content], and the maximal guaranteed updating gain [image: there is no content] is the supremum of a for which there exists [image: there is no content] such that the half-space [image: there is no content] is external to [image: there is no content].




	(iii) 

	
An updating game [image: there is no content] is in equilibrium and has a bi-optimal state if and only if, for some [image: there is no content], the half-space [image: there is no content] is external to [image: there is no content]. When this condition holds, y is the bi-optimal state, hence the D-projection of [image: there is no content] on [image: there is no content].











For illustrations see cases (a) and (b) shown in the figure in Section 3.2.




2.15. Adding Convexity


It has been recognized since long that notions of convexity play an important role for basic properties of Shannon theory and for optimization theory in general, cf. in particular Boyd and Vandenberghe [54] which also has a bearing on many of the concrete problems treated later on. Deliberately, we have postponed the introduction of this element until this late moment, thereby demonstrating that a large number of concepts and results can be formulated quite abstractly and do not require convexity considerations. Also, it will become more clear exactly where convexity is needed.



We shall study results which can be obtained under added algebraic assumptions related to convexity considerations.



We assume that X is a convex set. The convex hull of a preparation [image: there is no content] is denoted [image: there is no content]. We assume that controllability is adapted to the convex structure in the sense that a control w controls a convex combination, say [image: there is no content], if and only if w controls every [image: there is no content] with [image: there is no content]. It follows, that all control regions [image: there is no content] are convex. Also note that, for every convex combination [image: there is no content], we conclude from [image: there is no content] that [image: there is no content] for all i with [image: there is no content] and hence, if we switch to the Y-domain, [image: there is no content] for every i with [image: there is no content].



Regarding convex combinations, they are understood to be finite convex combination, often written as above without introducing any special notation for the relevant index set.



Properties of Concavity, convexity and affinity of real-valued functions f defined on X or on a convex subset of X are largely defined in the usual way. Thus, for concavity, the condition is that if [image: there is no content] is a convex combination of elements in the domain of definition of f, then [image: there is no content]. For convexity the inequality sign is turned around and for affinity it is replaced by equality. The notions make sense and will also be applied to extended real-valued functions provided they do not assume both values [image: there is no content] and [image: there is no content]. One comment has to be made, though. We only require that X is a convex set. However, X could be affine, i.e., combinations [image: there is no content] could be defined whenever the coefficients [image: there is no content] are arbitrary real numbers which sum up to 1. This will be the case for some models. We shall then point out if stated results hold for arbitrary affine combinations, not just for convex combinations.



The above definitions and concepts along with associated assumptions will always be understood to apply when, in the sequel, we work with a convex state space.



The basis in this section, except for the last part (Example 1 and Proposition 10), is a proper effort-based information triple [image: there is no content] over [image: there is no content]. The derived information triple over [image: there is no content] is denoted [image: there is no content]. When there is also given a preparation [image: there is no content], the results developed continue to hold under [image: there is no content]-properness.



Emphasis will be on concavity, convexity or affinity for the w-marginals [image: there is no content]—either all of them or only those with a control in the range of the response function. Note that, say affinity for [image: there is no content] with w of the form [image: there is no content] for some [image: there is no content] amounts to the same as affinity of [image: there is no content].



Basic properties of entropy and redundancy (hence also divergence) under added conditions about the marginals [image: there is no content] or [image: there is no content] are contained in the following result:



Theorem 8 (Deviation from affinity).


	(i) 

	
If the marginals [image: there is no content] with [image: there is no content] are concave, then, for every convex combination [image: there is no content] of elements in X,


[image: there is no content]



(77)




In particular, H is concave and if [image: there is no content] and this quantity is finite, then all [image: there is no content] with [image: there is no content] are response equivalent, in fact [image: there is no content] for these indices. If response is injective, the entropy function is strictly concave.




	(ii) 

	
If the marginals [image: there is no content] with [image: there is no content] are even affine, equality holds in (77):


[image: there is no content]



(78)








	(iii) 

	
If the marginals [image: there is no content] with [image: there is no content] are affine and if [image: there is no content] for a convex combination [image: there is no content] then, for every control w with [image: there is no content],


[image: there is no content]



(79)








	(iv) 

	
If the marginals [image: there is no content] with [image: there is no content] are affine, if [image: there is no content] is a convex preparation with [image: there is no content] and if [image: there is no content], then the restriction of [image: there is no content] to [image: there is no content] is convex and if [image: there is no content] for a convex combination [image: there is no content] of states in [image: there is no content], then all [image: there is no content] with [image: there is no content] are response equivalent, in fact [image: there is no content] for these indices. If response is injective, the restriction of [image: there is no content] to [image: there is no content] is strictly convex.











Proof. 

The result is a natural extension of (the main parts of) Theorem 1 of [55] and the proof is similar: For (i), apply linking to rewrite the right hand side, then upper bound the expression you get by the assumed concavity and you end with the upper bound [image: there is no content]. The results about concavity of H are easy consequences and property (ii) is proved similarly. For the basic assertion of (iii), add [image: there is no content] to both sides of (78), and use linking to rewrite the right hand side. Then apply the assumed affinity and the term [image: there is no content] appears to which you once more apply linking. Finally subtract [image: there is no content] from both sides. The assertions of (iv) are easy consequences. ☐





Several comments are in place. First, as a simple corollary to (i) of Theorem 8 we note the following:



Corollary 5.

Assume that the marginals [image: there is no content] with [image: there is no content] are concave and consider the game [image: there is no content] for a convex preparation [image: there is no content]. Then the set of optimal strategies for Nature in this game is convex and, in case response is injective and [image: there is no content], there can be at most one optimal strategy for Nature.





Conditions of affinity will play a main role for many results to follow. Notions of affine equivalence applies in various contexts ([image: there is no content]-domain, Y-domain, effort-based or utility-based). Some examples will suffice: The effort functions [image: there is no content] and [image: there is no content] over [image: there is no content] are affinely equivalent if there exists a finite-valued affine function f on X such that, for [image: there is no content], [image: there is no content]. If so, [image: there is no content] and [image: there is no content] are equivalent ([image: there is no content]). Moreover, two effort-based information triples [image: there is no content] and [image: there is no content] are affinely equivalent if they are equivalent and there exists a finite-valued affine function f on X such that, for [image: there is no content], [image: there is no content]. Then of course, also [image: there is no content].



A simple and practically important result which follows readily from affinity conditions exploits the notion of robustness in its weakened form introduced in Section 2.9, cf., (32) and (33). The result is an extension of Theorem 5.



Theorem 9.

Let X be a convex state space and let [image: there is no content] be a proper information triple over [image: there is no content] for which the marginals [image: there is no content] with [image: there is no content] are all affine. Let [image: there is no content] be a pair of permissible strategies for [image: there is no content] with [image: there is no content] adapted to [image: there is no content]. Assume that [image: there is no content] and that [image: there is no content] is [image: there is no content]-robust. Then [image: there is no content] is in equilibrium with [image: there is no content] as bi-optimal strategy.





Proof. 

Let [image: there is no content] be the constant for which (32) and (33) hold. By affinity, (32) extends to states in [image: there is no content], hence [image: there is no content]. The result now follows from Theorem 2. ☐





Then some comments on (79). In the terminology of [69], this is the compensation identity with the last term as compensation term. This term appears as a measure of deviation from affinity, both in relation to entropy, cf., (78), and in relation to redundancy (hence also to divergence), cf., (79). The significance of such terms is being more widely recognized. This applies in particular to the case of an even mixture [image: there is no content], for which the term is called Jensen-Shannon divergence, briefly just JSD-divergence, between [image: there is no content] and [image: there is no content]. We shall use the notation


[image: there is no content]



(80)




where a “bar” signals “midpoint of”, a notation to be used often in the sequel:


[image: there is no content]



(81)







For even mixtures of two states, the compensation identity states that


[image: there is no content]



(82)




which, for classical Shannon theory, is sometimes called the parallelogram identity. The identity makes sense for an arbitrary general divergence function but one should note the requirement of finiteness in (79), expressed somewhat indirectly via the entropy function. That some restriction is important will be seen from Example 1 below. When (82) holds, you may apply it with [image: there is no content] and with [image: there is no content], and derive the identity


[image: there is no content]



(83)







Previously, JSD-divergence has mainly been studied in the context of classical Shannon theory. For our more abstract theory, we have chosen to put emphasis on it, especially in the formulation of technical assumptions which are needed for the proofs of some basic results to follow. Note that JSD-divergence is everywhere defined on [image: there is no content] which D-divergence need not be. In the next section we take up a closer study of Jensen-Shannon divergence.



The purpose of the next result is to indicate that it is conceivable that for many concrete situations, a bi-optimal state will be robust, i.e., lie in the core of the preparation concerned. This result, in a more concrete set-up goes back to Csiszár, cf., [63]. It depends on the following notion: A state x is an algebraic inner point of [image: there is no content] (typically assumed convex) if, for every [image: there is no content] distinct from x, there exists [image: there is no content] such that x is a genuine convex combination of [image: there is no content] and [image: there is no content].



Corollary 6.

Assume that [image: there is no content] is affine for all [image: there is no content] and let [image: there is no content] be a convex preparation. If [image: there is no content] is in equilibrium and has a bi-optimal state [image: there is no content] and if this state is algebraic inner in [image: there is no content], then [image: there is no content] is robust for [image: there is no content] at the robustness level [image: there is no content]. In particular, [image: there is no content].





Proof. 

With assumptions as stated, consider any [image: there is no content] distinct from [image: there is no content] and determine [image: there is no content] such that [image: there is no content] is a genuine convex combination of x and [image: there is no content], say [image: there is no content]. We find that [image: there is no content]. Similarly, [image: there is no content]. As the convex combination [image: there is no content] equals [image: there is no content], we conclude that [image: there is no content]. As this holds for every [image: there is no content], the result follows. ☐





An example is in place to illuminate the importance of the finiteness condition in relation to the compensation identity. We shall work in the Y-domain, for which the identity takes the following form:


[image: there is no content]



(84)







The identity can be considered for more or less any bivariate function D on [image: there is no content]. As before let X be convex and assume that [image: there is no content]. We further assume that D is a general divergence function on [image: there is no content]. It may be that D is derived from an information triple over [image: there is no content], but we do not assume so. In particular, no response function is involved.



In order to check if the compensation identity holds for D, you may check if the difference [image: there is no content] is well defined and independent of y. Or you may inspect more closely the expression for D. If this expression, apart from pure x-only dependent terms, only contains terms which, for fixed y, are linear terms in x, a suitable entropy can be identified and the compensation identity (84) will hold (when [image: there is no content]). The procedure is demonstrated in the following example which, at the same time, also illustrates the role of the two assumptions made in part (iii) of Theorem 8 in order for (79) or (84) to hold.



Example 1.

Let [image: there is no content] be copies of the real line [image: there is no content] provided with the standard structure, let response be the identity map and let visibility be the diffuse relation. Further, let α be a positive parameter and consider the bivariate function D given by


[image: there is no content]



(85)




Clearly, this is a genuine general divergence function.



If [image: there is no content], (84) does not hold. Indeed, if you consider the mixture [image: there is no content] and as y take [image: there is no content], then the left hand side of (84) equals [image: there is no content] whereas the right hand side equals [image: there is no content]. Thus, when [image: there is no content], there is no information triple [image: there is no content] equivalent to [image: there is no content] for which (84) holds generally. So you cannot add a finite entropy function to [image: there is no content] and obtain an effort function with affine marginals.



If [image: there is no content], the matter is quite different. Then [image: there is no content] and you can subtract [image: there is no content] to obtain a function with linear dependency on x for a given value of y. In other words, if you consider the triple equivalent to [image: there is no content] for which entropy is given by [image: there is no content], all conditions of Theorem 8, (iii) are fulfilled, thus (84) must hold. Further material on this and similar examples can be found in Section 3.1.





For our last observation of this section we return to an updating triple [image: there is no content] as introduced in Section 2.8, cf. (22). Here, D is a general divergence and [image: there is no content] a prior. A certain preparation [image: there is no content] is also given and it is assumed that [image: there is no content] on [image: there is no content]. The triple [image: there is no content] is a genuine proper utility-based information triple over [image: there is no content]. It is still assumed that X is convex and that [image: there is no content]. The observation we want to point out is the following:



Lemma 1.

If, in addition to assumptions above, the compensation identity (84) holds for all convex combinations of states in [image: there is no content] and all [image: there is no content], then all marginal functions of the utility function [image: there is no content] obtained by fixing an element [image: there is no content] are affine.





Proof. 

Consider any [image: there is no content] and any convex combination [image: there is no content] of states in [image: there is no content]. As [image: there is no content] on [image: there is no content], the sum [image: there is no content] is finite. By the compensation identity, so is the sum [image: there is no content]. For [image: there is no content], we find that


U|y0(x¯,y)=D(x¯,y0)−D(x¯,y)=∑αiD(xi,y0)−∑αiD(xi,x¯)  −∑αiD(xi,y)−∑αiD(xi,x¯)=∑αiD(xi,y0)−∑αiD(xi,y)=∑αiU|y0(xi,y).








This is the affinity relation sought. ☐





The significance of this result is that it will later allow us to apply results for the updating games under convexity assumptions, cf., Theorem 15.




2.16. Jensen-Shannon Divergence at Work


As in the previous section, X is a convex set. We assume now that [image: there is no content]. For the first part of the section we take as base a general divergence function D over [image: there is no content]. No preparation, effort function or entropy function will appear until later in the section. We work entirely in the Y-domain.



As is no surprise, not all results of information theory are constructive and in order to be able to handle situations where constructive methods are not available, we shall introduce topologically flavored notions and methods. Previously, as in [55], we introduced topology into the picture by referring to a “reference topology” which could be a topology with no very direct relation to the theory developed. Now we apply a different approach and insist that everything topological can be expressed in terms of quantities of direct interest for the theory dealt with. In fact, the previously defined Jensen-Shannon divergence (JSD), cf., (80), will now be the central quantity to work with. This notion of divergence is an everywhere defined, smoothed and symmetrized version of standard divergence. It may take the value [image: there is no content]. The following properties are obvious in view of the definition:


[image: there is no content]



(86)






[image: there is no content]



(87)






[image: there is no content]



(88)






[image: there is no content]



(89)







These properties hold for all [image: there is no content]. The same properties hold for any bivariate function on [image: there is no content] which is a function of some metric with a function defined on [image: there is no content] which vanishes at 0 and nowhere else. In several concrete cases, Jensen-Shannon divergence is of this type, in some central cases even in a very simple way as JSD will be a squared metric in the cases we have in mind. For research in this direction, we refer to Endres and Schindelin [70], Fuglede and Topsøe [71] and Briët and Harremoës [72]. The present study is a further indication of the significance of Jensen-Shannon divergence.



Jensen-Shannon divergence defines a natural sequential notion of convergence in X. To be precise, a sequence [image: there is no content]converges in Jensen-Shannon divergence to x and we write [image: there is no content], if [image: there is no content] as [image: there is no content]. We shall only pay attention to convergence of ordinary sequences. Convergence in Jensen-Shannon divergence is also referred to as JSD-convergence.



A sequence [image: there is no content] is a JSD-Cauchy sequence if


[image: there is no content]



(90)




We shall consider the following five properties:


[image: there is no content]



(91)






C2(subsequenceconsistency):  xn⟶JSDx⇒xnk⟶JSDx for any subsequence;



(92)






[image: there is no content]



(93)






C4(subsubsequenceprinciple):  If ∀(xnk)∃(xnkl): xnkl⟶JSDx then xn⟶JSDx;



(94)






[image: there is no content]



(95)







We may use terminology such as JSD-convergence has unique limits or JSD convergence is complete, for example. Clearly C1, C2 and C4 hold generally. Completeness (C5) will be taken as an independent axiom. Adding two relatively innocent technical axioms, we shall also establish C3.



The axiom ASC of algebraic sequential continuity wrt JSD-convergence is the requirement that, for convex combinations [image: there is no content] and for a convex combination [image: there is no content] such that [image: there is no content], [image: there is no content] and [image: there is no content] (hence also [image: there is no content]) it holds that [image: there is no content].



The axiom JSC of joint sequential lower semi-continuity of divergence is the requirement that, for [image: there is no content] and [image: there is no content], it holds that, properly interpreted,


[image: there is no content]



(96)







Regarding the proper interpretation of (96), we shall agree to define [image: there is no content] whenever [image: there is no content]. Thus the axiom implies that if the right hand side of (96) is finite, then [image: there is no content] must hold.



The significance of the properties C1-4 lies in a general result dueto Kisynski [73], see also Dudley [74], according to which these conditions ensure that the notion of convergence studied is topological, i.e., that there exists a topology on X for which sequential convergence coincides with the given notion of convergence. When this is so, there exists a unique strongest such topology, which we refer to as the associated topology. For this topology, a set is open if and only if any sequence which converges in the notion of convergence to a point in the set, eventually lies in the set. Note that, typically, there are many topologies for which sequential convergence coincides with a given notion of convergence. As a concrete example consider [image: there is no content] and note that the convergent sequences for the discrete topology (the eventually constant sequences) coincides with the class of convergent sequences for the strictly weaker topology specified by taking [image: there is no content] to be open if either [image: there is no content] or else [image: there is no content] with [image: there is no content] the uniform probability measure over [image: there is no content] (this is, essentially, “Appert space” of [75]).



We are now ready to prove the following result:



Theorem 10.

Under the added axioms ASC and JSC, the convergence properties C1-4 hold, hence JSD-convergence is topological and the associated topology is well defined. Further, JSD is a sequentially lower semi-continuous notion, i.e., for [image: there is no content] and [image: there is no content], the following inequality holds:


[image: there is no content]



(97)









Proof. 

To establish (97), note that by axiom ASC the convergence [image: there is no content] is ensured. Then, by axiom JSC,


[image: there is no content]



(98)







Similarly,


[image: there is no content]



(99)







As the left hand side in (97) is the sum of the left hand sides of (98) and (99), and as the sum of the two right hand sides is dominated by the right hand side in (97), (97) must hold.



As to property C3, assume that [image: there is no content] and that [image: there is no content]. Then, by (97), [image: there is no content] and hence [image: there is no content] follows. By properness, [image: there is no content] and then [image: there is no content] follows. ☐





Under the discussion of properties (86)–(89) we indicated that often JSD is directly related to a metric in that a relation of the form


[image: there is no content]



(100)




holds for some metric [image: there is no content]. In such cases it is mostly easy to identify the associated topology (without relying on any extra axioms). We leave it to the reader to prove the following simple result.



Proposition 10.

Assume that, for some metric ρ on X and some continuous and strictly increasing function f on [image: there is no content] with [image: there is no content], Equation (100) holds for all [image: there is no content]. Then the associated topology for JSD-convergence exists and can be identified as the metric topology defined by ρ. Further, JSD is jointly lower semi-continuous. If the metric ρ is complete, so is JSD.





Under suitable conditions we now aim at establishing existence of optimal strategies for the players in the games [image: there is no content]. However, in certain important cases Nature does not have an optimal strategy. Instead, we aim at showing that rather generally replacements in the form of [image: there is no content]-attractors exist. We shall aim at attractors for JSD-convergence but, as it will turn out, under conditions stated, that will amount to the same thing as attractors for D-convergence. The result below, stated in rather full detail for reference purposes, is a main technical result of the present contribution.



Theorem 11.

Consider a convex state space X, let [image: there is no content] and let [image: there is no content] be a proper information triple over [image: there is no content] with affine marginals [image: there is no content] for all [image: there is no content]. Assume that the axioms ASC, JSC and the axiom of JSD-completeness which all relate to the divergence function D hold.



Then, for every convex preparation [image: there is no content] with [image: there is no content], [image: there is no content] is in equilibrium and there exists a unique optimal strategy [image: there is no content] for Observer and a unique [image: there is no content]-attractor [image: there is no content] wrt JSD-convergence. Furthermore, [image: there is no content] and the direct as well as the dual Pythagorean inequalities hold, i.e., for [image: there is no content] and [image: there is no content],


[image: there is no content]













Proof. 

First we prove an auxiliary result, viz that if, for a sequence [image: there is no content] of states in [image: there is no content] and for a state [image: there is no content], [image: there is no content] holds, then also [image: there is no content] must hold.



To see this, note that by assumptions made, we conclude from (iii) of Theorem 8 that, for all n, m and all [image: there is no content],


[image: there is no content]



(101)







Applying this with [image: there is no content], we see that [image: there is no content] is a JSD-Cauchy sequence. By completeness, there exists [image: there is no content] such that [image: there is no content]. By axiom JSD, [image: there is no content], hence [image: there is no content] and [image: there is no content] follows.



Now, let [image: there is no content] be an asymptotically optimal sequence for [image: there is no content]. Then (i) of Theorem 8 applied to [image: there is no content] shows that


[image: there is no content]








and we realize that [image: there is no content] is a JSD-Cauchy sequence. Therefore the sequence is JSD-convergent, say [image: there is no content]. If also [image: there is no content] is an asymptotically optimal sequence, there must, likewise, exist [image: there is no content] such that [image: there is no content]. As the alternating sequence [image: there is no content] is also asymptotically optimal, that sequence too JSD-converges, say with [image: there is no content] as limit state. By properties C2 and C3 we find that [image: there is no content]. This shows that there exists a unique [image: there is no content]-attractor wrt JSD-convergence. Let [image: there is no content] be this unique attractor.



Then we remark that if there exists an optimal strategy [image: there is no content] for Observer in [image: there is no content], there can only be one such strategy and it must coincide with [image: there is no content]. To see this, note that if [image: there is no content] is optimal, [image: there is no content], hence, for every [image: there is no content], [image: there is no content] and hence [image: there is no content] is also an [image: there is no content]-attractor wrt convergence in D (cf., also Corollary 4). By the auxiliary fact established in the beginning of the proof, [image: there is no content] is also an [image: there is no content]-attractor wrt JSD-convergence, hence must coincide with [image: there is no content] as claimed.



Now fix an asymptotically optimal sequence, say [image: there is no content]. Then, for [image: there is no content] consider “suitable” convex combinations [image: there is no content] with [image: there is no content] and all [image: there is no content] positive (in fact, [image: there is no content] if the difference [image: there is no content] either vanishes or is larger than 1 and otherwise [image: there is no content] will do). Then


Hmax(P)≥H(ξn)=αnH(xn)+βnH(x)+αnD(xn,ξn)+βnD(x,ξn)≥αnH(xn)+βnH(x)+D(x,ξn),








hence


[image: there is no content]











Clearly, we can select the [image: there is no content]’s such that this quantity converges to [image: there is no content] as [image: there is no content]. By axiom ASC, [image: there is no content] converges in JSD-divergence to [image: there is no content] and then, by axiom JSC, we conclude that [image: there is no content]. Since this holds for every consistent state x, [image: there is no content], from which we conclude that [image: there is no content] is in equilibrium, that the direct Pythagorean inequality holds and that [image: there is no content] is an optimal strategy for Observer. As we have seen before, this strategy is unique.



As, for any [image: there is no content],


[image: there is no content]








also the dual Pythagorean inequality holds. ☐





Several remarks concerning this theorem are in order.



Firstly, note that for the auxiliary result we started out to prove, we had to appeal (implicitly) to the finiteness condition [image: there is no content] in view of the condition [image: there is no content] in (iii) of Theorem 8. Alternatively, we could instead demand that the compensation identity holds unconditionally.



Then, in general, the D-notion and the JSD-notion of convergence may differ from each other (with D-convergence the stronger of the two). However, it follows from the theorem that under the conditions stated, it does not matter whether we define [image: there is no content]-attractors wrt D-convergence or wrt JSD-convergence. We may, therefore, simply talk about an [image: there is no content]-attractor, or even just an attractor, without specifying the mode of convergence we have in mind.



Further, it lies nearby to ask if also the inequality [image: there is no content] can be added to the conclusions in Theorem 11. If H is sequentially lower semi-continuous wrt D-convergence (or wrt JSD-convergence)—as will normally (always?) be the case—the inequality obviously holds. Assume now that this is the case. Then there are two possibilities why an attractor [image: there is no content] may fail to be an optimal strategy for Nature, either because [image: there is no content] or, more interestingly, because there is an entropy loss in that [image: there is no content]. In Harremoës and Topsøe [76], the authors speculate that the phenomena of entropy loss could be important in computational linguistics and provide a partial explanation behind Zipf’s law.



Following up on the remark above, we may investigate what can be accomplished if we work with a state [image: there is no content] which is known to be consistent and apply the same technique of proof as for Theorem 11. What we find is that in the presence of convexity (and with technical axioms added), the essential inequality [image: there is no content] is not needed in full strength. It suffices to assume one of the facts which flow from that inequality, viz., that [image: there is no content]. To be precise:



Theorem 12.

With assumptions as in Theorem 11, let [image: there is no content] be a convex preparation and [image: there is no content] a consistent state with finite entropy which is also a possible strategy for Observer, i.e., [image: there is no content]. Then the condition [image: there is no content] is not only necessary, but also sufficient for [image: there is no content] to hold, hence for [image: there is no content] to be in equilibrium with [image: there is no content] as bi-optimal state.





Proof. 

Consider a state [image: there is no content] and apply (77) to a convex combination of the form [image: there is no content]. We find that [image: there is no content] from which we conclude that [image: there is no content]. By axiom JSD, [image: there is no content] and [image: there is no content] follows. As [image: there is no content] was arbitrary, the desired inequality follows. Apply Corollary 1 and the result follows. ☐





After these remarks let us turn to another key result:



Theorem 13.

Let [image: there is no content] be any preparation—convex or not—such that [image: there is no content]. Keeping the other assumptions of Theorem 11 as they are, the game [image: there is no content] is in equilibrium if and only if entropy is not increased by taking convex mixtures in the sense that


[image: there is no content]



(102)







When (102) holds, [image: there is no content] and [image: there is no content] have the same unique optimal strategy [image: there is no content] for Observer and the same [image: there is no content]-attractor, [image: there is no content] for Nature and the two agree: [image: there is no content].





Proof. 

First remark that if (102) holds, [image: there is no content] and Theorem 11 applies. All claimed properties then follow easily from that result.



To prove necessity, note that quite generally,


[image: there is no content]



(103)







In more detail, the condition [image: there is no content] is equivalent with [image: there is no content], and, for each belief instance [image: there is no content],


[image: there is no content]



(104)







This follows by standard assumptions made in the beginning of Section 2.15 according to which visibility is adapted to the convex structure and by affinity of the marginals [image: there is no content] (convexity would do). Then, if [image: there is no content] is in equilibrium, we can argue that


[image: there is no content]








and (102) follows. ☐





As we saw, the result is essentially a corollary to Theorem 11. The proof above is modeled after the proof of a less abstract result in [55].



We have formulated results for the Y-domain which appear less involved. We leave it to the reader to formulate and prove versions of the two key theorems above for the [image: there is no content]-domain.



Translating Theorems 11 and 12 to a setting based on utility—this requires an obvious dual notion of attractors aiming at minimax utility rather than at maximin effort (i.e., maximal entropy)—one finds the following result:



Theorem 14.

Again with X a convex state space, let [image: there is no content] be a proper utility-based information triple with affine marginals [image: there is no content] for [image: there is no content]. Assume that the technical axioms ASC and JSC hold. Further assume that JSD-divergence is complete. Let [image: there is no content] be a convex preparation for which [image: there is no content]. Then:

	(i) 

	
Without further assumptions, the utility game [image: there is no content] is in equilibrium and there exists a unique optimal strategy [image: there is no content] for Observer and a unique [image: there is no content]-attractor [image: there is no content]. Furthermore, [image: there is no content] and the direct as well as the dual Pythagorean inequalities hold, i.e., for [image: there is no content] and [image: there is no content],


[image: there is no content]



(105)






[image: there is no content]



(106)








	(ii) 

	
In case [image: there is no content] is a consistent state with finite max-utility, i.e., [image: there is no content] for which [image: there is no content], [image: there is no content] and the game [image: there is no content] is in equilibrium and has [image: there is no content] as bi-optimal state. In particular, the Pythagorean inequality


[image: there is no content]



(107)




holds for every [image: there is no content].











Let us collect the key results about updating games in one theorem:



Theorem 15.

Let X be convex, let [image: there is no content] be any preparation and let D be a general divergence on [image: there is no content] with [image: there is no content] for which the compensation identity holds. Assume that the technical axioms ASC and JSC hold and that JSD-divergence is complete. Consider a prior [image: there is no content] and assume that [image: there is no content] on [image: there is no content] and that [image: there is no content]. Then:

	(i) 

	
Without adding extra conditions, Observer has a unique optimal strategy, [image: there is no content], in the game [image: there is no content].




	(ii) 

	
Observer strategies for [image: there is no content] and for [image: there is no content] coincide, i.e., [image: there is no content] and, for every such strategy y, [image: there is no content], hence


[image: there is no content]



(108)








	(iii) 

	
If [image: there is no content] is convex, the game [image: there is no content] is in equilibrium and the [image: there is no content]-attractor exists. This attractor, say [image: there is no content], is identical to the optimal Observer strategy [image: there is no content] from (i); it is the D-projection of [image: there is no content] on [image: there is no content] if and only if [image: there is no content].




	(iv) 

	
The game [image: there is no content] is in equilibrium if and only if


[image: there is no content]



(109)















Proof. 

This may be proved by applying the key results of this section, also recalling Lemma 1. Details are left to the reader. ☐





Further properties of Jensen-Shannon divergence are worth investigating. This concerns in particular the notion of negative definiteness, cf., [71,72]. Some indications are in place. When the property holds, JSD is the square of a Hilbert metric in a natural sense (loc. cit.). Investigating this property, one will quickly realize that, modulo finiteness conditions on the entropy function (say [image: there is no content]), JSD is negative definite if and only if the entropy function is midpoint-negative definite, i.e., for any finite sequence of states [image: there is no content] and any associated sequence of real numbers [image: there is no content] with [image: there is no content], it holds that [image: there is no content]. If this property holds with a restriction on n we express the property by saying that H is [image: there is no content]-negative definite. Clearly, MP(2)-negative definiteness is equivalent to midpoint concavity of H. In the same way as we introduced the notion of [image: there is no content]-negative definiteness for H, we may introduce a notion of n-negative definiteness of JSD.



Whereas the results about embeddability in a Hilbert space are rather deep, if we just ask for the property to be a squared metric, the matter is much simpler:



Proposition 11.

Assume that JSD is everywhere finite. Then the following conditions are equivalent:

	
JSD is the square of a metric;



	
JSD is 3-negative definite;



	
H is [image: there is no content]-negative definite










This result depends on the properties (86)–(89). The key argument is not specific to JSD. For the sake of good order, we provide a proof of the basic general result in Appendix D.





3. Examples, towards Applications


3.1. Primitive Triples and Generation by Integration


Natural building blocks for information triples will be defined. We shall here concentrate on a simple, important and easy-to-apply approach.



A possible expansion of the considerations in the present section is dealt with in the Appendix A. This is related to our introduction of weaker concepts of properness and will allow you to work more generally with non-smooth “generators” (see below). Desirable is also an introduction of an action space and of the notion of response. How this can be done is indicated in Appendix A. We have chosen not to deal with the possible refinements in the main text, partly to keep the exposition simple, partly as a few technical issues may still need a closer investigation.



Let I be a subinterval of [image: there is no content] with endpoints a and b ([image: there is no content]). Either none, one or both endpoints belong to I but neither [image: there is no content] nor [image: there is no content] are members of I. Provide I with its usual algebraic and topological structure. We take I as state space as well as belief reservoir. Thus [image: there is no content]. Visibility is normally taken to be the diffuse relation so that any state [image: there is no content] is visible from any belief instance. However, at times a more restricted notion of visibility is relevant, especially for [image: there is no content] or [image: there is no content]. Then


[image: there is no content]



(110)




is a better choice.



We agree that in this section, visibility [image: there is no content] is either the discrete relation [image: there is no content] or else given by (110) in certain cases when [image: there is no content] is a left endpoint of I.



An effort-based information triple over [image: there is no content] is said to be primitive. The “primitivity” lies in the fact that the state space and belief reservoir appear to be as simple as one can think of—if you do not want to enter into discrete structures with a finite or countably infinite state space. We use lower case letters as in [image: there is no content] for such triples. Upper case letters will then occur for constructions via a process of summation or integration, starting with primitive triples.



We are especially interested in proper primitive triples. The conditions they must satisfy are as follows (linking, fundamental inequality, soundness and properness):


[image: there is no content]



(111)






[image: there is no content]



(112)






[image: there is no content]



(113)






[image: there is no content]



(114)







It is understood here and later on that such requirements are to hold for all [image: there is no content] (for (113)) or for all [image: there is no content] (for (111), (112) and (114)). From Section 2.15 we know that it is desirable for the effort function to have affine marginals [image: there is no content]. For this to be the case, there must exist functions on I, [image: there is no content] and [image: there is no content] say, such that


[image: there is no content]



(115)




for [image: there is no content]. There is a simple way to generate a multitude of such information triples. The method is inspired by Bregman, [77], who used the construction for other purposes. Given is a Bregman generator h which is here understood to be a continuous, real-valued, strictly concave function on I which is sufficiently smooth on the interior of the interval, say continuously differentiable. We take this function as the entropy function, h. Defining effort and divergence by


[image: there is no content]



(116)






[image: there is no content]



(117)




the triple [image: there is no content] is indeed a proper primitive information triple with affine marginals, [image: there is no content]. Figure 2 illustrates what is involved.


Figure 2. Bregman generator and primitive effort-based information triple.



[image: Entropy 19 00143 g002]






It is also easy to illustrate geometrically what Jensen-Shannon divergence amounts to. Referring to Figure 3, we find that the Jensen-Shannon divergence between [image: there is no content] and [image: there is no content], for primitive triples denoted by jsd is given by


[image: there is no content]



(118)






Figure 3. Jensen-Shannon divergence [image: there is no content] for the Bregman construction.



[image: Entropy 19 00143 g003]






It follows geometrically that


[image: there is no content]



(119)







We also find that for a bounded interval I, JSD-convergence and D-divergence are equivalent concepts and that the associated topology is the standard topology on I.



The utility-based analogues of notions introduced are defined in an obvious manner (see also examples below). We shall use [image: there is no content] as generic notation for primitive utility-based triples.



As two examples of effort-based Bregman generated primitive triples, we point to the standard algebraic triple given by


[image: there is no content]



(120)






[image: there is no content]



(121)






[image: there is no content]



(122)




over [image: there is no content] and to the standard logarithmic triple


[image: there is no content]



(123)






[image: there is no content]



(124)






[image: there is no content]



(125)




over [image: there is no content]. Both triples are given in their effort-based versions. If need be, we refer to these triples as standard primitive effort-based triples.



The first triple is equivalent to a triple we met in Example 1. It leads to basic concepts of real Hilbert space theory by a natural process of summation or, more generally, integration. By a similar process, the second triple leads to basic concepts of Shannon information theory. Before elaborating on that, we shall generalize both examples by the introduction of a parameter q. In fact, we shall see that, modulo affine equivalence, both examples can be conceived as belonging to the same family of triples.



In order to modify the standard algebraic triple, it lies nearby to consider generators of the form


[image: there is no content]



(126)




with [image: there is no content] and [image: there is no content] functions depending on a real parameter q. Let us agree to work mainly with [image: there is no content] as state space. Then q could in principle be any real parameter. For each fixed q, [image: there is no content] is either strictly concave—an effort-based Bregman generator—strictly convex—a utility-based Bregman generator—(or degenerate). Applications of (116) and (117) give the formulas


[image: there is no content]



(127)






[image: there is no content]



(128)







When [image: there is no content] is negative, [image: there is no content] is a genuine effort-based Bregman generator and the triple [image: there is no content] is a proper primitive effort-based information triple. When [image: there is no content] is positive, [image: there is no content] is strictly convex and the triple [image: there is no content] is a proper primitive utility-based information triple (which should then rather be denoted [image: there is no content]). Thus, if you consider the triple [image: there is no content] you are certain to obtain a primitive triple, either effort-based or utility-based (or degenerate). It also follows from (126)–(128) that modulo affine equivalence, the triples you obtain from different choices of [image: there is no content], [image: there is no content] and [image: there is no content] are scalarly equivalent. For some choices you may prefer to restrict the parameter so that only effort-based triples emerge, for others you may find it interesting to focus on triples where there is a smooth variation from effort-based to utility-based triples. In applications—purely speculative at the moment—this could reflect situations in economic or physical or chemical systems where e.g., a change from positive to negative rent or from exothermic to endothermic reaction can take place.



If you choose [image: there is no content] and [image: there is no content], then [image: there is no content] equals


[image: there is no content]



(129)







As you go from large to small values of q this primitive triple starts out as utility-based, then, for [image: there is no content], becomes degenerate, after which it switches to the effort-based mode until, for [image: there is no content], it again becomes degenerate, after which it switches back to the utility-based mode. For [image: there is no content], the triple is the utility-based standard algebraic triple, the utility-based version of the triple given in (120)–(122). That triple is most naturally considered over [image: there is no content] with [image: there is no content].



We can remove the “singularity” of the system at [image: there is no content] by blowing up the generator near [image: there is no content]. Let us choose [image: there is no content] and [image: there is no content] as follows:


α(q)=11−q,β(q)=−11−q,γ(q)=γ0.



(130)







Here, the constant [image: there is no content] represents an eventual overhead With choices as specified, we obtain the triples [image: there is no content] with


[image: there is no content]



(131)






[image: there is no content]



(132)






[image: there is no content]



(133)







The Equation (131) gives you gross effort with net effort obtained by putting [image: there is no content]. Similarly, (132) is gross entropy and the same formula with [image: there is no content] gives you net entropy.



The family of triples (131)–(133) is well defined for all [image: there is no content] if we allow for an interpretation by continuity for [image: there is no content]. For [image: there is no content] the triple is degenerate, for [image: there is no content] it determines a proper primitive effort-based information triples. For [image: there is no content] continuity considerations show that [image: there is no content] is identical to the standard logarithmic triple given in (123)–(125) (assuming that the overhead is neglected, [image: there is no content]).



The triples we have identified may all be conceived to be of the same structure as the standard logarithmic triple. What is meant by this, is that if we, following Tsallis [78], introduce the deformed logarithms, [image: there is no content], defined by the formula


[image: there is no content]



(134)




then the Formulas (131)–(133) may be expressed as follows in terms of the deformed logarithms:


[image: there is no content]



(135)






[image: there is no content]



(136)






[image: there is no content]



(137)







These formulas are used for [image: there is no content] and [image: there is no content] (for negative q you do not obtain effort-based quantities). Note that if [image: there is no content], then [image: there is no content] for [image: there is no content]. The formulas indicate that it is not so much the logarithmic function [image: there is no content] which is of importance but more so the function [image: there is no content]. This is no surprise to information theorists as the latter expression has a well known interpretation in terms of coding when [image: there is no content], provided t represents a probability. No convincing interpretation of [image: there is no content] appears to be known for other values of q. For [image: there is no content], (135)–(137) reduce to (123)–(125) pertaining to the standard logarithmic triple.



The family of triples (135)–(137), [image: there is no content], is referred to as the family of deformed primitive triples—adding a qualifying “effort-based” if need be. The analogous utility-based primitive is the family of triples [image: there is no content], i.e., for [image: there is no content],


[image: there is no content]



(138)






[image: there is no content]



(139)






[image: there is no content]



(140)







Let us return to the process of integration hinted at in the beginning of the section. A substantial amount of concrete triples which illustrate the theory developed can be constructed by combining the Bregman construction with a process of integration.



Integration may be applied to any family of information triples and gives us new triples to work with. Note that by linearity of integration, the important property of affinity of marginals is preserved.



We comment mainly on integration of effort-based triples with a view towards applications in information theory and in statistical physics. Consider integration of one and the same primitive triple [image: there is no content] over [image: there is no content] with Bregman generator h. Partly for technical convenience we assume that h is non-negative. Then effort, entropy and divergence, will all be non-negative, also in the integrated version. Considering the intended applications, this is only natural.



Let T be a set provided with a Borel structure and with an associated measure [image: there is no content]. Let [image: there is no content] be the function space consisting of all measurable functions [image: there is no content]. Functions in X are identified if they agree [image: there is no content]-almost everywhere. Note that X is a convex cone. Consider the integrated triple


[image: there is no content]



(141)




by which we express that the following equations hold:


[image: there is no content]



(142)






[image: there is no content]



(143)






[image: there is no content]



(144)







As [image: there is no content], H is well defined and [image: there is no content] for all [image: there is no content] and as [image: there is no content] is measurable and [image: there is no content] non-negative and measurable, cf., (117), D is well-defined by (144). By linking, also [image: there is no content] is well defined. Thus, [image: there is no content] is a well defined triple over [image: there is no content]. We leave it to the reader to verify that [image: there is no content] is a proper information triple. Moreover, if [image: there is no content] has affine marginals [image: there is no content] for all [image: there is no content], then [image: there is no content] has affine marginals [image: there is no content] for all [image: there is no content]. The divergence functions which can be obtained in this way are Bregman divergences. Note that with this construction, the essential fundamental inequality [image: there is no content] even holds pointwise as [image: there is no content]. For this reason, when we discuss the integrated triple, we refer to (112) as the pointwise fundamental inequality.



Bregman divergence may be used to modify visibility by taking [image: there is no content] to consist of all pairs [image: there is no content] with [image: there is no content].



For the standard logarithmic triple (123)–(125), one may construct discrete models, say over a finite or countably infinite alphabet T, by a process of summation related to the interval [image: there is no content] rather than the traditional choice [image: there is no content]. States will then be certain sequences [image: there is no content], which may be conceived as intensity sequences consisting of point intensities rather than the usual probability sequences of point probabilities. As regularity conditions one could take sequences with bounded intensities or sequences for which the primitive entropy function h of (124) satisfies the requirement [image: there is no content]. For this to work technically, we realize the importance of the pointwise fundamental inequality for d of (125) and note that this requires the inclusion of the term [image: there is no content] in d. Thus one may suggest to replace classicalprobability spaces with certain intensity spaces.



Returning to the classical choice with discrete probability distributions over a discrete alphabet T, [image: there is no content] becomes discrete Kerridge inaccuracy, H classical Shannon entropy and D discrete Kullback-Leibler divergence. If we generalize to cover non-discrete settings, entropy can only be finite for distributions with countable support, whereas the generalization of divergence makes sense more generally. For instance, we may consider the generator [image: there is no content] on the entire half-line [image: there is no content] and for [image: there is no content] take an arbitrary measure space, provided with some measure [image: there is no content]. As state space we can then, as one possibility, take the set of measures absolutely continuous with respect to [image: there is no content] and with finite-valued Radon-Nikodym derivatives with respect to [image: there is no content]. For two such measures, say [image: there is no content] and [image: there is no content] we find that


[image: there is no content]



(145)







This may be called generalized Kullback-Leibler divergence. It is the more natural divergence to consider. For one thing, the integrand is non-negative by the pointwise fundamental inequality. If we restrict attention to finite measures P and Q with the same total mass, this reduces to the standard expression [image: there is no content]. The standard expression also gives a divergence measure if the two measures are finite and [image: there is no content] and, moreover, the important compensation identity also holds in this case since the additional terms (stemming from [image: there is no content] in (125)) are integrable and affine.



Now consider extensions to cover also integration of the family [image: there is no content]. It is natural to consider these triples over [image: there is no content] with [image: there is no content] in order to ensure that [image: there is no content]. By integration we obtain the triples


[image: there is no content]



(146)




defined over appropriate function spaces, typically representing probability distributions. For [image: there is no content] these triples are proper effort-based information triples. For [image: there is no content] you obtain degenerate triples. The quantity [image: there is no content], is meaningful in discrete cases with T finite or countably infinite, and defines Tsallis entropy. For the continuous case, Tsallis entropy does not make much sense, but the divergence function [image: there is no content] does.



So far, we have discussed integration of primitive triples. This concerns a process where the original state space (the interval I) is changed to a new state space and then, an information triple over the new state space is constructed. A similar process applies if we start out with a family [image: there is no content] of proper information triples over the same state space X (formally, over [image: there is no content] or [image: there is no content] with structures as usual and, typically, [image: there is no content]). Then we may consider the integrated triple


[image: there is no content]



(147)




defined by


[image: there is no content]



(148)






[image: there is no content]



(149)






[image: there is no content]



(150)







With suitable measurability conditions, [image: there is no content] is a well-defined proper information triple. Also, the standard restriction of affinity is preserved by this process. As a useful but trivial remark, we note that properness of the integrated triple only needs properness of [image: there is no content] for a set of positive [image: there is no content]-measure. An instance of this feature with T a two-element set was already discussed in Section 2.7.



The most obvious application of the process of integration probably is to integrate the utility-based standard algebraic triple [image: there is no content], cf., (129). This triple is considered over [image: there is no content] with [image: there is no content]. Integrating over a measure space [image: there is no content], you are led to take as state space the [image: there is no content]-space over [image: there is no content]. In standard notation, the integrated triple [image: there is no content] is given by


[image: there is no content]



(151)






[image: there is no content]



(152)






[image: there is no content]



(153)







We collect in Section 3.2 comments on these classical concepts, seen in the light of the theory here developed.



Some comments on the generation of information triples by the method inspired by Bregman [77] are in order. The focus of Bregman’s method has often been on the divergence measures it generates. Before Bregman’s work one mainly studied f-divergences, introduced independently by Csiszár [79], Morimoto [80] and by Ali and Silvey [81]. We find that often, Bregman divergences occur more naturally and have more convincing interpretations.



As we have seen, the widely studied entropies bearing Tsallis’ name can be derived via a Bregman-type construction. In Section 3.6 we shall have a closer look at these entropies. They have received a good deal of attention, especially within statistical physics. Some comments on the origin of these measures of entropy are in place. Tsallis’ trend-setting paper [2] is from 1988 but, originally, the entropies go back to Havrda and Charvát [82], to Daróczy [83] and to Lindhard and Nielsen [84,85] who all, independently of each other, found the notion of interest. Characterizations via functional equations were derived in Aczél and Daróczy [86], see also the reference work [87] as well as [41]. Regarding the physical literature, there is a casual reference to Lindhard’s work in one of Jaynes’ papers [88]. However, only after the publication of Tsallis 1988-paper mathematicians and, especially, physicists took an interest in the “new” entropy measures. We refer to the database maintained by Tsallis with more than 2000 references. From the recent literature we only point to Naudts, ref. [89] who also emphasized the convenient approach via Bregman generators.




3.2. A Geometric Model


Let us return to the model [image: there is no content] given by (151)–(153) of Section 3.1. This is the utility-based information triple [image: there is no content] pertaining to the Hilbert space [image: there is no content]. The triple is proper and has affine marginals [image: there is no content] given y.



In this case, the linking identity (after rearrangement of terms) is identical to the cosine relation. Other well-known basic facts of inner-product spaces can be derived by combining the linear structure of such spaces with the basic properties of information triples. Thus, the identity you obtain from the compensation identity (79) applied to D is of central importance for classical least squares analysis (apparently, the identity has no special name in this setting—it goes back at least to Gauss).



Games directly associated with the information triple [image: there is no content] involve minimization of M over various preparations, in other terms, the search for elements closest to the origin subject to certain restrictions. Let us, instead comment on relative games, which are games depending on the specification of a preparation and a prior [image: there is no content], cf., Section 2.8. If the preparation [image: there is no content] is convex and closed, the D-projection [image: there is no content] of [image: there is no content] on [image: there is no content] exists; it is the unique point in [image: there is no content] which is closest in norm to [image: there is no content] (though classical, the reader may appreciate to note that this existence result is derived with ease from the compensation identity and completeness of Hilbert space). As standard convexity- and continuity assumptions are also in place, Theorem 15 applies. It follows that the game [image: there is no content] is in equilibrium with the D-projection [image: there is no content] as bi-optimal state. The updating gain for this game is given by (21), i.e.,


[image: there is no content]



(154)







In this case the Pythagorean inequality reduces to the classical inequality


[image: there is no content]



(155)




valid for every [image: there is no content].



Combining Proposition 9 and Theorem 15 we obtain rather complete information about the updating games, also for preparations which are not necessarily convex. For instance, Figure 4, case (a) illustrates a case with unique optimal strategies for both players and yet, the game is not in equilibrium. Case (b) illustrates a typical case with a game in equilibrium. For both figures, [image: there is no content] denotes the optimal strategy for Nature and [image: there is no content] the optimal strategy for Observer. Indicated on the figures you also find the largest strict divergence ball [image: there is no content] and the largest half-space [image: there is no content] which is external to [image: there is no content]. The two values of the game can then be determined from the figures, [image: there is no content] for Nature, respectively [image: there is no content] for Observer.


Figure 4. Optimal strategies, typical equilibrium via core.
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Lastly some words on the typical preparations you meet in practice. In consistency with the philosophy expressed in Section 2.9 these are the feasible preparations. The strict ones are affine subspaces and the slack ones are convex polyhedral subsets. We shall determine the core of families of strict preparations:



Proposition 12.

Consider a family [image: there is no content] of strict feasible preparations determined by finitely many points [image: there is no content] in X. The core of this family consists of all points in the affine subspace through [image: there is no content] generated by the vectors yi−y0;i=1,⋯,n, i.e.,


[image: there is no content]



(156)









Proof. 

An individual member [image: there is no content] of [image: there is no content] is determined by considering all [image: there is no content] for which the values of U|y0(x,yi);i=1,⋯,n have been fixed. Note that fixing these values is the same as fixing the inner products [image: there is no content] or, equivalently, the inner products [image: there is no content]. If [image: there is no content] is of the form given by (156), [image: there is no content], then [image: there is no content] and we realize that this is independent of x if x is restricted to run over some preparation in [image: there is no content]. Then also [image: there is no content] is independent of x when x is so restricted. We conclude that [image: there is no content]. This proves the inclusion “⊇” of (156).



To prove the other inclusion, assume, as we may, that [image: there is no content] and that the [image: there is no content] forms an orthonormal system. Consider a point [image: there is no content]. Determine [image: there is no content] such that [image: there is no content]. By Theorem 5, [image: there is no content] is the bi-optimal state of [image: there is no content]. Let ci;i=1,⋯,n denote the common values of [image: there is no content] for [image: there is no content]. Then [image: there is no content] is the orthogonal projection of [image: there is no content] on [image: there is no content], hence [image: there is no content]. This argument shows that the core is contained in the subspace generated by the [image: there is no content]. This is the result we want as we assumed that [image: there is no content]. ☐





In order to determine the projection of [image: there is no content] on a specific preparation [image: there is no content], we simply intersect [image: there is no content] with [image: there is no content]. If you do this analytically, one may avoid trivial cases and assume that yi−y0;i=1,⋯,n are linearly independent. In Figure 4, case (c) we have illustrated the situation in the simple case when [image: there is no content].




3.3. Universal Coding and Prediction


In this and in the next two sections we present problems where randomization plays a role. It will be realized that apart from this, the discussion of the three problems treated, though different in nature, relies on the same type of considerations (Kuhn-Tucker type results).



We start by discussing a problem of universal coding and prediction.



Let [image: there is no content] be a discrete finite set, the common alphabet and consider languages whose written representation use letters from [image: there is no content]. Let [image: there is no content] be a finite set of such languages, referred to as the selection, e.g., the selection could be English, German and French. Assume that for each individual language from [image: there is no content] we know the distribution of single letters in a typical text from that language, and let us identify a language with the corresponding distribution over [image: there is no content]. In this way, the selection is identified with a certain finite subset [image: there is no content] of [image: there is no content], the set of all distributions over [image: there is no content].



When we observe letters from [image: there is no content] generated by a typical text from just one of the languages, say with associated single-letter distribution [image: there is no content], information theory tells us how to encode letters from [image: there is no content] in strings of letters from a reference alphabet, say the binary alphabet consisting of the two elements 0 and 1, so as to minimize the expected length of the encoded binary strings. The encoded string corresponding to the letter [image: there is no content], will then have a length [image: there is no content] which is given roughly as


[image: there is no content]



(157)




with log denoting binary logarithms. This choice ensures that the average code length


[image: there is no content]



(158)




is minimal.



The precise sense in which (157)—even with exact equality—is the undisputed right choice will not be discussed here. It is a cornerstone of information theory for which you may consult standard text books on information theory such as [90] or an introductory text such as Topsøe [91]. Note that (157) with equality implies that [image: there is no content] (Kraft’s equality).



Let us change to a more theoretical concept of encoding by idealization, forgetting that the length of a binary sequence is a natural number and by a change to natural units rather than binary units. This leads us to redefine a code over [image: there is no content] to be a map [image: there is no content] such that


[image: there is no content]



(159)




i.e., such that Kraft’s equality with natural units holds. Denote by [image: there is no content] the set of all such codes. The requirement (159) amounts to the requirement that the correspondence [image: there is no content] given by


κ(x)=ln1P(x);x∈A



(160)




is a one-to-one correspondence between [image: there is no content] and [image: there is no content]. We also express (160) by saying that [image: there is no content] is adapted to P and we write [image: there is no content]. As is easily seen, either directly or referring to previous material from Section 3.1, [image: there is no content] is the unique code for which the average code length [image: there is no content] is minimal.



With this property in mind, we define the redundancy of a pair [image: there is no content] as the quantity


[image: there is no content]



(161)







From our discussion we know—in a theoretical idealized way at least—how to encode letters from [image: there is no content] if we want to process letters from a text source generated by a single language in an optimal manner. We shall investigate what can be done if we receive text from an unknown language, except that we know that the language is one from the given selection.



We agree to call a code [image: there is no content]universal for the language selection [image: there is no content] if the risk, here defined as


[image: there is no content]



(162)




is minimal. The associated distribution under the correspondence [image: there is no content] is then said to be a universal predictor. Note that the risk [image: there is no content] is associated with the information triple [image: there is no content] and that a universal code is the same as an optimal strategy for Observer in the game associated with this triple. Clearly, the game in question is not in equilibrium, hence equilibrium type results as developed previously are not of much use. Instead it turns out that a very direct approach will lead to an identification of universal objects.



Theorem 16.

Let [image: there is no content] with [image: there is no content] adapted to [image: there is no content]. Assume further that for some finite constant R,


[image: there is no content]



(163)




and that [image: there is no content] can be written as a convex combination of a set of distributions in [image: there is no content] for which equality holds in (163). Then [image: there is no content] is the unique universal code and [image: there is no content] the unique universal predictor.





Proof. 

Clearly, [image: there is no content].



Then consider any code [image: there is no content] different from [image: there is no content]. Write [image: there is no content] as a convex combination [image: there is no content] of distributions in [image: there is no content] all of which satisfy the relation [image: there is no content]. Then the compensation identity tells us that


Ri^0(κ|P)=∑iαiRi^0(κ|P)≥∑iαiD^(Pi,κ)=D^(P*,κ)+∑iαiD^(Pi,κ*)=D^(P*,κ)+R.








Thus, as [image: there is no content] is proper, [image: there is no content]. As this holds for all [image: there is no content], the result follows. ☐





Note the essential point that [image: there is no content] satisfies the compensation identity. That this is so follows either by direct calculation or, more systematically, by applying (iii) of Theorem 8 to the triple you obtain by adding entropy to [image: there is no content]. For the derived domain you then work with the typical Shannon triple, listed explicitly in (185)–(187). So, after all, the information triples are also useful for the above problem.



It can be shown that the result always applies in the sense that the unique optimal code and the unique optimal predictor exist and that they satisfy the conditions stated in the theorem. Note that the representation of the optimal predictor as given in the theorem may not be unique.




3.4. Sylvester’s Problem from Location Theory


As starting point we take a simple Y-domain model with [image: there is no content], a convex set. For visibility we take the diffuse relation [image: there is no content]. Given is a finite-valued general divergence function over [image: there is no content] for which the compensation identity (79) holds.



As a concrete example, one may have in mind, take that of a Euclidean space X provided with norm-squared distance, [image: there is no content]. Moreover, as the motivating problem, consider Sylvester’s problem, to determine the point with the least maximal distance to a given finite set [image: there is no content] of points in X, cf., [92] or the monograph [93]. For the original problem, X was the Euclidean plane. However, the problem makes good sense in the general setting with X any convex set provided with a suitable replacement for classical squared distance.



The problem is a minimax problem and may formally be conceived as related to the special proper information triple [image: there is no content]. Indeed, the problem is to find optimal Observer strategies for the associated game [image: there is no content] and to calculate Observer’s value of the game, the MinRisk-value [image: there is no content]. However, this game is rather trivial as Natures value in the game is 0. Thus no equilibrium-type results are available.



To find a remedy, we apply a process of randomization. For that, we no longer consider X as the state space but take the convex space [image: there is no content] of molecular probability measures as a new state space. An element [image: there is no content] is represented as a family [image: there is no content] of non-negative numbers such that [image: there is no content] and such that the support of [image: there is no content], i.e., the set [image: there is no content], is finite.



The new model we shall construct is conceived as a [image: there is no content]-type model. As state space we take [image: there is no content]. Just as X, this is a convex set. For formal reasons—so that the modeling fits the general abstract theory—we may also take [image: there is no content] as belief reservoir, though we will have no need really to consider belief instances. Instead, control will be in the focus, and for the set of control instances we shall take [image: there is no content]. Once more for formal reasons, we consider the barycentric map which maps an (artificial) belief instance into its barycenter as response. This map will play an important role for the modeling. Let the map be [image: there is no content] with [image: there is no content] and barycenter of [image: there is no content] given by


[image: there is no content]



(164)







The good sense in considering elements of X as controls is the idea from location theory, that from a point in X, conceived as a location, you should try to control the given points in the set [image: there is no content] as best you can.



With these preparations, we may consider the triple [image: there is no content] over [image: there is no content] given by


Φ˜(α,y)=∑x∈XαxD(x,y),



(165)






H˜(α)=∑x∈XαxD(x,b(α)),



(166)






D˜(α,y)=D(b(α),y).



(167)







For [image: there is no content], denote by [image: there is no content] the set of [image: there is no content] which are supported by [image: there is no content], i.e., [image: there is no content]. By [image: there is no content] we denote the game corresponding to the triple [image: there is no content] with [image: there is no content] as preparation. A basic fact which contributes to the significance of games of this type is that, as easily seen, risk does not increase when you replace the game [image: there is no content] with [image: there is no content], in particular, with self-explanatory notation,


[image: there is no content]



(168)







This fact relies on the affinity of the marginals of [image: there is no content] for fixed y.



Theorem 17.

The triple [image: there is no content] over [image: there is no content] is a proper information triple over [image: there is no content] and the triple has affine marginals.



Let [image: there is no content] be a subset of X and consider the game [image: there is no content]. Consider a pair [image: there is no content] of strategies in the game [image: there is no content] with [image: there is no content] adapted to [image: there is no content], i.e., [image: there is no content]. Then if, for some constant R,


[image: there is no content]



(169)






[image: there is no content]



(170)




[image: there is no content] is the unique optimal strategy for Observer in [image: there is no content] as well as in [image: there is no content]. Further, [image: there is no content] and [image: there is no content] is a bi-optimal strategy for [image: there is no content].





Proof. 

With preparations done, the first part is trivial, and the second is also so, obtainable as an application of Corollary 1. ☐





Note that the linking identity is just another way of formulating the compensation identity and that the entropy function is the compensation term in that identity.



With Theorem 17 we have a solution to Sylvester’s problem for an abstract model provided you can somehow point to a possible solution. It can be shown, modulo technical assumptions to ensure existence of optimal strategies, that the sought optimal Observer strategy must be of the form as stated in the theorem.




3.5. Capacity Problems, an Indication


Problems concerning capacity are among the most well known problems from information theory. They concern the determination of capacity defined as maximal information transmission rate under various conditions and on the associated optimal ways of coding. We shall only define one of the basic concepts and derive a key relation and leave it to the reader to consult the literature for more concrete results.



We first elaborate on the information triple given in the previous section by (165)–(167). The entropy function of that triple we may think of as related to information transmission rate of information theory (then also related to the notion of mutual information which is, however, not investigated further in the present study). This refers to the map [image: there is no content] as a map from an input letter to an output letter. Then an element [image: there is no content] represents a distribution over the input letters, a source, and response tells you what is happening on the output side. It is important to study how the rate behaves under mixtures. Thus we have a need to study elements in [image: there is no content]. The result one needs exploits the flexibility of the modeling, especially related to Theorem 8.



First, define information transmission rate related to [image: there is no content] simply as


[image: there is no content]



(171)







We wish to emphasize the following result:



Lemma 2.

With the setting as above, consider any [image: there is no content] and put [image: there is no content]. Then, for every [image: there is no content],


[image: there is no content]



(172)









Proof. 

If you write [image: there is no content] in place of I, this follows from the identity (77) of Theorem 8 with [image: there is no content] in place of H. ☐





With the technical lemma in place, a study of abstract models of information transmission systems runs smoothly and you can derive operational necessary and sufficient conditions for the requirements of optimal strategies. On Natures side, an optimal strategy is an input distribution for which the transmission rate reaches the maximum, the capacity of the system. The result is a Kuhn-Tucker type result, well known from general convexity theory and from Information theory, and much resembles the results of the previous two sections. We refer to Topsøe [94] for an exposition of a result which exploits the lemma just proved.




3.6. Tsallis Worlds


Recall the introduction in Section 3.1 of the family of Tsallis entropies. In this section we present arguments which may help to appreciate the significance of these measures of entropy.



The main result, Theorem 18 was presented in a different form in [36] and, less formally, in [35]. Here we present detailed proofs which were not provided in these sources.



The introduction in Section 3.1 of the Bregman generators [image: there is no content] and thereby, via a process of integration, of Tsallis entropy, cf., (146), does not in itself constitute an acceptable interpretation. Via coding considerations, the significance of the Bregman generator [image: there is no content], leading to the notion of Shannon entropy is well understood. Despite some attempts to extend this to more general entropy measures, cf., [95,96,97], a general approach via coding has not yet been fully convincing. In [98] you find a previous attempt of the author centred on a certain property of factorization.



The results presented here indicate that possibly, a convincing and generally acceptable physical justification of Tsallis entropy can be provided by involving deformation between the physical system studied and the physicist. Previous endeavours to find physical justification for Tsallis entropy are discussed in detail in Tsallis, [99]. We share the view that though the “Tsallis-q” can be viewed just as a parameter introduced simply to fit data, this is not satisfactory and operational justification is needed. Deformation as here emphasized in combination with a notion of description may offer a common ground on the way to more insight.



To set the scene for our study, introduce the alphabet [image: there is no content], a discrete set of basic events which are identified by an index, typically denoted by i. Sensible indexing is often of importance and depends on the concrete physical application. The semiotic assignment of indices shall facilitate technical handling and catalyze semantic awareness. As we have no concrete application in mind, no extra structure is introduced which could justify a specific choice of indices.



The state space X is taken to be identical to the belief reservoir Y and, for simplicity, equal to [image: there is no content], the set of probability distributions over [image: there is no content] (you could have worked, instead and more generally, with sets involving intensity as suggested in Section 3.1). Generically, [image: there is no content] will denote a state and [image: there is no content] a belief instance. Thus x and y are characterized by their point probabilities. As [image: there is no content], the set of certain belief instances, we take the set of deterministic distributions over [image: there is no content]. Visibility [image: there is no content] shall mean that x is absolutely continuous wrt y. Thus [image: there is no content] consists of all pairs [image: there is no content] with [image: there is no content], with @supp@ denoting support. We shall not need a control space or a response function.



A knowledge instance will be a family [image: there is no content] over [image: there is no content] of real numbers, not necessarily a probability distribution. The interpretation of [image: there is no content] is as the intensity with which the basic event indexed by i is presented to Observer. For this reason, z is referred to as the intensity function. The individual elements [image: there is no content] are the local intensities.



The deformation between x, y and z is given by a deformation [image: there is no content], cf., Section 2.5. We assume that [image: there is no content] acts locally, i.e., that there exists a real-valued function [image: there is no content], the local deformation, defined on [image: there is no content] such that, when [image: there is no content], then [image: there is no content] for all [image: there is no content]. The world defined in this way by a local deformation is denoted [image: there is no content] or, if need be, [image: there is no content]. From now on, when we talk about a “deformation”, we have a local deformation in mind.



Regarding regularity conditions, we assume that [image: there is no content] is finite on [image: there is no content], continuous on [image: there is no content] and continuously differentiable on [image: there is no content]. The deformation is weakly consistent if [image: there is no content] whenever [image: there is no content] and [image: there is no content]. If you can even conclude that [image: there is no content] is a probability distribution, [image: there is no content] is strongly consistent. The deformation [image: there is no content] is sound if [image: there is no content] for every [image: there is no content].



For [image: there is no content], the algebraic deformation [image: there is no content] is given on [image: there is no content] by


[image: there is no content]



(173)







These deformations are all sound and weakly consistent and, for [image: there is no content], even strongly consistent. The corresponding worlds are denoted [image: there is no content]. The notation is consistent with the notation introduced in Section 2.5. The significance of the algebraic deformations is derived from the following result.



Lemma 3.

Assume that the alphabet [image: there is no content] is countably infinite. Then only the algebraic deformations are weakly consistent.





Proof. 

Let [image: there is no content] be weakly consistent and put [image: there is no content]. Consider a deterministic distribution [image: there is no content] over [image: there is no content] and apply weak consistency with [image: there is no content] to find that [image: there is no content]. Thus, if x and y both have support in a subset [image: there is no content], you can neglect contributions stemming from [image: there is no content] with [image: there is no content] and conclude consistency over [image: there is no content], i.e., that [image: there is no content]. By weak consistency (in the extended form just established), [image: there is no content] for all [image: there is no content], in particular, [image: there is no content]. Consider [image: there is no content] and [image: there is no content] for [image: there is no content], apply weak consistency and conclude that [image: there is no content]. Then, for [image: there is no content], consider vectors [image: there is no content] of the form [image: there is no content]. By weak consistency and previous findings, conclude that [image: there is no content] for all rational [image: there is no content]. By continuity, this formula holds for all [image: there is no content]. Quite analogously, [image: there is no content] for all [image: there is no content]. Finally, [image: there is no content] follows by weak consistency applied to [image: there is no content].  ☐





In particular, if [image: there is no content] is infinite then, automatically, a weakly consistent deformation is sound. In fact, all concrete deformations we shall deal with will be sound.



Instead of searching only for a suitable entropy function for the world [image: there is no content], we find it more rewarding to search for a suitable full information triple for this world. Let us analyze what such a triple, say [image: there is no content], could be. A natural demand is that [image: there is no content] and D should all act locally. Therefore, according to Section 3.1 what we are really searching for is a primitive information triple [image: there is no content] over [image: there is no content], cf., (110), such that [image: there is no content] is obtained from this triple by integration over [image: there is no content] equipped with counting measure. In particular, the requirements (111)–(114) must be satisfied. Obvious names for the sought functions [image: there is no content] and d are, respectively, local effort, local entropy and local divergence.



Let us suggest a suitable form of local effort. It will depend on the notion of a descriptor, defined as any continuous, strictly decreasing function on [image: there is no content] which is finite-valued and continuously differentiable on [image: there is no content], vanishes at [image: there is no content] and satisfies the condition that


[image: there is no content]



(174)







The value [image: there is no content] is conceived as the effort you have to allocate to any basic event in which you have a belief expressed by u. The condition [image: there is no content] reflects the fact that if you feel certain that a basic event will occur, there is no reason why you should allocate any effort at all to that event. Also, it is to be expected that events you do not have much belief in are more difficult to describe than those you believe in with a higher degree of confidence. Therefore, we may just as well assume from the outset that [image: there is no content] is decreasing. The norming requirement (174) will enable comparisons of effort, entropy and divergence across different descriptors or even different worlds. The unit defined implicitly by (174) is the natural information unit, the “nat”.



An important class of descriptors is the class [image: there is no content] given on [image: there is no content] by


[image: there is no content]



(175)







With access to a descriptor you may suggest to assign the effort [image: there is no content] to an event with belief instance u, but you should multiply this effort with the intensity with which the event is presented to you. This gives the suggestion [image: there is no content] for local effort. Then local divergence should be the function [image: there is no content]. However, this is not going to work as the fundamental inequality (112) is bound to fail (consider [image: there is no content] with u close to 1). Fortunately, insight gained in Section 3.1 indicates how one may modify the suggestion in order to have a chance that the fundamental inequality could hold, viz., by adding an overhead term. Therefore, given a descriptor, we now suggest to define the local functions as follows:


[image: there is no content]



(176)






[image: there is no content]



(177)






[image: there is no content]



(178)







One may study modifications with more general overhead terms, but we shall not do so. The important thing is to realize that something has to be done. Moreover, inspired by the fact that for the important cases with descriptors of the form [image: there is no content], adding a simple linear overhead as suggested above works. This is stated explicitly in Corollary 7 below.



Lemma 4.

Let π be a deformation and κ a descriptor. Assume that [image: there is no content] given by (178) is a genuine primitive divergence function, i.e., that (112) (the pointwise fundamental inequality) and (114) (pointwise properness) hold. Then [image: there is no content] obtained by integration of the local quantities given in (176)–(178) over [image: there is no content] is a proper information triple over [image: there is no content].





The proof follows directly from the discussion in Section 3.1.



Note that for sound deformations, the measures of entropy constructed this way only depend on the descriptor, not on the deformation.



Also note that the quantities defined really give gross effort and gross entropy. In particular, minimal entropy is not 0 as usual, but 1. This may appear odd but, on the other hand, the way to these quantities was very natural and one may ask if it is not advantageous in many situations to incorporate an overhead. Moreover, why not use the overhead to fix the unit of effort?



We also remark that if we allow incomplete probability measures Q as belief instances, then this change of the space [image: there is no content] will not change the conclusion above. However, sticking to probability measures also for belief instances, we may subtract the number 1 from gross effort and from gross entropy and obtain the more familiar net-quantities.



Corollary 7.

For [image: there is no content] the deformation [image: there is no content] and the descriptor [image: there is no content] satisfy the conditions of Lemma 4. Accordingly, the information triple generated by integration over [image: there is no content] is a proper information triple. Furthermore, the effort function has affine marginals.



The obtained effort- and entropy functions are gross-quantities. The corresponding net-quantities give the information triple [image: there is no content] in (146) of Section 3.1. In particular, [image: there is no content] is standard Tsallis entropy with q as parameter.





The simple checking is left to the reader.



We turn to problems of another nature, viz., if, given a deformation, one can find an appropriate descriptor such that the generated global description effort is proper.



Lemma 5.

Assume that the alphabet [image: there is no content] has at least three elements. Let π be a sound deformation and denote by χ the function on [image: there is no content] defined by


[image: there is no content]



(179)







Under the assumption that χ is bounded in the vicinity of [image: there is no content], there can only exist one descriptor κ such that the net-effort function generated by π and κ, i.e., the function Φ given by


[image: there is no content]



(180)




is a proper effort function over [image: there is no content]. Indeed, κ must be the unique solution in [image: there is no content] to the differential equation


[image: there is no content]



(181)




for which [image: there is no content].





Proof. 

Assume that [image: there is no content] exists with [image: there is no content] proper. For [image: there is no content] put


[image: there is no content]











Consider a, for the time, fixed probability vector [image: there is no content] with positive point probabilities. Then the function F given by


[image: there is no content]








on [image: there is no content] assumes its minimal value at the interior point [image: there is no content] when restricted to probability distributions. As standard regularity conditions are fulfilled, there exists a Lagrange multiplier [image: there is no content] such that, for [image: there is no content],


[image: there is no content]








when [image: there is no content]. This shows that [image: there is no content].



Using this with [image: there is no content] for a value of x in [image: there is no content], we conclude that f is constant on [image: there is no content]. Then consider a value [image: there is no content] and the probability vector [image: there is no content] and conclude from the first part of the proof that [image: there is no content]. As [image: there is no content], we conclude that [image: there is no content]. Thus f is constant on [image: there is no content]. By letting [image: there is no content] in (181) and appealing to the technical boundedness assumption, we conclude that the value of the constant is [image: there is no content].  ☐





Note the use in the above proof of Lagrange multipliers in the study of properties that hold under the realization of an extremum. This is quite different from the usage we have opted against where the technique is used as a tool to verify that an extremum has been found. In the latter case, we claim that, typically, more adequate intrinsic methods apply.



We can now formulate one of the main results:

Theorem 18.

Assume that the alphabet has at least three elements.

	(i) 

	
If [image: there is no content], there is no descriptor which, together with [image: there is no content], generates a proper effort function.




	(ii) 

	
If [image: there is no content] there exists a unique descriptor, [image: there is no content] defined by (175) which, together with [image: there is no content] generates a proper effort function. The generated information triple [image: there is no content] is proper.











Proof. 

By Lemma 5 we see that [image: there is no content] given by (175) is the only descriptor which, together with [image: there is no content], could possibly generate a proper effort function. That it does so for [image: there is no content], follows by Lemma 4. For [image: there is no content], this is not the case as the reader can verify by considering atomic situations with [image: there is no content] and [image: there is no content] and letting [image: there is no content] tend to 0.  ☐







We may add that for the case of a black hole, [image: there is no content], the descriptor is given by [image: there is no content] and, using [image: there is no content] for “number of elements in ⋯” , the generated information triple [image: there is no content] is given by


[image: there is no content]



(182)






[image: there is no content]



(183)






[image: there is no content]



(184)




for all [image: there is no content]. Note that if terms of the form [image: there is no content] were to be interpreted by continuity, the resulting triple would be discrete.



We have noted that the descriptor is uniquely determined from the deformation. Therefore, in principle, only the deformation needs to be known. Examples will show that different deformations may well determine the same descriptor. For instance, deformation defined as a geometric average rather than an arithmetic average as in the definition of [image: there is no content] will lead to the same descriptor. Thus, knowing only the descriptor, you cannot know which world you operate in, in particular, you cannot determine divergence or description effort. But you can determine the entropy function. This emphasizes again the general thesis, that entropy should never be considered alone.



Finally a comment on the descriptors [image: there is no content]. A focus on their inverses is also in order. They may be interpreted as probability checkers: Indeed, if, in a Tsallis world with parameter q, you have access to a nats and ask how complex an event this will allow you to describe, the appropriate answer is “you can describe any event with a probability as low as [image: there is no content]”. Thus, when [image: there is no content], however large your resources to nats are, there are events so complex that you cannot describe them, whereas, if [image: there is no content] you can describe any event if you have access to K nats if only K is sufficiently large ([image: there is no content]).




3.7. Maximum Entropy Problems of Classical Shannon Theory


Terminology and results as developed in Section 2 are evidently inspired by maximum entropy problems of classical information theory. The classical problems concern inference of probability distributions over some finite or countably infinite alphabet [image: there is no content], typically with preparations given in terms of certain constraints, often interpreted as “moment constraints” related to random variables of interest. Such preparations will, modulo technical conditions, be feasible in the sense as defined in Section 2.9. Examples are numerous, from information theory proper, from statistics, from statistical physics or elsewhere. The variety of possibilities may be grasped from the collection of examples in Kapur’s monograph [100]. The abstract results developed in Section 2 can favorably be applied to all such examples. This then has a unifying effect. However, for many concrete examples, it may involve a considerable amount of effort actually to verify the requirements needed for the abstract results to apply. This may involve the verification of Nash’s inequality (52) or the determination of the core of models under study, cf., Theorems 5 and 6. No detailed calculations for specific examples will be carried out here.



A very large number of researchers have worked with these problems. The related publications of the present author comprises [26,101]. We shall focus on applications of the general theory from Section 2.



The basic model we shall discuss is the same as in Section 3.6 based on a finite or countably infinite alphabet [image: there is no content]. Note that, in principle, discrete alphabets with more than enumerably many elements could be allowed. However, that would contradict the sensible requirement (3).



The relevant information triple is the proper information triple composed of Kerridge inaccuracy, Shannon entropy and Kullback-Leibler divergence:


[image: there is no content]



(185)






[image: there is no content]



(186)






[image: there is no content]



(187)







We shall also work with the action space [image: there is no content] introduced in Section 3.3 and as response we take the bijection [image: there is no content] from Y to [image: there is no content] given, for [image: there is no content], by


[image: there is no content]



(188)







Controllability is the relation for which control [image: there is no content] means that [image: there is no content] whenever [image: there is no content]. The information triple to work with in the [image: there is no content]-domain is [image: there is no content] with entropy as above and with


[image: there is no content]



(189)






[image: there is no content]



(190)







The triples [image: there is no content] and [image: there is no content] are genuine proper information triples with affine marginals. Thus all parts of the abstract results developed are available and ready to apply. However, we limit the discussion by focusing only on the role of the feasible preparations, leaving elaborations in concrete examples to those interested.



Thinking of states P as determining the distribution of a random element [image: there is no content] over [image: there is no content], it is often desirable to consider preparations corresponding to the prescription of one or more mean values of [image: there is no content]. A typical preparation consists of all [image: there is no content] such that


[image: there is no content]



(191)




with c a given constant and [image: there is no content] a given function on [image: there is no content]. This is a strict feasible preparation if and only if the partition function (a special Dirichlet series),


[image: there is no content]



(192)




has a finite abscissa of convergence, i.e., converges for some finite constant [image: there is no content], cf., [26] (or monographs on Dirichlet series). However, for the most important part, having concrete applications in mind, viz., the “if”-part, this is clear. Indeed, if the condition is fulfilled, there exist constants [image: there is no content] and [image: there is no content] such that the function [image: there is no content] given for [image: there is no content] by


[image: there is no content]



(193)




defines a code. Then [image: there is no content] for some constant k, hence it is a strict feasible preparation of genus 1. It is a member of the preparation family [image: there is no content]. Consider, for any [image: there is no content] with [image: there is no content], the code [image: there is no content] given for [image: there is no content] by


[image: there is no content]



(194)







Then this code is a member of [image: there is no content] as is easily seen. In fact all members of the core are of this form (this fact can be proved as a kind of exercise in linear algebra, but more elegant proofs using the structure of the problem should be possible). If we can adjust the parameter [image: there is no content] such that the corresponding distribution [image: there is no content] given by


[image: there is no content]



(195)




is a member of the original preparation [image: there is no content], this must be the maximum entropy distribution of [image: there is no content], as follows from Theorem 6, translated to the [image: there is no content]-domain.



Schematically then: In searching for the MaxEnt distribution of a given preparation, first identify the preparation as a feasible preparation (of genus 1 or higher), then calculate if possible the appropriate partition function and finally adjust parameters to fit the original constraint(s). This gives you the MaxEnt distribution searched for. If calculations are prohibitive, you may resort to numerical, algorithmic or graphical methods instead.



As already mentioned, the literature very often solves MaxEnt-problems by the introduction of Lagrange multipliers. As shown, this is not necessary. An intrinsic approach building on the abstract theory of Section 2 appears preferable. For one thing, the fact that you obtain a maximum for the entropy function (and not just a stationary point) is automatic—it is all hidden in the fundamental inequality. For another, the quantities you work with when appealing to the abstract theory, have natural interpretations.




3.8. Determining D-Projections


The setting is basically the same as in the previous section, especially we again consider a preparation [image: there is no content] given by (191). The problem we shall consider is how to update a given prior [image: there is no content]. Then, the triple [image: there is no content] given by (185) is no longer relevant but should be replaced by the triple [image: there is no content] as defined in Section 2.8, cf., (21). This makes good sense if [image: there is no content] is finite on [image: there is no content]. The update we seek is the D-projection of [image: there is no content] on [image: there is no content] as defined in Section 2.13 in connection with (66).



We shall apply much the same strategy as in the previous section. However, we choose not to introduce response and an action space in this setting (this can be done with controls consisting of code improvements which are code length functions measured relative to the code [image: there is no content] associated with [image: there is no content]). Instead, we work directly in the Y-domain and seek a representation of [image: there is no content] as a strict feasible preparation of genus 1, now to be understood with respect to [image: there is no content]. Analyzing what this amounts to, we find that if the partition function, now defined by


[image: there is no content]



(196)




converges for some [image: there is no content], a representation as required is indeed possible. Assuming that this is the case we realize that for each [image: there is no content] with [image: there is no content], the distribution [image: there is no content] defined by


[image: there is no content]



(197)




is a member of the core of [image: there is no content]. Then it is a matter of adjusting [image: there is no content] such that [image: there is no content] is consistent, and we have found the sought update.



The cancellation that takes place from (20) to (21) allows an extension of the discussion of updating from the discrete setting to a setting based on a general measurable space. For instance, one may consider a measurable space provided with a [image: there is no content]-finite reference measure [image: there is no content] and then work with distributions that have densities with respect to [image: there is no content]. As is well known, cf., also Section 3.1, the definition of Kullback-Leibler divergence makes good sense in the more general setting. Thus updating problems can be formulated quite generally. If the prior has density [image: there is no content], the partition function one should work with is given by [image: there is no content]. Strategies for updating may be formulated much in analogy with the strategies of Section 3.7. Further details and consideration of concrete examples are left to the interested reader.





4. Conclusions


The theory presented provides a general abstract framework for the treatment of a wide range of optimization problems within geometry, statistics, statistical physics and other disciplines. Looking back, considering the methods applied and the demonstrated wide applicability, two factors seem to be essential, the type of modeling and affinity. Regarding the modeling, the key focus was on our information triples involving three interrelated quantities, effort, entropy and divergence—dually, utility, max-utility and divergence—each one being in itself of great significance and seen together playing distinct well-defined roles.



Regarding the focus on affinity, it is true that for the basic theoretical results this is not necessary. However, for almost every successful concrete application, affinity seems to pop up and appears both as a necessity and as a guarantee of success. There is something fundamental about this—possibly rooted in deep facts concerning the essential nature of observation, description and measuring.



On the theoretical side, one should note the emphasis placed on Jensen-Shannon divergence.



The game theoretical approach expressing the “man/system” or, as here, the “Observer/Nature” interface has played a major role. It has led to minimax and maximin problems. Adding convexity, it is an empirical fact that interesting and tractable optimization problems of this nature either concerns a minimax or a maximin problem for which the first optimization is easy to solve. This aspect is also present in our modeling through the linking identity and the fundamental inequality. Thus, for fixed second argument, minimal effort in our basic models is a quantity given by assumptions made and called entropy.



The extensive appeal to loose, sometimes speculative philosophical considerations is another pronounced feature of the exposition. This is intended as a guide to sensible model building and may also catalyze the consideration of meaningful applications to look into.



Other attempts to build quite general theories in this area of science include Jaynes [9], Csiszár and Matús [67], Amari and Nagaoka [10] and then the recent work of Pavon and Ferrante [102]. In the latter we find a focus on the same kind of issues as we have promoted, simplicity of modeling and affinity. With simplicity also, as here, pointing to the unnecessary appeal to techniques involving Lagrange multipliers. The base for the modeling of Pavon and Ferrante is geometry via a lemma of geometric orthogonality. So, as “models of the world” these authors, as well as Amari and Nagaoka and their followers take geometry, whereas we take a more “social” approach via game theory, emphasizing man’s role in the world.



We believe that the approach presented here is technically the more elementary one.



Along the way, our approach gave rise to a few points worth emphasizing. A modeling of what can be known (Section 2.9) appears to be a useful concept. The suggested weak notions of properness in Section 2.11 is new whereas the material in Appendix A, which serves as a partial justification, may well be common knowledge. The notion of deformation introduced in Section 2.5 and its role in the discussion of Tsallis entropy in Section 3.6 has been announced before but is here given a more full treatment, also incorporating a Bregman construction in Section 3.1. Regarding the discussion of Tsallis entropy also note the emphasis on the descriptors [image: there is no content].



Many issues are left for further discussion and consolidation of the theory. Some of the possibilities are indicated in the text. Others involve a look at sufficiency, duality, mutual information, learning theory and more. Much of this appears feasible. However, there is an important area where we do not see that our approach and results provide any clue, viz., quantum information theory. Let this challenge to the reader be the last word for now.
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Appendix A. Notions of Properness


This appendix serves as motivation for the introduction of weak notions of properness. Arguments presented are elementary and there may well be references to previous relevant work.



Three considerations underlie the refinements of this section.



Firstly, as already noted, MaxEnt problems can often be tackled without recourse to techniques involving differentiation. This is not a new observation, see e.g., Csiszár [63], Topsøe [26], Campenhout and Cover [104] and the recent work by Pavon and Ferrante, [102]. In contrast to this, the many examples contained in Kapur [100] builds excessively on differentiation techniques.



Secondly, have a look at Figure 2. Really, what is dominating is the curve h and the straight line, w. The belief instance u is not that prominent. More so the line it determines. True, this is the tangent at [image: there is no content], determined by differentiation but what is essential is that it dominates h, a feature ensured by concavity. Domination by control appears as the right focus.



Thirdly, also non-concave functions can of course have maxima. Therefore, avoiding differentiation, there may be no need for the convenience of the assumed concavity of the generator.



Motivated by these considerations we embark on the intended refinement. We shall work in the subset [image: there is no content] of the plane [image: there is no content] with I an interval. It simplifies matters if I is open and this will be assumed until further notice. For linear functions on I we use the bracket notation as in


⟨s,w⟩=α+βs;s∈I.



(A1)







A linear function w is identified with its graph, which could be any non-vertical line. For a point [image: there is no content] we talk about points to the left of Q (to the right of Q) as points left of (right of) the vertical line through Q.



We shall work with some special sets, called butterfly sets. Such a set is characterized by two linear functions [image: there is no content] and [image: there is no content], the boundary lines, and a point [image: there is no content], the crossing point. This terminology is also applied if [image: there is no content] and [image: there is no content] coincide. The butterfly set determined by [image: there is no content] and with crossing point Q is the set [image: there is no content] of points [image: there is no content], “squeezed in” between the boundary lines:


[image: there is no content]



(A2)







In the notation for butterfly sets it is assumed that either [image: there is no content] or else [image: there is no content] is below [image: there is no content] to the left of Q and above [image: there is no content] to the right of Q. If [image: there is no content], the butterfly set is thin. Otherwise it is fat.



We shall consider a generalized generator which is just any real-valued function h defined on I. For our standard modeling, I will be the state space as well as the belief reservoir: [image: there is no content]. Moreover, a control, here a control line, is any linear function w which dominates h, i.e., [image: there is no content] for [image: there is no content]. The set of controls is denoted W (rather than [image: there is no content]). We assume that [image: there is no content]. Visibility and controllability are the diffuse relations on [image: there is no content], respectively [image: there is no content].



The key lemma is the following geometry-based result. We shall not write out all details of the proof. This is standard routine. You should observe that both parts of the result are existence statements which do not have purely constructive proofs. The proof is based only on the most basic elements of the infinitesimal calculus via appeal to statements about existence of suprema and infima of sets of real numbers.



Lemma A1.

(i) With assumptions as stated (I open, [image: there is no content]), there exists a function [image: there is no content] on I such that every point on the graph of [image: there is no content] lies on some control line and such that this property applies to no point below this graph.



(ii) Further, for every [image: there is no content] there exists a butterfly set [image: there is no content] with [image: there is no content] as crossing point such that the set of control lines which passes through [image: there is no content] is identical with the set of control lines contained in [image: there is no content].





Proof. 

Property (i) is trivial. One simply defines [image: there is no content] by


[image: there is no content]



(A3)




for [image: there is no content]. As you will realize, [image: there is no content] is the concave envelope of h. Automatically, this function is upper semi-continuous.



As to (ii), we shall outline one way to the proof. Let [image: there is no content] and have a look at Figure A1. There, [image: there is no content] and [image: there is no content]. For every pair of points [image: there is no content] on the graph of h, with [image: there is no content] to the left and [image: there is no content] to the right of Q, the set T, understood to be open, which lies above the butterfly set in the figure, does not contain any point from the graph of h. Clearly, the union of all sets T which can be constructed in this way, call it [image: there is no content], is the set above two, possibly coinciding control lines [image: there is no content] and [image: there is no content] which constitute the boundary of [image: there is no content]. The set [image: there is no content] is the butterfly set [image: there is no content] we were looking for. ☐


Figure A1. For the proof of Lemma A1.



[image: Entropy 19 00143 g005]










With the lemma in place, we can define response as a point map from I into W. The map will not be surjective and, depending on h, possibly not injective either. To define the map, let [image: there is no content] be a belief instance and consider the butterfly set [image: there is no content]. As response of u we take [image: there is no content] if these control lines coincide. If the horizontal line through [image: there is no content] is contained in [image: there is no content], we take this control line as response. In the remaining cases we take as response that control line [image: there is no content] among [image: there is no content] and [image: there is no content] which, numerically, has the smallest slope.



The above construction defines [image: there is no content] uniquely. When [image: there is no content] is thin, there is only one control line to choose from, whereas when [image: there is no content] is fat, we made a specific choice so as to minimize the risk. The control lines constructed this way are called minimal-risk controls. As to the nature of the result, one may note that it involves global rather than local considerations as would be involved in an approach via differentiation.



The following obvious corollary is a replacement of a classical basic result on maxima of functions based on differentiation.



Corollary A1.

Let [image: there is no content] be an open interval and h a real function defined on I which is dominated by a real line.



A necessary and sufficient condition that h has a maximum in I is that for some point [image: there is no content], the butterfly set [image: there is no content] contains a horizontal line, necessarily [image: there is no content], and that [image: there is no content]. Assume that these conditions are fulfilled for some point [image: there is no content]. Then u is a maximum point of h and a necessary and sufficient condition that u is the unique maximum point of h in I is that [image: there is no content] intersects no other point on the graph of h than the point [image: there is no content].





As to the various possibilities for the type of [image: there is no content]—fat or thin—and for [image: there is no content] in relation to h, we note the following:



Lemma A2.

Let [image: there is no content].

	(i) 

	
If [image: there is no content] is fat, then [image: there is no content].




	(ii) 

	
If h is upper semi-continuous, in particular if h is continuous, and if [image: there is no content], then [image: there is no content] is thin.











Proof. 

(i) follows by noting that if [image: there is no content], then no line segment connecting a point on [image: there is no content] to the left of [image: there is no content] with a point on [image: there is no content] to the right of [image: there is no content] can dominate the relevant part of h since then the prolongation of the line segment would dominate h for all arguments in I, clearly contradicting the definition of [image: there is no content].



Part (ii) is an easy consequence. ☐





The cases depicted in Figure A2 illustrate some possibilities for the location of the possible butterfly sets in relation to [image: there is no content].


Figure A2. Examples of generators and butterfly sets; control lines as given by response are shown in red.



[image: Entropy 19 00143 g006]








Our construction allows us to define a pretty natural information triple associated with any generalized generator. We simply define [image: there is no content] and [image: there is no content] for [image: there is no content] by


[image: there is no content]



(A4)






[image: there is no content]



(A5)




and can then assert as follows:

Theorem A1.

With the definitions (A4) and (A5), [image: there is no content] is a [image: there is no content]-proper effort-based information triple over [image: there is no content]. The triple has affine marginals [image: there is no content].







With the thorough preparations, this is evident.



If [image: there is no content], i.e., if h is concave, our construction has some merits over the standard Bregman construction as smoothness is not required.



Regarding the assumption that I is open, this can be dispensed with at the cost of some comments on degenerate control lines, lines which really only give control at one of the endpoints. This may be formulated by allowing infinite values for the controls or one may focus on decompositions of [image: there is no content] into two convex sets. We leave it to the reader to work this out (and to modify the proof of Lemma A1 accordingly, working separately to the left of Q and to the right of Q).



As a trivial but illuminating example when working with a closed rather than an open interval we take [image: there is no content] and as generator consider the identity map h on I. Then h itself is a control and we realize that [image: there is no content] for all u with [image: there is no content] whereas the constant control [image: there is no content] given by [image: there is no content] for all [image: there is no content] is the response to [image: there is no content]. You realize that with this generator, the associated information triple is not [image: there is no content]-proper, but it is [image: there is no content]-proper and it also satisfies the other property demanded of what we called standard properness, viz., that the optimal control is robust.



Among issues and further possibilities depending on the construction in this appendix we point to a few:



Clearly, one may “change sign” and discuss utility-based systems. This involves notion of support lines and minimal-risk supports.



Then, just as with standard Bregman constructions, one should deal with the more involved geometric complications when functions over (convex) areas in finite dimensional Euclidean spaces are involved.



One may replace h, first with its graph (in fact done), but further with any subset of [image: there is no content]. More generally, you may consider subsets G of a separable Hilbert space provided with a hyperplane [image: there is no content] and a choice of direction orthogonal to [image: there is no content]. The hyperplane is a replacement for the abscisse-axes of our discussion and the direction a replacement for the ordinate-axes. For such systems, height over the hyperplane will be a replacement for function values.



It does appear quite natural to allow continuous and concave, but not necessarily smooth generators. For instance, you may consider the generator [image: there is no content] on [image: there is no content]. In that case, it is easy to find examples to demonstrate that this generator is not [image: there is no content]-negative definite. Then, according to Proposition 11, the Jensen-Shannon divergence jsd associated with this generator is not the square of a metric. Elaborating a bit on this in a pretty natural manner, one finds that:



Proposition A1.

No Jensen-Shannon divergence constructed from a generator with bends can be the square of a metric.





Though not that surprising, this result supports the view that the attractive cases when Jensen-Shannon divergence is in fact a squared metric—perhaps even related via embedding to a squared Hilbert metric—requires a strong degree of smoothness for an underlying generator.




Appendix B. Protection against Misinformation


We present a possible variation of the interpretations emphasized in Section 2 of our study. This involves a theme which has been important for the development of the notion of proper score functions. For this appendix, [image: there is no content] is assumed.



In a sense, what we shall discuss here is what happens if Nature can communicate. Then we speak instead about Expert. Moreover, Observer becomes Customer. Expert holds the truth, x, or rather, x represents Experts best evaluation of what the truth is. Customer wants to know what Expert thinks about a certain situation and asks Expert for advice—against payment, to be agreed upon. For despicable reasons, Expert may be tempted to advice against better knowing, i.e., to give as advice y, instead of the honest advice x. Misinformation could either be due to the difficulty Expert may have in reaching a true expert opinion or it could be out of self-interest, with Expert taking advantage of false information given to Customer. Or Expert may try to mislead Customer in order to hide a business secret.



We assume that truth will be revealed to both Expert and Customer soon after Expert has given advice to Customer and further, that a proper effort function [image: there is no content] is known to both Expert and Customer. We shall device a payment scheme which will protect Customer against misinformation. The idea is simple. At the time of signing a contract—before advice is given—Customer pays a flat sum to Expert and further, Expert and Customer agree on an insurance scheme stipulating a penalty to be payed by Expert to Customer proportional to [image: there is no content] where [image: there is no content] represents what really happened and y is the advice given. If Expert is confident that he knows what will happen, he will assume that [image: there is no content] will hold and it will be in his own interest to give to Customer the honest advice [image: there is no content].



In the literature this scheme is mainly considered based on a proper score function, the same as a proper utility function. This gives an obvious variation of the payment scheme with the score function determining payment from Customer to Expert. The most often treated situation is probably that of weather forecasting with Brier [42] the first and Weijs and Giesen [105] a recent contribution. However, also situations from economy and statistics have been studied frequently. Apart from sources just cited we refer to the sources pointed to in Section 2.6 and to McCarthy [106] as well as to Chambers [107]. As a final reference we point to Hilden [108] where applications to diagnostics is discussed.



Works cited and their references will reveal a rich literature. With access to our abstract modeling, further meaningful applications, not necessarily tied to probabilistic modeling may emerge.




Appendix C. Cause and Effect


We present one further possible variation of the interpretations emphasized in Section 2 of our study. We assume that [image: there is no content] and put [image: there is no content]. Elements of X are now interpreted as causes and response, considered as a map defined on X, as the transformation of a cause into its associated consequence. This change moves the focus from Observer’s thoughts as discussed in Section 2.3 to a reflection of causality in Nature. The set-up is in this way conceived as a model of cause and effect.



Previously we considered possible choices of Observer in [image: there is no content]- or [image: there is no content]-type games. Now it is more pertinent to focus on consequences—elements of W—as possible observations by Observer of the effect of the actual cause. For [image: there is no content] and [image: there is no content], [image: there is no content] is now be interpreted as the cost to Observer if he has observed (or believes to have observed) the effect w when the actual cause is x.



Consider the game [image: there is no content], say with preparation [image: there is no content]. With the new interpretation in mind it appears particularly pertinent to consider Observer’s risk associated with the various possible observations.



Concrete situations where the change of interpretation makes sense, involve information theoretical problems of capacity.




Appendix D. Negative Definite Kernels and Squared Metrics


The result needed for the proof of Proposition 11 is a simple fact leading up to a group of rather deep results, see e.g., Chapter 6 of Deza and Laurent [103] (note that there, negative definiteness is referred to as being of negative type). For the convenience of the reader we present a simple direct proof of the needed more primitive result:



Proposition A2.

Let X be an abstract set and [image: there is no content] a “kernel” which is sound ([image: there is no content]), proper ([image: there is no content] if [image: there is no content]) and symmetric ([image: there is no content]). Then D is a squared metric if and only if D is negative definite over three-element sets, i.e., if and only if, for any scalers [image: there is no content] with [image: there is no content] and any set [image: there is no content] of elements in X, the sum [image: there is no content] is non-positive.





Proof. 

“only if”: Assume that [image: there is no content] with d a metric on X. With [image: there is no content] and [image: there is no content] and [image: there is no content], one finds that [image: there is no content]. The second order polynomium in the parenthesis has the discriminant [image: there is no content] which is non-positive as [image: there is no content] (consider separately the cases [image: there is no content] and [image: there is no content]). Thus S is non-positive.



“if”: With [image: there is no content] given, put [image: there is no content] and [image: there is no content]. As the sum S is non-positive with scalers of the form [image: there is no content] we find from previous calculations that [image: there is no content] from which the desired triangle inequality [image: there is no content] follows. ☐
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