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Abstract: Natural time is a new time domain introduced in 2001. The analysis of time series associated
with a complex system in natural time may provide useful information and may reveal properties
that are usually hidden when studying the system in conventional time. In this new time domain,
an entropy has been defined, and complexity measures based on this entropy, as well as its value
under time-reversal have been introduced and found applications in various complex systems. Here,
we review these applications in the electric signals that precede rupture, e.g., earthquakes, in the
analysis of electrocardiograms, as well as in global atmospheric phenomena, like the El Niño/La
Niña Southern Oscillation.
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1. Introduction

Non-equilibrium dynamics is the key for understanding self-organization [1]. Self-organization
is the main characteristic of complex systems that usually arise in physics, chemistry and mostly in
biological sciences. The notion of self-organized criticality (SOC) introduced by Bak et al. [2] firstly
provided a unifying picture [3–5] for the ubiquitous presence of power laws in various complex
systems that definitely operate far from thermodynamic equilibrium. SOC reconciles non-equilibrium
dynamics with the critical behavior obtained in equilibrium systems [6] without the necessity of a
fine-tuned parameter, such as temperature or pressure in equilibrium. The mechanism behind this
phenomenon is that the complex system self-organizes in a state for which power (or approximately
power) laws appear naturally. Of course, not all complex systems or all self-organized systems give
rise to power laws. A typical example of such a complex self-organized system is a living system [7].
The physiological time series resulting from such a system do not exhibit huge, power law-like
variations, but they rather vary within a well-defined range, which is necessary for life to be sustained.
Yet, the (multi-)fractal behavior arises, and it is altered with disease or aging [7]. Moreover, since
physiological signals may contain both stochastic and deterministic components, the concept of entropy
is also suitable for their study.

Within these lines of providing a general framework for the study of time series resulting from
complex systems and focusing on the identification of forthcoming extreme events, our group [8–10]
introduced natural time analysis (NTA) almost fifteen years ago. NTA enables the identification of
novel dynamical features hidden behind the time series resulting from complex systems. The first
applications of NTA have been reviewed by Varotsos et al. [11]. In natural time, one can define a quantity
reminiscent of the excessive “entropy” (see [12], pp. 26–28), called [8,13] entropy in natural time S.

In the present work, we focus on the applications of natural time entropy to various complex
systems in physics, geophysics, seismology, atmospheric sciences and cardiology. The paper is
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organized as follows: In Section 2, we present the necessary background of the analysis in natural time
and introduce the entropy S, as well as the corresponding complexity measures in Sections 2.2 and 2.3,
respectively. Section 3 focuses on the related applications to the electric and magnetic signals that
precede rupture (see Section 3.1), the penetration of magnetic flux avalanches in type II superconductors
(which is a typical SOC system; in Section 3.2), the Olami–Feder–Christensen (OFC) [14] earthquake
model (Section 3.3), the preparatory processes before the occurrence of strong earthquakes (Section 3.4),
the study of electrocardiograms (ECG), summarized in Section 3.5, and atmospheric physics in
Section 3.6. These applications, as well as the future perspectives for new ones are discussed in
Section 4. Section 5 accounts for various technical, though very important for real life, details on the
aforementioned applications. Finally, the conclusions are presented in Section 6.

2. Natural Time and Natural Time Entropy

2.1. Analysis of Complex Time Series in Natural Time

In a time series of individual events resulting from a complex system, the natural time [8–11]
associated with the k-th event is given by χk = k/N, where N is the total number of events included in
the time series. In NTA [8–11], the pair (χk, Qk) is studied where Qk is a quantity proportional to the
energy emitted by the k-th event. This is made by considering the distribution:

pk =
Qk

∑N
n=1 Qn

, (1)

where pk is the normalized energy for the k-th event. Since the positive pk for k = 1, . . . N sum up to
unity, they can be considered as probabilities (for more details, see [15]), and hence, the function [8–11,15]:

Π(ω) =

∣∣∣∣∣ N

∑
k=1

pk exp
(

iω
k
N

)∣∣∣∣∣
2

(2)

may provide information about the distribution pk when ω → 0. Expanding Equation (2) around
ω = 0, we obtain that:

Π(ω) = 1− κ1ω2 + . . . , (3)

where κ1 stands for the variance of natural time:

κ1 ≡
N

∑
k=1

χ2
k pk −

(
N

∑
k=1

χk pk

)2

, (4)

with respect to the distribution pk. For a simple system, such as a classical gas in thermal equilibrium
in a vessel where Qk might be considered as the energy of the particles that consecutively collide with
the walls of the vessel, Qk are independent and identically-distributed random variables leading to
pk → 1/N. This is the case of the so-called [11,13,16] “uniform” distribution leading to a value of κ1

equal to κu = 1/12 ≈ 0.083. For critical systems, where one can assume that p(χ) varies algebraically
as a power law, Varotsos et al. [17] have shown that:

κ1 ≈ 0.07 (5)

for a variety of systems approaching criticality. Thus, κ1 reaches the value of 0.070 for a critical system
or 0.083 for a system exhibiting a stationary or quasi-periodic behavior.

Figure 1 depicts how a time series from a variety of complex systems can be read in natural time.
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Figure 1. How a time series of (a) dichotomous (e.g., zero or one) electric signals, (b) earthquakes [18],
(c) avalanches in 3D rice piles [19,20], (d) an ECG (for the so-called QT intervals), (e) a not obviously
dichotomous electric (or magnetic) signal and (f) monthly Southern Oscillation Index (SOI) [21] values
can be visualized in natural time. The meaning of the symbols, as well as the mathematical details for
each case are discussed in Section 5.
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2.2. Entropy in Natural Time

Apart from κ1, another useful quantity in NTA [11] is the entropy S given by [8,13,22]:

S = 〈χ ln χ〉 − 〈χ〉 ln〈χ〉, (6)

where the brackets 〈. . .〉
(
≡ ∑N

k=1 . . . pk

)
denote averages with respect to the distribution pk.

The entropy S is a dynamic entropy that exhibits [23] positivity, concavity and Lesche [24,25]
experimental stability. When Qk are independent and identically-distributed random variables,
S reaches [22] the value Su ≡ ln 2

2 −
1
4 ≈ 0.0966 that corresponds to the aforementioned

“uniform” distribution.
Moreover, upon reversing the time arrow and hence applying time reversal T , i.e., T pk = pN−k+1,

the value of S changes to a value S−; see Figure 2. Hence, the entropy S in natural time does satisfy the
condition to be “causal”. As the concept of entropy is equally applicable to deterministic, as well as
stochastic processes, the natural time entropies S and S− may provide a useful tool [11,22,26–29] for
the analysis of physiological time series (cf. the latter in most cases is due to processes involving both
stochastic and deterministic components).
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Figure 2. Important properties of the entropy in natural time S and the entropy in natural time
under time reversal S−: in both panels, a signal consisting of 84 pulses is analyzed in natural time;
the green and blue lines indicate the values (left scale) of S (green) and S− (blue) obtained for each
N(= 10, 11, 12, . . . , 84). The signal is composed from 80 pulses of equal energy and four pulses, which
are ten-times stronger (right scale, arbitrary units). In the upper panel, the stronger pulses are emitted
periodically, while in the lower panel, consecutively in the middle of the process. Although the Shannon
entropies for both panels are equal, the entropies in natural time S are different in each panel. Moreover,
when using the entropy in natural time under time reversal S−, we obtain values that are in general
different from those of S.
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It is worthwhile to mention that natural time entropy S has a particularly simple physical meaning
since it may capture small trends existing in Qk. For example, when considering a small increasing
trend ε(> 0) for pk versus k by studying the parametric family p(χ; ε) ≡ 1+ ε (χ− 1/2) of continuous
distributions for pk, one can show [27], using the definition of Equation (6), that:

S(ε) ≡
∫ 1

0
p(χ; ε)χ ln χdχ−

[∫ 1

0
p(χ; ε)χdχ

]
ln
[∫ 1

0
p(χ; ε)χdχ

]
= −1

4
+

ε

72
−
(

1
2
+

ε

12

)
ln
(

1
2
+

ε

12

)
. (7)

Expanding the last term of Equation (7) around ε = 0, we obtain that:

S(ε) = Su +

(
6 ln 2− 5

72

)
ε + O(ε2). (8)

Since for this family of continuous distributions, S−(ε) simply equals S(−ε), we observe that an
increasing trend in p(χ; ε), i.e., ε > 0, corresponds to S−(ε) values higher than S(ε). This result
indicates that if we study the change of the entropy in natural time under time reversal:

∆S ≡ S− S− (9)

increasing or decreasing trends transform to negative or positive values of ∆S, respectively. Finally,
since S(ε) in Equation (7) is a nonlinear function of ε, we observe that the change of the entropy under
time reversal ∆S is a nonlinear tool capturing alternations in the dynamics of the complex system.

Using S and ∆S within a specified natural time window of length l, one can study time series
resulting from complex systems by constructing the corresponding time series of S and ∆S obtained
upon estimating these two quantities every l events as the natural time window of length l slides
along the time series [30]. This inspires the introduction of complexity measures that quantify the
fluctuations of the entropy S and of the quantity ∆S upon changing the length scale, as well as the
extent to which these quantities are affected when randomly shuffling the consecutive events.

2.3. Complexity Measures Based on the Entropy in Natural Time

Complexity measures quantifying the variability of S and ∆S upon changing either the (natural
time window) length scale or shuffling the consecutive events randomly are classified into two categories
depending on whether they make use of either S or the change ∆S of the entropy in natural time under
time reversal [22,26,27,29,31].

2.3.1. Complexity Measures Based on S

As a measure of the natural time entropy fluctuations, we consider the standard deviation δS
when we calculate the value of S for a number of consecutive events and study how S varies when
sweeping this time window (each time by one pulse) through the whole time series. The following
complexity measures based on δS have been suggested [22,26,31]:

When the natural time window length changes from a short value, e.g., five events, to a shorter
one, e.g., three events, the corresponding δS value also changes. This variation in the short(s) range is
quantified by the measure λs =

δS5
δS3

, where the subscript in δS denotes the time window length chosen.
If a longer (L) range, e.g., 60 events, changes to a short one, e.g., three pulses (events), the corresponding
variation is quantified by another measure λL = δS60

δS3
. Hence, one can in general quantify the effect of

changing the natural time scale from three events to l events by considering the complexity measure:

λl =
δSl
δS3

. (10)

Considering now the data obtained by randomly shuffling the durations Qk of consecutive events,
we can define the measure ν as:

ν ≡
δSshu f

δS
, (11)
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where δS and δSshu f denote the value of δS calculated when a natural time window of length l is
sweeping through the original and the shuffled time series, respectively. The following ratios have
been investigated [22]: νs and νL for the following natural time window lengths: 3–4 events from small
scales and 50–70 events for the larger scales, respectively. It is clear that the quantity ν captures the
extent to which the sequential order of events regulates the natural time entropy fluctuations.

2.3.2. Complexity Measures Based on ∆S

Complexity measures Λ and N can be defined [27,29], in a similar fashion with the measures λ

and ν defined above, by using the time series of ∆Sl obtained for a sliding natural time window l and
considering its standard deviation σ[∆Sl ] instead of δS. For example, we can define [27] the measure:

Nl ≡
σ[∆Sshu f

l ]

σ[∆Sl ]
, (12)

or apply [29] the complexity measure:

Λl =
σ(∆Sl)

σ(∆S3)
. (13)

The measure Nl quantifies the extend to which the ordering of the events contributes to the ∆Sl
values being equal to unity for a random process, whereas Λl quantifies the variable effect of time
reversal upon changing scale.

3. Applications of the Natural Time Entropy in Various Complex Systems

In this section, we will briefly present the various applications of S and ∆S in different
complex systems.

3.1. Results for the Electric and Magnetic Signals that Precede Rupture

Seismic electric signals (SES) [12,32–35] are low-frequency (≤1 Hz) variations of the electric field
of the Earth that have been found in Greece [36–40] and Japan [41–45] to precede earthquakes. Many
SES recorded within a relatively short time are termed SES activities and usually exhibit a dichotomous
behavior; see Figure 1a. They are recorded at certain sites of the Earth’s surface (sensitive sites) by using
a multitude of measuring dipoles [33]. SES exhibit the so-called selectivity phenomenon according
to which SES related with earthquakes of a given earthquake mechanism from a given seismic area
are recorded only at a given sensitive site(s) [33,35,46–50]. This enables the determination of the
epicentral area based on the sensitive site that has recorded the SES. The experimental study of SES
started [51] more than thirty five years ago in Greece, and the continuous collection of data enabled the
construction of selectivity maps for several sensitive sites. When an SES is recorded at a sensitive site,
the measured electric field variations are compared with previous SES recorded at the same site, and
information on the epicentral area of the forthcoming earthquake can be obtained (for a recent review,
see [11], Chapter 1). For SES registered at a given sensitive site and originating from a given seismic
area (and earthquake mechanism), their amplitude expressed as ∆V/L (for a measuring dipole of
length L with a given orientation) scales with the expected magnitude M of the impending earthquake
according to the relation log10(∆V/L) = (0.34− 0.37)M + β, where β is a constant depending on
the dipole-seismic area and earthquake mechanism pair. The latter equation reflects that when the
magnitude M increases by one-unit, the SES amplitude becomes almost double. All of the above
properties can be understood [35,47,52–54] on the basis of the SES transmission model suggested by
Varotsos and Alexopoulos [12]. The lead time of SES activities may vary [11,40] from three weeks
to five and a half months, with an average around three months or so. For strong earthquakes, SES
are accompanied by detectable magnetic field variations [55–57]. Hence, it is of major importance
to be able experimentally to distinguish the electric and magnetic field variations that precede the
earthquake rupture from other similar-looking signals.
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In this direction, Equation (5), which holds for critical systems, has been applied (e.g., see [9,13,16])
together with S and S−. In particular, both entropies S and S− have been experimentally found [13,58,59]
to be smaller than Su for the electric signals that precede rupture:

S, S− <∼ Su. (14)

On the other hand, electrical noises that resemble in shape SES (they are of a dichotomous nature
as shown in Figure 1a) violate in general one of the two conditions implied by the inequality (14).
Table 4.6 of [11] presents an extensive list of recorded SES and noises for which Equation (5) and the
above relations (14) can be used for a secure distinction between these two kinds of electric signals.
Relations (14) have been also found to be valid [60] for long duration SES activities, such the one
depicted in Figure 1e, although a more complicated analysis is necessary for this case (see Section 5).
It is important to mention that S together with κ1 have been also found to obey Equation (5) and
Inequality (14) for the electric field variations that were recorded at Mexico [61] and preceded the
magnitude M = 6.6 earthquake on 24 October 1993 and the M = 7.4 of the Guerrero earthquake on
14 September 1995.

As suggested by Varotsos [62], the experimental results on the electromagnetic (EM) precursory
signals detected before earthquakes, as well as the ground-based ultra low frequency (ULF) magnetic
field measurements (e.g., see [63–66] for such phenomena observed before the M = 9 Tohoku
mega-earthquake on 11 March 2011) show that the main characteristics (e.g., amplitude, frequency
range, lead time) of these precursory changes are similar to those discussed above for SES (which,
as mentioned, for strong impending earthquakes are accompanied by detectable magnetic field
variations). This observation has prompted the application [67] of the aforementioned criteria
(Equation (5) and Relations (14)) to the pre-fracture EM emissions that preceded the 7 September 1999
Athens, Greece, M = 5.9 earthquake. The results show [67] that these criteria hold. The latter criteria
have been also shown [68–70] to be valid for other EM emissions that preceded the strong earthquakes of
12 October 2013, 26 January 2014 and 3 February 2014 in Greece and the 2013 M = 6.3 earthquake at
Kobe, Japan.

3.2. Results for the Penetration of Magnetic Flux Avalanches in Type II Superconductors

As first pointed out by de Gennes [71], when a type II superconductor is put in a slowly-ramped
external magnetic field, magnetic vortices start to penetrate the sample from its edges. These vortices
get pinned by crystallographic defects (e.g., dislocations), leading to the build-up of a flux gradient
that is only marginally stable in a similar fashion as is the slope in a slowly-growing sand pile. Hence,
it can happen that small changes in the applied field can result in large rearrangements of flux in the
sample, known as flux avalanches [72–74]. Thus, the system is very close to the original sand pile
models suggested [2] as prototype for SOC. Natural time analysis of such magnetic flux avalanches
have been performed [75,76] on the basis of the detailed measurements reported by Aegerter et al. [77]
for thin films of YBa2Cu3O7−x. It has been shown [76] that both S and S− satisfy the inequalities (14),
although one cannot decide which of the two is larger than the other.

Moreover, these results, which correspond to a complex system at SOC, have been compared [76]
with those obtained from 3D rice piles getting [19,20] progressively closer to SOC. The rice piles also
resemble the prototype sand pile model of SOC, e.g., see [19,20,78,79], and the comparison has been
made on the basis of the well-controlled experiments performed [19,20] on 3D rice piles. A typical
example of such experiments is shown in Figure 1c. The results of Figure 2 of [76] indicate that both
Equation (5), as well as Relation (14) hold in a fashion similar to that observed in the analysis of
SES. This fact probably indicates that the system is entering a critical stage. Here, it is worthwhile
to mention that similar results have been obtained [75,76] when analyzing the avalanches produced
by a simple deterministic self-organized critical system introduced [80] to describe avalanches in
stick-slip phenomena. Detailed simulations of this model have demonstrated [81] that SOC itself can
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spontaneously generate both critical avalanche statistics and long-range temporal correlations between
avalanches in the presence of a slow temporarily-uniform external drive. It has been found [75,76]
that Equation (5) holds together with S < Su as this system approaches SOC. When SOC is reached,
the relations (14) hold only marginally [76].

3.3. Olami–Feder–Christensen Earthquake Model

The OFC earthquake model [14] is probably [82] the most studied non-conservative, supposedly,
SOC model. It was conceived as a simplification of the Burridge–Knopoff spring-block model [83] for
earthquakes by mapping it into a non-conservative cellular automaton. The OFC model introduced
dissipation in the family of SOC systems. The spring-block model consists of a two-dimensional
array of blocks arranged in a flat surface with friction. Each block is connected (by elastic springs)
with its first neighbors and in the vertical direction to a driving plate that moves horizontally with
velocity v. When the force acting on a block overcomes the static friction with the surface, the block
slips (cf. [84,85] for important precursor dynamics before the transition to sliding). In the OFC model,
the force on a block is stored in a site of a square lattice, and the static friction threshold is assumed to
have the same value over all blocks. If energy input occurs in discrete steps instead of continuous and
if thresholds are random, but not quenched, quasiperiodicity emerges combined with power-laws [82].
The OFC model [14] runs as follows: we assign a continuous random variable zij ∈ (0, 1) to each site of
a square lattice, which represents the local “energy”. Starting with a random initial configuration taken
from a uniform distribution in the segment (0,1), the value zij of all sites is simultaneously increased at
a uniform loading rate until a site ij reaches the threshold value zthres = 1 (i.e., the loading ∆ f is such
that

(
zij
)

max + ∆ f = 1). This site then topples, which means that zij is reset to zero, and an “energy”
αzij is passed to every nearest neighbor. If this causes a neighbor to exceed the threshold, the neighbor
topples also, and the avalanche continues until all zkl < 1. Then, the uniform loading increase resumes.
The number of topplings defines the size s of an avalanche or “earthquake”. The quantity f = ∑ (∆ f )
represents the total increase of zij due to the external force loading in each site. Since the loading
rate is assumed uniform in time, f plays a role analogous to that of the conventional time T ≡ f .
The coupling parameter α can take values from 0–0.25. Smaller α means more dissipation, and α = 0.25
corresponds to the conservative case. The parameter α is the only parameter of the model apart from
the system size L, the edge length of the square lattice. The model can be supplemented by open
boundary conditions in which the sites at the boundary distribute energy to the outer sites, which
cannot topple; thus, energy is removed at the boundary. Another possibility is to use free boundary
conditions: in this case, α varies locally:

αij =
1

nij + K
(15)

where nij is the actual number of nearest neighbors of the site ij. For sites in the bulk nij = 4; for sites at
the edges nij = 3; and for the four sites at the corners nij = 2. The symbol K denotes the elastic constant
of the upper leaf springs measured relative to that of the other springs between blocks [86]. Obviously,
the OFC model is non-conservative for K > 0 for which αij < 0.25.

The criticality of the OFC model has been debated [87,88]. Furthermore, the SOC behavior of the
model is destroyed upon introducing some small changes in the rules of the model, e.g., replacing
open boundary condition with periodic boundary conditions [89], introducing frozen noise in the local
degree of dissipation [90] or in its threshold value [91], including lattice defects [92] (which should
not be confused with the intrinsic lattice defects in solids [93], e.g., Schottky [94,95] or Frenkel [96,97]
defects). Despite these findings, as well as others that show [98] that it is insufficient to account for
certain aspects of the spatiotemporal clustering of seismicity, the OFC model appears to show many
features found in real earthquakes. As far as earthquake predictability [99] or Omori’s law [86,100]
are concerned, the OFC models appear to be closer to reality than others [101]. The predictability of
the OFC model has been attributed to the occurrence of “foreshocks” (as well as “aftershocks”) in the
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non-conservative case of the model [100]. In addition, for certain values of the local degree “α” of
dissipation (i.e., if “α” is chosen above 0.17), the OFC model exhibits an avalanche size distribution
that agrees well [102] with the Gutenberg–Richter (GR) law [103], which states that the (cumulative)
number of earthquakes with magnitude greater than or equal to M is given by:

N(≥ M) ∼ 10−bM (16)

where b is a constant, which varies only slightly from region to region in the range 0.8 ≤ b ≤ 1.2 [104].
Considering that the seismic energy E released during an earthquake is related [105] to the magnitude
through E ∼ 10cm, where c is around 1.5, Equation (16) turns into:

P(E) ∼ E−γ (17)

where γ = 1 + b/1.5. Hence, b ≈ 1 means that the exponent γ is around γ = 1.6–1.7. The above are
some of the reasons why the OFC model is considered to be the prime example [106] for a supposedly
SOC system for earthquakes, but the question of whether real earthquakes are described or not by
SOC models of this type, or whether other kinds of mechanisms, e.g., [107–109], need to be involved,
still remains unsolved [82,86,100,110–114].

In the NTA of the OFC model [115], the size s was the quantity used as Qk in Equation (1), and the
difference of the entropy in natural time under time reversal ∆S of Equation (9) has been evaluated for
the time series of avalanches that preceded a large avalanche (e.g., one with s ≥ 1000 as in Figure 3).
The values of ∆S have been stacked for a large number of such time series, and the results indicate
(Figure 3; see also Figure 1 of [115] where a definition of ∆S opposite to that of Equation (9) has been
used, or Figure 8.12 of [11]) a well-defined minimum of ∆S of Equation (9) exists that indicates that in
the OFC model, there exists a time arrow as the system evolves towards a large avalanche. This can
be interpreted as the existence of foreshocks or in general as an indication of the predictability of the
OFC model.
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Figure 3. Results from averaging the last 1000 events before a large avalanche (s ≥ 1000, occurring at T0)
in the Olami–Feder–Christensen (OFC) model with L =100 and K = 2: the change ∆S (left scale) of the
entropy in natural time under time reversal and the mean energy ζ ≡ ∑L

i=1 ∑L
j=1 zij/L2 (right scale) as a

function of the “time” (T0 − T) to the large avalanche. Note that ∆S minimizes before the occurrence
time T0 of the large avalanche and changes sign when ζ starts to increase.

3.4. Earthquakes

The most important power law for earthquakes is the GR law of Equation (16), which reflects
that the seismic energy is emitted in the form of the power law of Equation (17). Both the entropy S
and the entropy under time-reversal S− have been used for the determination of the occurrence time
of an impending mainshock. This has been done [59,116–118] in a variety of cases in Greece where
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SES have been identified. The procedure followed is that upon the recording of the SES, a candidate
area for suffering a strong earthquake can be selected, and hence, the seismicity due to the small
earthquakes occurring there can be studied in natural time as described in Section 5. Thus, upon the
occurrence of each small earthquake, we can estimate the parameters κ1, S and S−. Experience has
shown that a few days before the occurrence of the strong earthquake that gave rise to the recorded
SES, Equation (5) as well as Condition (14) are valid. This has been independently verified before
strong earthquakes in Greece [119,120] and Japan [44]. As an example, we present in Figure 4 the
analysis of the seismicity in the area N38.6

36.0E22.5
20.0 estimated by Varotsos et al. [121] based on an SES

recorded on 14 January 2008 (see Figure 2(c) of [122]). This figure reveals that after the 56th event that
occurred on 5 February 2008, both Equation (5), as well as Condition (14) have been continuously
satisfied until the last event shown in this figure that occurred on 10 February 2008. This behavior has
led to the public warning for an imminent strong earthquake in the aforementioned region that was
announced on the 10 February 2008 issue of the Greek newspaper Ethnos (see the related discussion in
Section 21.4 of Lazaridou-Varotsos [40], as well as [38,39]). Four days later, the strongest earthquake
(Mw(USGS) = 6.9) in Southern Greece for the last 30 years occurred at 10:09 UT on 14 February 2008.
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Figure 4. The values (left scale) of κ1 (red circles), S (blue lines) and S− (cyan lines) obtained from the
study of seismicity within the region N38.6

36.0E22.5
20.0, estimated on 1 February 2008 by Varotsos et al. [121]

that it will suffer a strong earthquake based on a seismic electric signal (SES) recorded on 14 January
2008 (see Figure 2(c) of [122]), after discarding the two events (earthquakes) that were related to another
SES activity [122]. The black sticks correspond to the magnitude ML(ATH) (right scale) reported
by the Geodynamical Institute of the National Observatory of Athens for each small earthquake.
The horizontal red and blue lines correspond to 0.07 and Su, respectively.

3.5. Electrocardiograms

Physiological time series are best suited for NTA based on complexity measures based on the
entropy S. This is so because usually, such time series give rise to κ1 very close to κu, as well as
S close to Su due to the quasi-periodic behavior they exhibit. Hence, for the study of time series
coming from ECG recordings, one should construct the corresponding time series of S or ∆S obtained
for certain scales l of the length of the natural time sliding window. The ECG analyzed come from
publicly-available databases [123] (for more details as well as the defitinitions of the RR, NN, QRS,
and QT intervals that will be mentioned below see Section 5), and the following key results have been
obtained [11,22,26–29]:

1. When analyzing the RR and QRS intervals of the ECG in natural time, the subjects suffering from
sudden cardiac death (SCD) violate [22] one or more of the four healthy limits related to νs(RR),
νL(RR), νs(QRS) and νL(QRS).

2. When analyzing the QT intervals of the ECG in natural time δSl(QT) for l = 3–8 heartbeats,
the SCD subjects exhibit [26] almost one order of magnitude larger fluctuations than those of
the healthy ones.
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3. The NTA of RR, QRS and QT intervals allows [26] the distinction of individuals into three
categories: healthy, SCD and heart disease patients. Details on this ternary distinction can be
found in [11,26].

4. When employing ∆S in the analysis of the RR and NN intervals of long duration ECG of SCD
patients, the fluctuations of ∆S7 appear to maximize [27] during the last three hours before the
ventricular fibrillation.

5. When employing ∆S in the analysis of the RR and NN intervals of long-duration ECG, N3(RR),
N3(NN) together with ∆S7(RR) and ∆S7(NN) may allow the separation [27] of individuals into
four classes: healthy, SCD, congestive heart failure (CHF) and atrial fibrillation (AF) individuals.

6. The analysis suggested in the previous point is also valid [28] for models of healthy or patient
heart dynamics.

7. When analyzing the NN intervals of long-duration ECG recordings, the combination of σ[∆S7]

with Λ7 and Λ49 enables (see Table 1 of [29]) the ternary distinction in healthy, SCD and CHF
individuals.

3.6. Atmospheric Physics

Use of natural time entropy has been also made in atmospheric physics.

3.6.1. Ozone Hole Dynamics over Antarctica

Varotsos and Tzanis [124] applied S and S− in the time series of the maximum daily ozone hole
area over Antarctica for each year during the period 1979–2009. The results obtained show that S for
scales 3–7 years and S− for all scales (3–15 years) almost stabilizes during the last several years. On the
other hand, characteristic features are found before the unprecedented event of the major sudden
stratospheric warming and the subsequent break-up of the Antarctic ozone hole into two holes in
September 2002. In particular, the following precursory changes have been identified [124]: First, for
scales larger than eight years, S exhibits a gradual increase after around 1999. Second, from 2000 to
2001, S− shows an increase for all scales (3–15 years) except for the scale of 13 years. Third, the values
of ∆S almost coincide at 2000 for the short scales 3–7 years and then decrease. Finally, the analysis in
the natural time domain was also applied [124] on the eddy heat flux, which is proportional to the
vertically propagating wave activity affecting the ozone hole over Antarctica, and the results drawn
confirm those deduced from the ozone hole area diagnostics.

3.6.2. Forecasting the Intensity of El Niño/La Niña Southern Oscillation

Varotsos et al. [125] have identified that when analyzing the monthly SOI values in natural
time (see Section 5), the time series of the change of the entropy in natural time under time reversal
estimated for periods of 20 months, i.e., ∆S20, may act as a predictor for the intensity of the El Niño/La
Niña Southern Oscillation (ENSO) events (see also [126]). They suggested that when ∆S20 exceeds a
threshold ∆Sthres, an El Niño event is expected to occur. In other words, the time series of ∆S20 captures
the dynamics of ENSO and exhibits clear precursory signals before strong El Niño events. Within
this frame, the successful prediction that the 2015–2016 El Niño event would be rather a “moderate
to strong” or even a “strong” event and not “one of the strongest on record”, as that of 1997–1998,
has been made [127].

More specifically, in Figure 5, we depict the ∆S20 and Southern Oscillation Index (SOI) values’
time series and indicate by a vertical arrow the data available at the time at which it was decided that
the ongoing 2015–2016 El Niño event will not evolve into one of the strongest events ever recorded,
i.e., October 2015 (the paper was initially submitted [127,128] on 13 November 2015). As is also shown
in this figure, the subsequent values of SOI never left the green colored region that corresponds to
the minimum values of SOI for “weak, weak to moderate, moderate, moderate to strong” El Niño
events validating the aforementioned prediction. The latter has been based on the data presented in
Figure 6 where the probability density function (PDF) of ∆S20 is shown (for details on its determination,



Entropy 2017, 19, 177 12 of 20

see [127]) and compared with the extreme ∆S20 values measured during very strong El Niño events.
An inspection of this figure together with Figure 5 reveals that indeed, the ∆S20 values up to October
2015 never exceeded the extreme values measured before or during the strongest El Niño events
ever recorded.

∆
S

2
0

October 2015

S
O

I

Figure 5. The entropy change ∆S20 in natural time for the window length l = 20 months (red line,
left scale) along with SOI monthly values (blue line, right scale) for the period January 2014–March 2016.
The alarm is set on (black line) when ∆S20 exceeds the threshold value ∆Sthres = 0.0035 (red horizontal
line). The selection of the threshold can be seen in Figure 2 of [127] and has been made as a compromise
between the costs of false positive and false negative predictions. The two colored horizontal stripes
represent the mean minimum negative values of SOI along with the one standard deviation bands for
the two cases of “weak, weak to moderate, moderate, moderate to strong” (green band) and “strong,
very strong” (yellow band) El Niño events [127].
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Figure 6. PDF of ∆S20 (blue curve, left scale) together with the corresponding histogram (red bars,
left scale) obtained from the time series of ∆S20, which is also plotted versus time (green crosses,
right scale) along the vertical axis. The arrows indicate when ∆S20 exceeds 0.0205 and are labeled by
the corresponding ongoing strong El Niño events. Taken from [127].
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4. Discussion and Perspectives

As we can see from the results presented in the previous section, natural time entropy S, as well
as its value S− obtained under time-reversal is useful for identifying when a system approaches a
critical stage, as is for example the case of electric signals before rupture (see Section 3.1), SOC systems
(such as those studied in Section 3.2) or the seismicity before a strong earthquake (see Section 3.4).
In all of the cases mentioned above, the validity of the inequalities (14) characterizes (together with
other conditions, e.g., see [118,129]) the approach to criticality.

Apart from this application, the study of the time series of the difference ∆S of the entropy in
natural time under time reversal may reveal useful information concerning the evolution of the system
towards an extreme event. This has been discussed here in Section 3.3 for the OFC earthquake model
and in the two cases in atmospheric physics of Section 3.6. Such applications may be very fruitful in
the future as the kind of the complex system studied may vary. Hence, the use of ∆S time series for
different complex systems is strongly encouraged.

Finally, for complex systems exhibiting quasi-periodic behavior, such as the case of heart rate
variability (see Section 3.5), one should better study complexity measures based on the time series
of S and ∆S such as those defined in Section 2.3. These can reveal the interplay between the various
scales that are involved in the regulation of the behavior of the complex system (cf. regulation is a
prerequisite of quasi-periodic behavior) and may be useful for the identification of severe situations
(such as SCD), although the system may look to operate normally. Application of the results obtained
in Section 3.5 to a wider range of individuals, as well as the possibilities of their practical use in the
medical practice are currently under study.

5. Materials and Methods

For the analysis of dichotomous electric signals that precede rupture (e.g., SES activities [9,13,16]),
we first convert the experimentally-recorded signal into its dichotomous representation (0 = no signal,
1 = signal), and then, we can easily obtain the power (see the middle panel of Figure 1a) and, hence,
the energy emitted during each pulse, which is proportional to the duration of the pulse. As shown in
the lower panel of Figure 1a, in NTA, we consider as Qk the duration of the k-th pulse.

In the case of earthquakes, instead of the earthquake magnitude M usually reported for each
earthquake in conventional time (see the upper panel of Figure 1b), in NTA, we consider as Qk the
seismic energy emitted during an earthquake, which is given by [105] E = 101.5Mw+11.8 erg, where
Mw is the moment magnitude. For the case of the earthquakes shown in the upper panel of Figure 1b,
appropriate conversion relations between M and Mw suggested by Tanaka et al. [130] have been used
to obtain the values of Qk depicted in the lower panel. In the latter panel, the quantity ε corresponds to
the seismic energy emitted by an M = 3.5 earthquake.

For the case of 3D rice piles, e.g., see the upper panel of Figure 1c, which comes from the detailed
experiments of Lőrincz [20] (see Figure 5.1 there), in natural time we consider as Qk the size of the k-th
avalanche, as shown in the lower panel of Figure 1c.

In the case of the analysis of ECG, where traditionally the turning points are labeled by the letters P,
Q, R, S and T (see the upper panel of Figure 1d), various durations (intervals) corresponding to the time
elapsed between these points, such as the QT interval shown in the lower panel of Figure 1d, have been
considered as Qk in NTA. For example, the RR interval which is the duration between two successive
R turning points has been also considered as Qk in NTA. Other intervals that have been also used for
the same purpose are the NN intervals, which are the durations between consecutive normal beats
and intervals between pairs of normal beats surrounding an ectopic beat are discarded (see also [29]
and references therein), and the QRS intervals that correspond to the duration of the QRS complex
in a cardiac cycle of the ECG (see the upper panel of Figure 1d). Moreover, the ECG data analyzed
in natural time so far (e.g., see [131]) come from various databases available at physiobank [123].
As mentioned in Section 3.5, for the analysis of such ECG intervals in natural time, the time series of S
and S− should be calculated when using a natural time window of length l. This window slides each
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time by one interval (event) in the ECG interval time series, so that when starting from the m0-th event,
we have:

S(m0, l) = 〈χ ln χ〉w − 〈χ〉w ln〈χ〉w (18)

where 〈χ ln χ〉w = ∑l
k=1 pk,wχk,w ln χk,w, 〈χ〉w = ∑l

k=1 pk,wχk,w with:

pk,w =
Qm0−1+k

∑l
n=1 Qm0−1+n

(19)

and χk,w = k/l. Similarly, S−(m0, l) is calculated by Equation (18) when pk,w of Equation (19) is
substituted by:

T̂pk,w =
Qm0+l−k

∑l
n=1 Qm0+l−n

. (20)

The ∆Sl time series is obtained by the differences ∆Sl(m0) ≡ S(m0, l)− S−(m0, l), m0 = 1, 2, . . . , N − l.
For a not (obviously) dichotomous signal, such as the electric signal depicted in the upper panel

of Figure 1e that preceded [60] the Mw6.4 earthquake at 38.0◦ N 21.5◦ E on 8 June 2008, the analysis
in natural time is made in two steps: First, we estimate the “instantaneous” power in the sense that
we use data at the shortest time interval available from our (assumed even) sampling and construct
the time series Pi, e.g., see the middle panel of Figure 1e. Then, by selecting a threshold Pthres (see the
horizontal line in the same panel), we add every consecutive Pi that is larger then Pthres to estimate
the energy emitted during an event. When Pi falls below Pthres, the event ends, and a new event starts
when for the first time Pi becomes larger than Pthres again. This way, we obtain a representation of the
signal in natural time as that shown in the lower panel of Figure 1e. By varying the threshold within a
reasonable range, which can be determined by the distribution of Pi, e.g., see Figure 6 of [60], we can
obtain secure conclusions concerning the values of κ1, S and S− of the signal in natural time.

Finally, for data such as those usually collected in atmospheric physics involving hourly, daily
or even monthly observations, which may acquire both positive and negative values, such as
Troup [21] SOI, depicted in the upper panel of Figure 1f, the NTA can be performed [125,127] by
adding an appropriate constant so that all values become non-negative, as shown for example in the
lower panel of Figure 1f, and then proceed to the study of the resulting time series by ∆Sl .

6. Conclusions

Here, we reviewed the applications of the natural time entropy S, its value under time reversal S−
and the related complexity measures in a variety of complex systems. As an outlook for the future, one
could propose the study of S and S− in systems that may approach criticality, the study of the ∆S time
series as a general tool for the identification of precursory to extreme event phenomena and the use of
complexity measures for the characterization of complex systems exhibiting quasi-periodic behavior.
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Abbreviations

The following abbreviations are used in this manuscript:

3D 3-dimensional
AF Atrial fibrillation
CHF Congestive heart failure
ECG Electrocardiograms
EM Electromagnetic
ENSO El Niño/La Niña Southern Oscillation
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EQ Earthquake
GR Gutenberg–Richter
OFC Olami–Feder–Christensen
NTA Natural time analysis
PDF Probability density function
SCD Sudden cardiac death
SES Seismic electric signals
SOC Self-organized criticality
SOI Southern Oscillation Index
ULF Ultra-low frequency
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