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Abstract: Li-Ion batteries are widely preferred in electric vehicles. The charge status of batteries
is a critical evaluation issue, and many researchers are studying in this area. State of charge gives
information about how much longer the battery can be used and when the charging process will be
cut off. Incorrect predictions may cause overcharging or over-discharging of the battery. In this study,
a low-cost embedded system is used to determine the state of charge of an electric car. A Li-Ion battery
cell is trained using a feed-forward neural network via Matlab/Neural Network Toolbox. The trained
cell is adapted to the whole battery pack of the electric car and embedded via Matlab/Simulink to
a low-cost microcontroller that proposed a system in real-time. The experimental results indicated
that accurate robust estimation results could be obtained by the proposed system.

Keywords: embedded system; Li-Ion battery; electric; state-of-charge; feed-forward neural network;
battery monitoring software

1. Introduction

Li-Ion, LiPo, Pb, NiMH, and VRLA battery types are used in electric vehicles [1]. Li-Ion batteries
are popular because of their light weight, stability, energy intensity and long life [2]. Battery packs are
used to get the power to run the vehicle. The battery pack consists of serial and parallel connected
battery cells. The battery management systems (BMS) are used to use batteries safely without exceeding
the limit values of the battery packs. Some BMSs can do condition monitoring, fault diagnosis,
state-of-charge (SOC) and state of health (SoH) estimation [3]. The SOC was used to denote the usable
energy of the battery pack [4]. Knowing the SOC in electric vehicles gives information about how
much range can be driven, and when and how long the battery will be charged. For this reason,
accurate SOC determination is a crucial issue that researchers are studying. Wrong predictions may
cause overcharge or over-discharge of the battery [5].

Although batteries seem to be simple, they are nonlinear and complex systems because of
their physical and chemical structure. Moreover, it is important to estimate SOC of the battery
accurately in battery management systems to use the battery efficiently [6]. Mathematical, electrical,
and electrochemical methods are used to determine the SOC of the battery; mathematical and
electrochemical methods include complex equations, which is why it is hard to calculate them. These
equations must be redesigned for other types of batteries. The electrical method is easy to calculate
and the user can develop a battery model by looking at a datasheet of the battery or measuring the
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battery parameters. Successful battery models can be achieved using data sets generated by electrical
methods. SOC can be estimated by direct measurement of parameters like open circuit voltage,
terminal voltage, impedance, impedance spectroscopy [7–10], adaptive systems like coulomb counting
modified coulomb counting, back propagation neural network, radial basis neural network, neural
network, support vector machine, fuzzy neural network, Kalman filter [11–16], extended Kalman
filter [17], hybrid systems like coulomb counting and extended Kalman filter combination, coulomb
counting and Kalman filter combination, per-unit system and extended Kalman filter combination [18],
and wavelet neural network based [19]. Most of these methods are widely used and give acceptable
results in various applications.

Li-Ion batteries are more stable and light-weight, and an organic electrolyte provides practical cell
voltage to be above 4 V. They have high energy densities, and they provide easy applications without
the need for connecting several cells in a series [20–22]. In recent years, the need for portable power
has accelerated due to the miniaturization of electronic applications, where, in some cases, the battery
system is as much as half the weight and volume of the powered device [23]. Li-Ion batteries have no
memory effect. Therefore, users do not have to fully discharge batteries to recharge them again and do
not have to fully charge [24]. They are usually expensive since they require advanced knowledge of
chemistry and advanced studies.

In this study, a feed-forward neural network (FFNN) neural network is proposed to predict the
SOC of a Li-Ion battery pack used in an electric car. FFNN is the most popular type in artificial neural
networks. The FFNN is applied in SOC estimation due to its excellent ability of nonlinear mapping
and self-learning [25]. As the problem defined, the relationship between input and target is nonlinear
and very complicated in SOC estimation [26].

A discharge test for SOC prediction is easy, has high accuracy, is suitable for all batteries, and it is
independent of the state of health of the battery. Artificial intelligence techniques can be adapted to all
kind of batteries. It requires training data and works in real time [27].

In this study, SOC estimation is implemented and designed for a battery pack of an electric car
with an embedded system. The SOC of one cell of the battery pack is trained with FFNN using different
discharge constant current outcomes. In this way, the requirement for training data sets will reduce in
addition to the reliance of artificial neural network (ANN) on data sets since constant current discharge
data are easier to obtain and are usually given in battery datasheets [12]. The SOC of one battery cell is
adapted to the whole battery pack of the electric car via Matlab/Simulink (R2009a, Natick, MA, USA).
The Matlab/Simulink model is directly embedded into a low-cost microcontroller. The developed
system is portable, which can be used for other electric vehicles or systems including the battery
pack. There are many studies on prediction of the SOC of Li-Ion batteries in the literature. However,
a few of them include the embedded system. Using embedded systems has some advantages such
as less coding, ease of use, ease of adapting to another type of battery pack connection, practicality,
flexibility, fast building time, time-savings, and reliability. Thus, the study contributes to researchers,
manufacturers, research and development laboratories that are related to this area.

2. Materials and Methods

2.1. Electric Car and Battery Pack

An electric car is developed to compete in the TÜBİTAK Efficiency Challenge Electric Vehicle
event. The schematic layout of the electric car is given in Figure 1. The technical specifications of the
electric car are shown in Table 1. The critical measurement data, and the video of the driver and the
road is stored in a black box.

A single cell Li-Ion battery has low voltage, low capacity and energy storage and may not meet
the energy requirements of an electric car, so hundreds and thousands of cells are always composed
through series or parallel to build up a battery system [28]. The battery pack of the electric car in our
system consists of 8 parallel and 28 serial connected NCR1850B Li-Ion battery cells. The BMS of the car
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protects the battery from threshold values, but this equipment is not able to predict the SOC of the
battery. The battery cell is trained in this study and adapted to the whole battery pack of the electric
vehicle. The technical properties of the single cell and the whole battery pack are given in Table 2.

Table 1. Technical specifications of the electric car.

No Property Specifications

1 Motor Two permanent magnet brushless DC motors
2 Motor driver Siemens S7 1200 (Siemens, Munich, Germany) programmable logic controller
3 Chassis Aluminum chassis
4 Shell Carbon fiber shell
5 Weight 237 kg
6 Driving range 100 km
7 Maximum speed 97 km/h
8 Charging unit 220V AC input and built-in the car.
9 Other Electronic differential, a telemetry system, black box, the dynamic headlight system

Figure 1. Schematic layout of the electric car.

Table 2. Technical specifications of the single battery cell and battery pack.

Specifications Single Cell Battery Pack

Rated Capacity 3.2 Ah 25.6 Ah
Nominal voltage 3.6 V 100.8
Charging voltage 4.2 V 117.6
Cut-off voltage 2.5 V 70 V

Charging current 1.625 A 13 A
C Rate 2 2

2.2. Experimental Setup

In this study, an experimental setup is developed to collect electrical measurement data while
charging and discharging the battery cell. Open circuit voltage, current, power, load, ambient
temperature and battery temperature are measurement parameters. The measurement setup of this
study is given in Figure 2. To charge the battery, Imax B8+ charge equipment (Array, Shenzhen, China)
and to discharge battery Array 3711A programmable DC load equipment (LEM, Nanjing, China)
are used. A circuit is designed to choose the charger or load from software. The LTS25-NP current
sensor ( LEM, Geneva, Switzerland), LV25P voltage sensor ( LEM, Geneva, Switzerland) and LM35
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temperature sensor (Texas Instruments, Dallas, TX, USA) are also located on this circuit. Three batteries
can be connected to this circuit and the experiment battery can be chosen from the software. There
are also contacts to control buttons of the charger on this circuit. The contacts on this circuit are
controlled by digital I/O on an Advantech USB-4716 data acquisition (DAQ) card (Advantech, Taiwan,
China). The programmable DC load is connected to the PC via an Array 3312 Seri-USB port converter
(Array, Shenzhen, China). Square codes are glued to all batteries that define their identity. A Perkon
Spider SP400 square code reader (Perkon, Umraniye, Turkey) is used to read codes. This equipment is
connected to the computer via a USB port. A web camera is used to watch the experiments [18].

Figure 2. Measurement setup.

2.3. Graphical User Interface

A graphical user interface is developed in Visual Studio 2010 software (Microsoft Redmond, WD,
USA) in C# programming language to monitor conditions of batteries and save the measurement data.
The user selects the test battery, duration of the experiment, and sample time and chooses to charge or
to discharge the battery from software. If the user decided on the discharge battery discharging method
(constant current, constant load, constant power) and the discharge value is determined. If the user
wants to charge and discharge the battery for a number of times, he chooses to automatically charge
and discharge selection and makes some adjustments on it. Automatically charging/discharging can
be done from full charge to full discharge, or it can be done for desired times. The discharge value can
be adjustable. When all the adjustments are finished, an experiment code is generated automatically.
A table is generated called this code in the database and the measurement data is saved to this table in
real time. During the experiments, if battery exceeds the limit values of voltage, current or temperature,
the experiment stops automatically [28].

In general, the SOC of a battery is defined as the ratio of its current capacity (Q(t)) to the nominal
capacity (Qn). The nominal capacity is given by the manufacturer and represents the maximum
amount of charge that can be stored in the battery [18]. The SOC can be defined as Equation (1):

SOC(t) =
Q(t)
Qn

. (1)

The SOC of the battery can be determined from the current curve of the battery while discharging
the battery. From full charge to full discharge, the area under the current curve represents 100% SOC,
and it can be estimated by the trapezoid method. The rate of remaining capacity of the battery can
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be calculated from Equation (2). In this equation, UA represents the used capacity of the battery,
TA−UA is the remaining capacity and TA is the full capacity of the battery

SOC =
TA−UA

TA
· 100. (2)

To obtain the data set for usage to determine the SOC of the battery pack, the battery cell is fully
charged firstly and then fully discharged at constant current levels. In Figure 3, from left to right, 0.1 C,
0.3 C, 0.5 C, 0.8 C, 1 C, 1.2 C, 1.5 C, 1.7 C, and 2 C constant current discharging curves are given. This
experimental data is used as training data for FFNN to determine the SOC of the battery. The electric
car that we used in experiments does not support regenerative breaking; for this reason, only discharge
data is used to train the neural network. However, it is possible for a mixture charge–discharge data
pool to develop an ANN.

Figure 3. Discharging curves at different constant current levels.

2.4. Artificial Neural Network

An ANN is basically a data-based model for mapping input/output relationships [29,30]. The NN
imitates the learning process of a human brain. Instead of using complex rules and mathematical
routines, the NN is able to learn the key information patterns within a multi-dimensional data domain.
In general, it consists of an input layer, some hidden layers and an output layer [31]. Main parameters
used in the SOC of battery predictions are battery terminal voltage and battery current. P and CVt
parameters can be derived from these variables. P is power and obtained by multiplying voltage and
current parameters. CVt is a counter parameter. The counter increments if the voltage is the same as
the previous voltage measurement value and resets if these two parameters are different. Using only
current or only voltage value gives incorrect estimation results. Using P and CVt values increases the
performance of the neural network. The input values of FFNN are normalized between 0 and 1 by
dividing input value into the absolute maximum input vector value. The architecture of FFNN to
determine the SOC of the battery is given in Figure 4.



Entropy 2017, 19, 146 6 of 11

Figure 4. Feed forward neural network architecture of the study.

There are 4 inputs, 2 hidden layers and 1 output in this architecture. There are 21 neurons in each
hidden layer. The number of hidden layers and neurons in hidden layers are determined by trial and
error. The number that gives the best result is chosen. The input values are current (A), voltage (V),
power (P) and CVt. The output of NN is between 0 and 1. In addition, 0 represents the fully discharged
battery and 1 accounts for the fully charged battery.

The voltage value of the battery can be constant for some time during the discharging process.
However, during this period, the SOC of the battery is not the same, and this causes incorrect SOC
estimations via a neural network. For example, as given in Figure 5, from a time to b for 400 s
voltage, current and power values of the battery are the same, but the SOC is different. To protect
incorrect predictions of the SOC, one more input variable called CVt is added to the neural network.
This variable is calculated from the change of voltage value using Equation (3). As seen Table 3, CVt is
an important parameter:

CVt =

{
old voltage = new voltage, CVt = CVt + 1,
old voltage 6= new voltage, CVt = 0.

(3)

Figure 5. Discharging curves at 0.1 C constant current: (a) full graph; (b) zoomed graph.

Table 3. Input and output variables of feed forward neural network between 400 and 800 s for 0.1 C
discharging dataset.

Time (s) Voltage (V) Current (A) Power (W) CVt SOC (%)

400 4.07 0.32 1.3 1 96.9
1200 4.07 0.32 1.3 400 95.3

The SOC value is determined according to the measurement data. The input variables of this
FFNN are voltage, current, power and time.

Eighty percent of measurement data is used as training data and 20% of measurement data
is used as test data for FFNN. The FFNN neural network training results are given in Table 4.
The Levenberg–Marquart learning algorithm is used and the performance is calculated using the
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mean squared error. It took 1338 s and 293 iterations to train the neural network. A Simulink model of
FFNN is generated using the gensim() function. The success rate is 99.54% when the training data set
is applied and 99.45% when the test data is applied to the neural network. There is no doubt that the
success rate of this study is acceptable in literature.

Table 4. Training results of FFNN.

Training Parameters Value

Training Levenberg–Marquardt
Performance Mean Squared Error

Epoch 293
Time 1338 s

Performance 7.06 × 10−6

Gradient 9.45 × 10−6

Mu 0.001

2.5. Embedded System Based SOC Prediction

A low-cost STM32F4DISCOVERY card has a STM32F407VGT6 microcontroller featuring a 32-bit
advanced reduced instruction set computing machine cortex. It includes an ST-LINK/V2 embedded
debug tool. It has analog and digital inputs and outputs. Matlab/Simulink supports programming
the microcontroller. A card is designed to use the pins efficiently. Voltage sensors, current sensors,
temperature sensors, a liquid crystal display (LCD) and a secure digital (SD) card slot, and input
and output connectors are located on this card. The input connector is connected to the battery
grid and the output connector is connected to the electric car. The connection scheme is given in
Figure 6. The Matlab/Simulink model presented in Figure 7 is embedded into STM32F4DISCOVERY.
The measured values of current, voltage, temperatures and output of FFNN are viewed in real time
on the LCD and saved to the SD card. The ANN gives noisy output while the input values are noisy.
Therefore, the output of the neural network is filtered using a moving average method. The equation
of moving average method used in this study is given in Equation (4). SOC[] is filtered SOC value,
ANN[] is output of ANN; i and j are index values in this equation.

SOC[i] =
1

100

99

∑
j=0

ANN[i + j] (4)

Figure 6. The state-of-charge (SOC) application scheme.
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Figure 7. Real time SOC prediction model via FFNN.

3. Results and Discussion

The system is tested on the electric car at the TÜBİTAK Efficiency Challenge Electric Vehicle
in 2016 in Kocaeli/Turkey [32]. A photo of the electric vehicle is given in Figure 8. Three drives
have been done on the driving track. Real-time measurements and battery packs’ SOC estimations
corresponding to these measurements are given below. Figures 9–11 first present graphs of battery
voltage, current and CVt parameters, and, in the following graphs, SOC and estimated SOC of the
battery are given. The estimated SOC of the relative battery error rates of the first experiment is 0.75%,
the second experiment is 0.27%, and the third experiment is 0.14% respectively. The average success
rate is 99.61%. The results show that the system operates successfully.

Figure 8. Driving test of the electric vehicle.
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Figure 9. (a) Battery voltage, current and CVt parameters; (b) SOC and estimated SOC of the battery.

Figure 10. (a) Battery voltage, current and CVt parameters; (b) SOC and estimated SOC of the battery.

Figure 11. (a) Battery voltage, current and CVt parameters; (b) SOC and estimated SOC of the battery.

4. Conclusions

In this study, an Li-Ion battery cell is trained using FFNN. The trained cell is adapted to an entire
battery pack and used for estimating the SOC of an electric car in real time. The dataset to train FFNN
is obtained from discharge curves of a single battery cell at different C rates at constant currents.
The model developed in Matlab/Simulink is embedded in the low-cost STM32F4DISCOVERY kit.
The system is tested in real time on the electric car and performs with a 99.61% success rate. Modelling
a single cell and adapting the model to a whole battery pack made the experiments easier and time and
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cost savings were achieved. The CVt parameter is an innovation of this study. Using CVt parameters
as an input variable of FFNN reduced the incorrect estimations and increased the system’s accuracy.
In closing, this study performs well in real-time SOC estimation of an electric car. It is possible to
adapt the system to systems that include battery packs. Furthermore, this study can be used in range
prediction of electric vehicles.
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VRLA Valve regulated lead acid
BMS Battery management system
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FFNN Feed forward neural network
DAQ Data acquisition card
NN Neural network
LCD Liquid crystal display
ANN Artificial neural network
AC Alternative current
DC Direct current
LCD Liquid Crystal Display
SD Secure Digital
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