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Abstract: Transfer Entropy has been applied to experimental datasets to unveil causality between
variables. In particular, its application to non-stationary systems has posed a great challenge due to
restrictions on the sample size. Here, we have investigated the minimum sample size that produces a
reliable causal inference. The methodology has been applied to two prototypical models: the linear
model autoregressive-moving average and the non-linear logistic map. The relationship between the
Transfer Entropy value and the sample size has been systematically examined. Additionally, we have
shown the dependence of the reliable sample size and the strength of coupling between the variables.
Our methodology offers a realistic lower bound for the sample size to produce a reliable outcome.

Keywords: transfer entropy; multiple comparison analysis; bias analysis; coupled logistic maps;
coupled autoregressive-moving-average (ARMA) model

1. Introduction

Transfer Entropy (TE) [1] is an information-theoretical functional able to detect a causal association
between two variables [2–5]. TE identifies the potential driver and driven variable by statistically
quantifying the flow of information from one to the other distinguishing the directionality due to
its asymmetric property. Backshifting one variable at some particular lag, it returns a nonzero value
indicating information flow between variables, or zero otherwise. However, in real data application,
it may assume a nonzero value simply due to bias associated with the finiteness of the sample, and not
because of an actual coupling [6,7].

Recently, sophisticated algorithms using transfer entropy have improved causal detection [8,9].
However, even these advanced methods require sufficient sample points to avoid false positives
due to data-shortage bias. Previous studies addressed the entropy bias by estimating the probability
distribution of the underlying processes [10–12]. However, from an inference-based approach, there is
still a lack of rigorous computation regarding the appropriate minimum size of the sample for a
reliable TE outcome. To overcome such an issue, a statistical hypothesis test is required to distinguish
independence from a causal relation. The outcome of testing depends on the sample size. This raises
concern regarding the minimum sample size required for TE to provide a reliable inference of
causal relation.

To answer this, we employ TE as a statistical test and search for the lower bound of the sample size
that produces a reliable true positive. For the purpose of consistency, the investigation is carried out in
a stationary regime, so the sample range does not result in a different interaction behavior. To this end,
paradigmatic models are used in the analysis: two coupled linear autoregressive-moving-average (ARMA)
models and two coupled non-linear logistic maps. The former is used in model-driven approaches
to detect Granger causality through parametric estimation [13]. The latter is a typical example of a
nonlinear system that challenges causal inference due to its chaotic properties.
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The results show that the minimum sample size for reliable outcome depends on the strength of
the coupling. The larger the coupling, the smaller the sample size required to provide a reliable true
positive. The relationship between coupling strength and sample size varies according to the model.
We pinpoint the lower bound of the sample size at the limit of high coupling for each model.

The contents of this paper are organized as follows. In Sections 2 and 3, the models and the
methodology are described, in Section 4 the main findings are presented, and in Section 5, the results
are discussed.

2. Models

The models are constructed to describe two coupled variables X and Y; X influences Y after a
lag τ, with coupling strength regulated by the parameter η. In the following subsection, the models
are defined.

2.1. Coupled ARMA[p,q]

The ARMA model is a linear regression model used as a toolkit in the Granger causality approach.
Two coupled ARMA[p, q] models X and Y are defined; X influences Y after τ = 15 time steps, that is,

xi = ρ
p

∑
k=1

xi−k + ε
q

∑
k=1

ξx
i−k,

yi = (1− η)

(
ρ

p

∑
k=1

yi−k + ε
q

∑
k=1

ξ
y
i−k

)
+ ηxi−15, (1)

where i = 0, . . . , n so that n is much bigger than any sample size N; ξ is a uniformly distributed
random number; ρ and ε are parameters that regulate the state transition and stochasticity respectively;
finally, η is the coupling parameter. For η = 0, the two variables are uncoupled, while if η = 1, the Y
variable is completely defined by X. The parameter ρ = 0.8 is fixed throughout the whole analysis.
In the methodology section, we investigate the role of ε and η in detecting N∗.

2.2. Couple Logistic Maps

Inspired by the studies of both Gyllenber [14] and Hastings [15] to describe migration dynamics
within two populations, we define the coupled logistic maps with delay as follows

xi = rxi−1(1− xi−1),

yi = (1− η)ryi−1(1− yi−1) + ηxi−15. (2)

The dynamics of X is the standard logistic map, and the dynamics of Y has two terms. The first
is a local logistic growing rate, while the other represents a migration effect, where individuals from
the X migrate to Y after τ = 15 time steps. We assume that both populations have the same growth
rate r = 3.9. The parameter η is the coupling between X and Y and represents the migration influx
controlling the growth of one population to the detriment of the other.

3. Methodology

Consider two given sets of discrete variable X = {xi} and Y = {yi}. Any causal relationship
between them should be restrained in the temporal order of the X and Y elements. Let us suppose
that X influences Y after τ units of time. One can detect this relationship using the TE functional.
TE evaluates the reduction in the uncertainty of the past of a possible driver Xτ due to the knowledge
of the present of a possible driven Y when the past of Yτ is given. Figure 1 illustrates the idea behind
the sampling for TE calculation. The TE from X to Y is evaluated as follows
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I(Xτ ; Y|Yτ) = H(Xτ , Yτ) + H(Y, Yτ)− H(Yτ)− H(Xτ , Y, Yτ). (3)

Whenever X and Y are infinite independent random variables, the expression (3) is zero. However,
in the case of two finite datasets, TE will be greater than zero, even if X and Y are supposed to be
independent. This bias is due to a finite size effect, and it has to be addressed via a statistical
inference procedure.
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Figure 1. Diagrammatic representation of the sampled values used to calculate the Transfer Entropy
(TE) between X and Y. The solid black box represents the period of interest and the other two dashed
boxes represent the lagged intervals for analysis.

Let us assume a null hypothesis stating that X and Y are independent for a particular lag τ.
At this lag, an ensemble of surrogate data is generated from the original data. A confidence interval is
defined as a percentile of the surrogate’s TE distribution. If the TE calculated from the original dataset
(original TE) is significantly higher than the confidence interval, then the null hypothesis is rejected
and causality is detected. However, for a small dataset, the bias is considerable when compared to the
original TE [16]. The small-sample issue leads to a type II error, e.g., X and Y are not independent,
but the hypothesis is falsely accepted.

The minimum number of sample points N∗ that prevent such bias has been estimated.
Assuming the processes as being independent and with each having equiprobable B partitions, one can
find a preliminary lower bound for the proper sample size such that N � N∗ = B3.

Our computational approach improves this naive estimation by investigating the dependence
of the TE value with the sample size N. It searches for the smallest N = N∗ so the original TE is
significantly higher than the confidence interval. The trustworthiness of TE is tested for the models
presented in Section 2, contemplating its particularities.

The methodology is described as follows. The reliability of the true positives is tested against
several sample sizes. For each sample size tested, 100 runs with different initial conditions are
performed. For each run, an ensemble of 2000 surrogates is obtained from the original data, and the
respective TE is calculated at a fixed τ = 15. A significance level of α = 0.0005 is chosen, so the
99.95 percentile of the surrogate ensemble is defined as the upper confidence bound, which for the
sake of simplicity we have called the threshold Ithr. Whenever the original TE is higher than Ithr,
the null hypothesis is rejected. Otherwise it is accepted. This produces a comparison-wise error rate
of π = 0.049 when considering the multiple comparisons between the 100 runs of different initial
conditions. In other words, a significance level of 4.9% is obtained when all the 100 TEs calculated from
the original dataset are significantly higher than all the respective Ithr. In the analysis, we consider the
most coarse-grained measure, i.e., a bipartition of the variable’s dynamics domain using two ordinal
patterns. Appendix A presents the details of the probability estimation while Appendix B explains the
upper bound of Transfer Entropy.
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4. Results

In this section, the minimum sample size N∗ required to avoid type II error is pinpointed with a
significance level of 4.9%. Figures 2–5 show the boxplot regarding the 100 TE values versus the sample
size N. The ends of the whiskers represent the minimum and maximum TE values. The TE calculated
from the original time series is seen in black, and the threshold Ithr (family-wise error rate of 0.0005) is
seen in red. The minimum reliable sample size N∗ is defined as the smallest N therefore the minimum
TE value calculated from the original time series is higher than the maximum TE calculated from the
threshold. All statements have been made according to a confidence level of 4.9% (comparison-wise
error rate).

4.1. Coupled ARMA[p,q]

Figure 2 shows the results for the two coupled ARMA[1,1] models. The reliable minimum sample
size N∗ depends on the coupling strength of the model. Figure 2a shows results for coupling strength
η = 0.9; the TE method yields a reliable true positive if one uses N > N∗ = 40(5). Figure 2b
shows results for coupling strength η = 0.5; the TE method yields a reliable true positive if one uses
N > N∗ = 165(5). Finally, Figure 2c shows results for coupling strength η = 0.1; no minimum sample
size N∗ is identified (up to N∗ = 400). This means that there is a higher chance of obtaining false
negatives. Figure 2d–f show the TE of Y → X versus the sample size. In this case, the methodology
presents a negligible chance of type I error, which is the incorrect rejection of a true null hypothesis.
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Figure 2. The black boxplots refer to the time series of the coupled autoregressive-moving-average
(ARMA)[1,1] model, and the red boxplots refer to its surrogates. Left: Transfer Entropy of X → Y
versus the sample size for the following coupling parameter (a) η = 0.9; (b) η = 0.5; (c) η = 0.1. Right:
Transfer Entropy of Y → X versus the sample size for the following coupling parameter (d) η = 0.9;
(e) η = 0.5; (f) η = 0.1.
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In the particular case of the ARMA[p, q] model, Figure 3 shows that the reliable minimum sample
size N∗ does not depend significantly on the memory of the autoregressive term. The results refer to
the autoregressive window size p = 1, 4 and 8.

We also investigated the relationship between the reliable minimum sample size N∗ and the
parameter ε that regulates the stochasticity. Figure 4a,b show the results for ε = 0.5 and ε = 1.0.
One can notice that N∗ depends on the ARMA parameter ε. For ε = 0.5, the minimum reliable sample
size is N∗ = 110(5), and for ε = 1.0, the minimum reliable sample size is N∗ = 165(5). So the higher
the parameter ε is, the larger the N∗ value must be to obtain a reliable true positive.
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Figure 3. Transfer Entropy of X → Y versus the sample size for different autoregressive window sizes
(a) p = 1, (b) p = 4 and (c) p = 8.
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Figure 4. Transfer Entropy of X → Y versus the sample size for different stochastic parameters
(a) ε = 0.5 and (b) ε = 1.0.
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4.2. Couple Logistic Maps

Figure 5 shows that the N∗ value here changes more abruptly according to the coupling strength
in the nonlinear coupled logistic map if compared with the ARMA model. Figure 5a shows the results
for coupling strength of η = 0.9. In this case, one requires N > N∗ = 35(5) sample points for the
proper detection of the influence of X on Y. This lower bound is very close to the one identified in the
ARMA model with the same coupling strength. Figure 5b shows the results for the coupling strength
η = 0.5; in this case, the number of sample points for a reliable true positive is N > N∗ = 45(5).
For the coupling strength η = 0.1, no minimum sample size N∗ is identified (up to N = 400). Figure 5c
shows a high probability of obtaining false negatives, so no lower bound is identified. Figure 5d–f
show that the TE method presents a negligible chance of type I error.

Figure 6 shows the relationship between the reliable minimum sample size N∗ and the coupling
parameter η. The larger the coupling parameter η is, the smaller the N∗ that is required, but the
way N∗ decays with η is different for the two models. The relationship between N∗ and η for the
ARMA[1,1] model presents an exponential decay, whereas for the coupled logistic map, N∗ presents
an abrupt decay when η < 0.4 and a saturation behavior around N∗ ≈ 35 for η > 0.4.
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Figure 5. The black boxplots refer to the time series of the coupled logistic maps, and the red boxplots
refer to its surrogates. Left: Transfer Entropy of X → Y versus the sample size for the following
coupling parameter (a) η = 0.9; (b) η = 0.5; (c) η = 0.1. Right: Transfer Entropy of Y → X versus the
sample size for the following coupling parameter (d) η = 0.9; (e) η = 0.5; (f) η = 0.1.
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Figure 6. Reliable minimum sample size N∗ versus the coupling parameter η, using a binary partition
for probability estimation.

The result regarding the coupled logistic map depicted in Figure 6 can be explained as follows:
The saturation happens because around η = 0.4, the driven synchronizes its dynamics with the driver.
Figure 7a shows the behavior of the system for η = 0.3, i.e., below the synchronization transition.
Furthermore, Figure 7b shows the behavior when the system is very close to the synchronized
state between the systems with η = 0.6. We stress that this result is important and unexpected
because it shows that, even in an almost synchronized state, the underlying methodology can detect
interactions correctly.
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Figure 7. Behavior of the coupled logistic maps according to the coupling strength η. (a) Shows the
behavior when η = 0.3; and (b) shows the synchronized behavior when η = 0.6.

Moreover, at the high coupling limit, the minimum sample size of the ARMA[1,1] model is
N∗ = 30(5), somewhat small if compared with the logistic maps, namely N∗ = 35(5). Despite the fact
that this coupling analysis considers only ideal and simplified models, this number can be thought of
as the lower bound for the entropy transfer using a significance level of 5% and two ordinal patterns.

4.3. Three Ordinal Pattern

A larger amount of sample points is needed to obtain a reliable outcome using three ordinal
patterns. Figure 8 shows the relationship between TE and N using three ordinal patterns and η = 1.0.
One can see that the ARMA[1,1] model requires at least N∗ = 65(5) sample points, while the logistic
model needs at least N∗ = 80(5) sample points.
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Figure 8. Transfer Entropy of X → Y versus sample size N using three ordinal patterns and coupling
parameters η = 1.0. (a) Coupled ARMA[1,1] model; (b) Couple logistic maps.

5. Conclusions

In this paper, we have presented a quantitative analysis to find the minimum sample size N∗ that
produces a reliable true positive outcome using Transfer Entropy. We have tested two paradigmatic
models: the linear ARMA model, commonly used in Granger causality approaches; and the well
known nonlinear logistic map. The models are constructed to describe two coupled variables X and Y;
X influences Y after a lag τ with coupling strength regulated by the parameter η.

The analysis shows that the size of N∗ depends on the coupling strength η, η being the larger and
N∗ the smaller. This result is expected since the information flow increases with the coupling [5,17],
therefore it is reasonable to conclude that the larger the coupling is, the smaller the sample size required
to infer causality.

However, the relationship between N∗ and η depends on the model. For the coupled ARMA
model, N∗ decreases exponentially as η increases whereas, for the coupled logistic map, N∗ decays
abruptly for η < 0.4 followed by a saturation as η increases.

Furthermore, at the high coupling limit, the value of N∗ approaches 35(5) sample points. This result
establishes the lower bound of the reliable minimum sample size for inference-based causality testing
using Transfer Entropy. For this particular case, we use a probability estimation through bipartition of
the variable domain. We have shown that the higher the partitioning is, the higher the N∗ value is.
This methodological procedure can be reproduced for different models, control experimental data and
also probability estimation.
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Appendix A. Probability Estimation

The probability is estimated using the ordinal partitions symbolization [18,19]. The procedure
transforms an experimental sample into a sequence of n-tuples called order patterns π of size n. Each π

contains n indexes of the original sample. The indexes are arranged in such a way that their respective
values follow an ascending order.

The order patterns are generated by sampling n values with delay d, so that the i-sample is defined
as (xi, xi+d, xi+2d, . . . , xi+(n−1)d). In the context of phase-space reconstruction of dynamical systems,
n is also known as the embedding dimension and d as the embedding delay [20,21]. In this study, we
test n = 2, 3, 4 and d = 1.
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The two kinds of models considered here are discrete recurrence relation, so there is no slow
response time in the dynamics, therefore no scatter sampling across the time series is necessary. Besides,
an embedding delay equal to one is enough for the ordinal patterns to capture the intrinsic features of
the model’s dynamics.

Appendix B. Upper Bound of Transfer Entropy

The upper bound of the TE can be obtained through the following consideration: Equations (1)
and (2) are devised to make X and Y uncouple when η = 0, and conversely, if η = 1 then
Y is entirely described by X. In the latter case, H(Xτ, Y, Yτ) = H(Y, Yτ) which leads us to
I(Xτ; Y|Yτ) = H(Y, Yτ)− H(Yτ) = H(Y|Yτ). Assuming Y and Yτ to be independent, then H(Y|Yτ) =

H(Y). This finally leads us to the upper bound of the TE as I(Xτ; Y|Yτ) = log2 B for equiprobable B
partitions in the variable’s domain.
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