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Abstract: Based on the combination of improved Local Mean Decomposition (LMD), Multi-scale
Permutation Entropy (MPE) and Hidden Markov Model (HMM), the fault types of bearings are
diagnosed. Improved LMD is proposed based on the self-similarity of roller bearing vibration signal
by extending the right and left side of the original signal to suppress its edge effect. First, the vibration
signals of the rolling bearing are decomposed into several product function (PF) components by
improved LMD respectively. Then, the phase space reconstruction of the PF1 is carried out by using
the mutual information (MI) method and the false nearest neighbor (FNN) method to calculate
the delay time and the embedding dimension, and then the scale is set to obtain the MPE of PF1.
After that, the MPE features of rolling bearings are extracted. Finally, the features of MPE are used
as HMM training and diagnosis. The experimental results show that the proposed method can
effectively identify the different faults of the rolling bearing.

Keywords: improved LMD; multi-scale permutation entropy; MI; FNN; delay time; embedding
dimension; HMM; back-propagation (BP); bearing fault diagnosis

1. Introduction

Rolling bearings are the most important parts of rotating machinery, which are easily damaged
by load, friction and damping in the course of operation [1]. Therefore, the feature extraction and
pattern recognition of bearings diagnosis are very important. The time-frequency analysis method has
been widely used in faults diagnosis, because it can provide the information in the time and frequency
domain [2]. Moreover, there are many methods of artificial intelligence detection, such as statistical
processing to sense [3], stray magnetic flux measurement [4], and neural networks such as support
vector machine (SVM) [2].

When the wavelet basis function of the wavelet transform (WT) [5] is scheduled to be different,
the decomposition of the time series will have great influence. When the wavelet base is selected,
WT has no self-adaptability at different scales [2,6].

Empirical mode decomposition (EMD) [6] can involve the complex multi-component signal
adaptive decomposition of the sum of several intrinsic mode function (IMF) components. Further,
the Hilbert transform of each IMF component is used to obtain the instantaneous frequency [7,8] and
instantaneous amplitude. The aim of this is to obtain the original signal integrity of the time-frequency
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distribution [9], but there are still some problems, such as: over-envelope, under-envelope [10], modal
aliasing and endpoint effect in the EMD method.

The Local Mean Decomposition (LMD) [2] method realizes signal decomposition and
demodulation by constructing the local average and envelope estimation functions, which effectively
solves the problem of the over-envelope, under-envelope and modal aliasing in the EMD method [6].
Compared with WT and EMD, LMD has the nature of self-adaptive feature and the LMD
endpoint effect involves a certain degree of inhibition, while solving the problem of under-envelope
and over-envelope.

Researchers have found that the endpoint effect processing has been improved by LMD [11–13],
but the impact of the endpoint effect is still very obvious, and it cannot be proved that extreme ones
use the left or the right points, so we can not explain how the envelop curve fitting function of the
extreme value may be reasonable [5]. Researchers have found that the LMD edge effects can be solved
by the extreme point extension and the mirror extension [9]. The boundary waveform matching
prediction method contains the Auto-Regressive and ARMA prediction [7]. Both sides of the waveform
are just extended by these methods, but these methods do not take into account the inner rules or
characteristics of signals. The new improved LMD takes inner discipline into account, the results of
experiments show that the new method is more flexible than the existing method.

After the improved LMD decomposition, we have to solve a major important aspect, namely,
how to extract the fault information from the obtained PF components. Many studies have been carried
out to solve the problem. In recent years, mechanical equipment fault diagnosis is used more than
non-linear analysis methods such as sample entropy and approximate entropy [14–16]. Permutation
Entropy (PE) [15–17] is a new non-linear quantitative description method, which can be a natural
system of irregularities and a non-linear system in the quantitative numerical method presented,
and has the advantages of simple calculation and strong anti-noise ability. However, similar to the
traditional single-scale nonlinear parameters, PE is still in a single scale to describe the irregularity of
time series.

Aziz et al. [18] proposed the concept of MPE. MPE can be used to measure the complexity of time
series under different scales, and MPE is more robust than other methods [18]. However, mechanical
system signal randomness and noise interference are poor. The MPE method is used for signal
processing, and the detection result is unsatisfactory. Therefore, MPE is used in combination with
LMD, forming a new high-performance algorithm, which can effectively enhance the effectiveness of
MPE in signal feature extraction.

In this paper, the rolling bearing vibration signals were decomposed into several PF components
by improved LMD. Then, the phase space reconstruction of the PF1 is carried out by using the
mutual information (MI) and the false nearest neighbor (FNN) to calculate the delay time and the
embedding dimension, and then the scale is set to obtain the MPE of PF1. After that, the feature vectors
are extracted as the HMM and back-propagation (BP) neural network input, and then the training
diagnosis and fault diagnosis are compared.

2. Improved LMD Method and Phase Space Reconstruction of MPE

The process of improved LMD is summarized in four sub-processes, first we set up three points
to invest a triangular waveform, and then we list all start points (it will takes some time to search
the characteristic waveform), finally we get the best integration interval. After that we will study the
shape error parameters to get the best extension of signal. Finally, we extend the right end through the
above method, and the extended signal will be better.

Figure 1 will show that the edge effect has become better, the end of the time-frequency
representation changes significantly. Therefore, the experiment shows that the improved LMD has
greatly improved the reduction of the border.
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Figure 1. The process of the improved Local Mean Decomposition (LMD). 

In Figure 2, the vibration signals of the rolling bearing are decomposed into several PF 
components by the improved LMD respectively. Then, the phase space reconstruction of the PF1 is 
carried out by using the MI and the FNN to calculate the delay time and embedding dimension, and 
then we can set the scale to obtain the MPE of PF1. 
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Figure 2. LMD method and Phase Space Reconstruction of Multi-scale Permutation Entropy (MPE). 

In Figure 3, MI [17–20] determines the optimal delay time. { }, 1, 2, ,ix x i N= =   represents a 
group of signals, the probability density function of the point is [ ( )]xp x i , the signal is mapped to the 

probability { }, 1,2, ,jy y j N= =  . 

The two groups of signals , x y  are measured probability density [ ( ), ( )]xyp x i y j . In the 
formula: ( )h x  and ( )h y  respectively correspond to ( )x i  and ( )y j  of the entropy in the 
specified system and measure the average amount of information; ( , )h x y  is a joint information 
entropy. 

Figure 1. The process of the improved Local Mean Decomposition (LMD).

In Figure 2, the vibration signals of the rolling bearing are decomposed into several PF components
by the improved LMD respectively. Then, the phase space reconstruction of the PF1 is carried out by
using the MI and the FNN to calculate the delay time and embedding dimension, and then we can set
the scale to obtain the MPE of PF1.
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Figure 2. LMD method and Phase Space Reconstruction of Multi-scale Permutation Entropy (MPE).

In Figure 3, MI [17–20] determines the optimal delay time. x = {xi, i = 1, 2, · · · , N} represents a
group of signals, the probability density function of the point is px[x(i)], the signal is mapped to the
probability y =

{
yj, j = 1, 2, · · · , N

}
.

The two groups of signals x, y are measured probability density pxy[x(i), y(j)]. In the formula:
h(x) and h(y) respectively correspond to x(i) and y(j) of the entropy in the specified system and
measure the average amount of information; h(x, y) is a joint information entropy.
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Figure 3. Mutual information method.

In Figure 4, FNN [21–24] is used to calculate the minimum embedding dimension effective method.
Time series x(n) constructs a dimension space state space vector Y(n) = (x(n), x(n + t), · · · , x(n +

(m− 1)t)). Using Yr(n) to represent the Y(n) nearest neighbor, the distance between them can be
calculated by the formula.
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Figure 4. False nearest neighbor method for Embedding Dimension.

When the embedded dimension changes from m to m + 1, a new coordinate Y(n) is added to
each component of the vector x(n + mt). At this time, the distance between Y(n) and Yr(n) is the
relative increment of the distance, so they are false neighbors.

In the calculation of the project Rtol ≥ 10, it is found that the false neighboring points can be
easily identified. At the time r = 1, we call the nearest neighbors, by computing each nearest neighbor
of the trajectory.

In order to make the MPE have better fault recognition effect, it is necessary to use the MI and the
FNN to optimize the delay time and the embedding dimension when calculating the MPE in Figure 2.
The MPE is calculated based on the optimized parameters.

3. Diagnosis Flow Based on HMM

(1) The characteristic index of bearing failure degree is extracted from the fault signal of the
needle roller bearing with different degrees of damage, and the feature index is normalized
and quantized [24]. When the HMM is established, the sequence of observations should be a
finite discrete value, and the discretized value can be used as the model training eigenvalue
after quantization.

(2) Diagnosis Flow Based on HMM [25] in Figure 5. The Baum–Welch algorithm [26,27] is used
to train, adjust and optimize the parameters of the observation sequence, so that the observed
sequence of probability values in the observed sequence is similar to the observed value sequence.
We calculate the maximum, HMM state identification, different fault levels of the state to establish
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the corresponding HMM, the unknown fault state data and in turn enter the various models,
calculate and compare the likelihood. The output probability of the largest model is the unknown
signal fault type. It is estimated that the most probable path through the sequence is observed by
the Baum–Welch algorithm.
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4. Experimental Data Analysis

In Figure 6, in order to validate the proposed method, the experimental data of different rolling
bearings are analyzed. The experimental data are analyzed from the Case Western Reserve University.
The bearing of the drive shaft end is the 6205-2RS SKF deep groove ball bearings, and the loaded
2.33 kW motor. The pitch diameter of the ball group is 40 mm and the contact angle is 0, the power of
motor is 1.47 kW. Sampling frequency is 12 kHz and the relevant drive motor speed is 1750 rpm with
2 Hp load, the number of sampling points n = 2048. The collected signals can be divided into four fault
types including Normal, IRF, ORF, and BF. Each condition has 16 samples and a total of 64 samples.
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Figure 6. The rolling bearing experiment system.

The normal state of the bearing, inner ring fault, outer ring fault and rolling body fault are tested.
Due to limited space, only the improved LMD decomposition of the inner ring fault is listed in Figure 7.
We can find that improved LMD decomposition is performed for each group of time domain signal,
which sets the amount of change. The multi-component AM-FM signal is decomposed into a single
component AM-FM signal, the decomposition of the PF component and the signal correspond to the
corresponding components, which reflect the various components of the signal in the presence of
different characteristics of components. Each PF component has a physical meaning, reflecting the
original signal of the real information, so we get a series of PF components.
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Figure 7. Inner fault is decomposed by improved LMD.

We can obtain the signal after improved LMD decomposition, which can effectively remove noise,
and extract important signals. PF1 is more than 80% of the original information. PF1 can effectively
reflect the original signal of the complete information characteristics. Therefore, we use the PF1 to
calculate the MPE. Not only can we improve the computational efficiency, we can also reflect the
original information characteristics.

According to the calculation steps of the MPE, the phase space is reconstructed. Delay time and
embedding dimension are two main parameters influencing the MPE algorithm. It is determined
that these two parameters have certain principal randomness. Therefore, we need algorithms for
phase space reconstruction. Phase space reconstruction methods mainly have the MI and the FNN to
determine two parameters independently and the (C-C) joint algorithm. We found that MPE obtained
by independent parameters has a better mutation detection effect. So the important PF1 component
can be selected by the MI and the FNN to calculate the delay time and the embedding dimension.
After that we reconstruct the phase space.

We can set the MI parameter, Max_tau = 100, the program default maximum delay Part = 128 and
the program default box size. The delay time is calculated by the MI, as shown in Figure 3. On the
basis of determining the delay time, the false nearest neighbor method is adopted to optimize the
embedding dimension, where the maximum embedding dimension is set to 12, the criterion 1 is set to
20, criterion 2 is set to 2, false neighbor rate with the embedding dimension of the curve as shown in
Figure 4. When the embedding dimension is 4, the FNN rate is no longer reduced with the increase
of the embedding dimension, so the embedding dimension is set to m = 4. Using the same principle,
we can reconstruct the four faults of the rolling bearing with phase space, and calculate the delay
time and the embedding dimension. Due to the limited space, we only list part of the delay time and
embedding dimension, and Table 1 reflects the partial delay time and the embedding dimension.

Table 1. The partial delay time and the embedding dimension.

Section BF OBF IBF Normal

t 1 1 1 2
m 6 4 5 7

After the phase space reconstruction, the delay time and embedding dimension are used to
compute the MPE. We define the scale factor S and calculate the MPE, select the PF1 component of the
data length N = 2048, the scale S = 14. Therefore, we can calculate the MPE. In Figure 8, the MPE of
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PF2 is compared with MPE of PF1. We can see that PF1 is better than PF2, so we choose PF1. We can
see that the rolling body faults and the inner ring faults are well distinguished, but the outer ring faults
cannot be very good. Therefore, there is a need to identify the model, it is HMM. After the MPE is
calculated, the feature vectors are grouped into an Eigenvectors group for the input of HMM and the
BP neural network, and trained and predicted for different faults.
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The training curve is shown in Figure 9. HMM modeling and training, rolling body fault,
inner ring fault, outer ring fault, and the normal bearing represent four kinds of hidden state, recorded
as λ1, λ2, λ3, λ4, respectively. The observation sequence of the model is the six multi-scale permutation
entropy feature sequences extracted above. In addition, the state transition probability matrix Bλ
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state. The model better describes the signal in a continuous manner over time. The level of bearing
failure establishes HMM. Because there are four kinds of fault state, we choose four HMM states,
and the model parameter N is chosen. Each state takes 11 groups as the training sample is used
to generate HMM under four states, the remaining sets of feature vectors are used as test samples.
The training algorithm used is the Baum–Welcm algorithm. We set the number of iterations to 100 and
the convergence error to 0.001. In the model of training, the maximum likelihood estimation value
increases as the iteration number increases. The training ends when the convergence error condition
is satisfied.
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In order to prevent the model from getting into an infinite loop or training model failure,
the training algorithm uses the Lloyd algorithm to scalar quantify the entropy sequence, and the
scalar quantization sequence is input into the HMM. The training algorithm uses the Baum–Welch
algorithm. As the number of iterations increases, the maximum log-likelihood estimate increases
until convergence is reached. After training, four hidden HMM recognition models can be obtained.
Figure 9 shows the HMM training curves for four states. It can be seen that all the states reach
convergence at 20 iterations and converge quickly. After the training HMM models, the remaining
20 sets of entropy eigenvectors, fives states of each state, are taken as test samples. Before the test,
the sample entropy sequence is scaled by Lloyd algorithm, and the scaled quantized sample entropy
sequences are inputted to each state.

After the completion of HMM training in four states, a state classifier is built. The Eigenvalue
sequences of the remaining four states is calculated by the Forward–Backward algorithm at λ1, λ2, λ3,
and λ4 Model. The log-likelihood ln P(O|λ) of this sequence is generated. Log likelihood probability
ln P(O|λ) reflects the degree of similarity between feature vector and HMM, the larger the value, the
closer the observed feature sequence is to the HMM of the state. The feature sequence corresponds to
the output log likelihood probability value. The maximum model corresponds to the fault state. In the
HMM model, each model outputs a log likelihood estimate. The log likelihood estimate represents
the degree of similarity between the feature vector and each HMM. The larger the log likelihood
estimate, the closer the feature vector in this state HMM model, the recognition algorithm is the
Baum–Welch Algorithm.

The log likelihood ratio obtained from the training model inputted to this state is larger than the
log likelihood probability value obtained from the other state inputs. In Table 2 it can be seen that the
higher the failure degree of the same fault type, the higher the log likelihood estimate is, and the output
of natural logarithm probability estimate in each state is the maximum under this state. Under these
four states, the bearing diagnosis and recognition show no category error. The HMM-like fault
diagnosis model can successfully identify the fault type of bearings, recognition accuracy and stability.

Table 2. The part of the sample to be tested identifies the result.

Fault
Condition

Logarithm Likelihood Probabilities of the Input Sample Model

λ1 λ2 λ3 λ4 Recognition Result

BF −9.75854 −24.5979 −∞ −∞ λ1
OBF −157.594 −15.1449 −∞ −∞ λ2
IBF −∞ −55.9402 −9.33311 −792.054 λ3

Normal −∞ −24.0932 −59.6398 −5.63077 λ4

In order to compare improved LMD model recognition results, the experiment is different.
The training results of HMM are compared with those of BP neural network, the recognition
results are shown in Table 3. We set BP some parameters as follows: trainParam_Show = 10;
trainParam_Epochs = 1000; trainParam_mc = 0.9; trainParam_Lr = 0.05; trainParam_lrinc = 1.0;
trainParam_Goal = 0.1. Compared with LMD, the overall accuracy of the improved LMD model
is excellent.

Table 3. Comparison of improved LMD for Fault Recognition.

Recognition Model BF OBF IBF Normal Recognition Rate

Improved LMD
HMM 5 5 4 5 95.0%

BP 5 4 5 4 90.0%

LMD
HMM 5 4 4 5 90.0%

BP 5 4 4 4 85.0%
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5. Conclusions

Based on the combination of improved LMD, MPE and HMM model can still achieve higher
recognition when the number of exercises is small. In practical application, the new useful method can
be used for training samples, so the new model is more suitable for practical fault diagnosis.

(1) Improved LMD for bearing non-stationary signal processing has a strong signal frequency domain
recognition capability. The experiment shows that the improved LMD has greatly improved the
reduction of the border. The improved LMD can effectively remove the excess noise and extract
important information.

(2) The MI and the FNN can effectively reconstruct the space, reflecting the multi-scale permutation
entropy and the mutation performance under different scales.

(3) HMM model of the various states of the bearings can be trained, and successfully diagnoses
the bearing fault features. Improved LMD and HMM has a high recognition rate and it is very
suitable for a large amount of information, and non-stationarity of the characteristic repeatability
fault signal.
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