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Abstract: Recently emerging data-driven citizen sciences need to harness an increasing amount
of massive data with varying quality. This paper develops essential theoretical frameworks,
example models, and a general definition of complexity measure, and examines its computational
complexity for an interactive data-driven citizen science within the context of guided self-organization.
We first define a conceptual model that incorporates the quality of observation in terms of
accuracy and reproducibility, ranging between subjectivity, inter-subjectivity, and objectivity.
Next, we examine the database’s algebraic and topological structure in relation to informational
complexity measures, and evaluate its computational complexities with respect to an exhaustive
optimization. Conjectures of criticality are obtained on the self-organizing processes of observation
and dynamical model development. Example analysis is demonstrated with the use of biodiversity
assessment database—the process that inevitably involves human subjectivity for management within
open complex systems.

Keywords: inter-subjective objectivity; complexity measure; computational complexity; criticality;
citizen science; open complex system

1. Introduction

Recent innovation of information and communication technologies (ICT) embedded in real
environments is drastically changing the way society interacts with computation. This has
been described as the fourth industrial revolution [1]. In particular, ubiquitous sensors and
mobile communication tools have led to an increasing capacity of distributed and interactive
environmental sensing. These technological supports bring in new effective methodologies to tackle
complex self-organising behaviours in social–ecological systems that are difficult to understand
with conventional modelling and simulation approaches (e.g., [2,3]). Massive amounts of sparse and
heterogenous data that are based on the internal observation from within various collective phenomena
call for an extended analytical framework, ranging from objective measurements (e.g., with sensors) to
subjective data such as human evaluations and feedbacks.

Redefining a standard formalization of computation and its complexity that are associated with
self-organised citizen science can raise multiple criteria for the evaluation of critical phenomena,
spread over the dynamical process of observation, management, and knowledge formation in open
complex systems [4,5]. Self-organised criticality appears in various natural and social phenomena,
often with scale-free statistical properties [6,7]. They manifest in the power law, which can be
reduced to a simple combination of inherent stochastic processes [8], and whose realizations provide
proxies of emergent functionality (e.g., [9–11]). The large fluctuation of the power law distributes
the statistical complexity in multiple scales that cannot be represented by a simple mean value
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for predictive purposes. The sampling time series from a power-law distribution encounters
intermittent shifts of the sample average due to the infinite variance of distribution—even with
the upper-bounded power law in the real world (e.g., in the magnitude distribution of earthquakes).
This situation addresses a statistical limit of prediction solely by the modelling and simulation of the
phenomena, but also presents a positive reason to engage human elements as a practical solution in
actual management—especially those involving semantic and cognitive judgements [12,13]. On the
technology side, machine learning models have long been attempting to optimize the prediction of
unknown stochastic sources, implementing interactive estimation processes to exploit the hidden
causal structure from temporal observation sequences (e.g., [14]). Modelling studies of guided
self-organization have recently been explored with implementation in robotics, simulated neural
networks, and networks of agents, etc. [15]. Although most of the achievement is discussed within
the predictability of a confined experimental setting, a hybrid system with the synergy of human and
computation elements always lies as a premise of real-world situation, which has been little exploited,
except for some prototypical interfaces for the internet of things (e.g., [16]). For a cost-effective
monitoring and control within restricted resources, guided criticality should be introduced to the user
side of technology, in order to migrate and abstract decision making process from computation to
human ability [3,4,17].

In particular, in solving global agendas such as sustainability goals, a comprehensive approach is
required that should make use of the full potential of self-organisation in coupled social–ecological
systems [5,18,19]. These efforts practically take on the engagement of citizens and multi-disciplinary
stakeholders as important actors in the data acquisition and the implementation of an interactive
management through guided self-organization, as a novel type of collective intelligence in the era of
the fourth industrial revolution [3,20,21].

In facing the transition of data-driven citizen science towards the achievement of dynamical
control in managing real-world open complex systems, this article raises fundamental theories and
example models to support the discussion of complexity, computation, and criticality in its most
possible general form. We formalize the basic objectives as follows, which are exploited in the
subsequent sections with the corresponding numbers:

• Section 2: How can we formalize and treat the databases of varying quality from both machine
and human observations, which range from subjective bias to objective fact? How can we set
up scientific measures that should assure the compatibility with the principles of accuracy and
reproducibility ?

• Section 3: How can we generalize the concept of complexity measures in application to the
human–computer hybrid systems in citizen science?

• Section 4: What is the nature of computational complexities in actual data processing?
• Section 5: What is the general condition to yield guided self-organization for cost-effective

citizen science?

Although these questions are universal in multiple industries, a common basis of understanding
the problems and mutual development of ICT infrastructure are still isolated and developed
independently in each sector. Throughout the exploration of these topics, this paper attempts to
provide a common terminology and establish a theoretical basis for the realisation of a cost-effective
citizen science in open complex systems situations. This is becoming increasingly important for solving
transdisciplinary problems through the participation of multiple stakeholders in the real world [5].

2. Inter-Subjective Objectivity Model

We first consider the expression of the quality of data ranging between human subjectivity
and machine objectivity in the general form of database X. As a premise, any information that
can be represented in digital computing is compatible with the natural number theory. At the
infinite limit of computational memory, the representation of the database extends to general sets
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on a real data type with countably infinite precision, which accepts the definition of σ-finite measure
in a measure-theoretical formulation. We define the general form of arbitrary database X as follows:

X = Rn × Sm (n, m ∈ N). (1)

where R is a real data type, Sm is the m sets {Si}i=1,2,...,m of arbitrary symbolic set Si = {s1, s2, . . . , sli},
with the dimensions n, m, and li as natural numbers N including 0. Any variable in this article takes
the assumption that it can be stored in X. For mathematical simplicity, we hereafter consider the
real data type R as a real number. In practice, Rn describes the values of n real variables (such as
time, spatial coordinates, probabilities, etc.), and Sm represents m discrete sets of symbols (such as
the name of variables, occurrence of discrete variables, text data, etc.). Obviously, Sm ⊆ Rm holds in
mathematical simplification, but we separate the notations to distinguish between the quantitative and
qualitative variable types.

2.1. Formalization of Subjectivity, Inter-Subjectivity, Subjective–Objective Unity, and Objectivity

Digital data X from citizen science vary from subjective human perception to objective sensor
measurement with a different degree of human-induced bias. Here, the subjectivity and objectivity
matter because they influence the accuracy and reproducibility of data that is fundamental to
establishing scientific analysis. We formalize the nature of observation variables between the
subjectivity, objectivity, and these interactions as follows:

• Subjectivity is the quality of observation that is based on human perception without the substantial
support of a machine.

• Inter-Subjectivity is the degree of commonality between the subjectivities of multiple subjects.
• Objectivity is the quality of observation that is based on a machine measurement whose

consequence does not depend on the operator’s will.
• Subjective–Objective Unity is the degree of commonality between the subjectivity and objectivity.
• Inter-Subjective Objectivity is the quality of observation that satisfies the coincidence of both

inter-subjectivity and subjective–objective unity.

These follow basic concepts in philosophy and social science and are adapted to the situation
of data analysis. The concept of subjectivity is commonly used in philosophy as the collection of
the perceptions, experiences, expectations, personal or cultural understanding, and beliefs specific to
a person, which influences, informs, and is biased towards people’s judgments and evaluations.
In contrast, objectivity refers to a view of truth or reality which is free from any individual’s
influence [22]. The most simplistic form of inter-subjectivity in social science employs the term
in the sense of having a shared definition of an object, or shared subjectivity [23].

The relations between these classifications are shown in Figure 1a. For example, text data written
by humans are subjective data whether the fact described is based on an objective phenomenon or
not. Sensor logs are objective data, even measured on a human body such as heart rate that could
be influenced by subjective thought. When multiple subjects give the same subjective evaluation,
such as rating of web contents, the commonality augments the degree of inter-subjectivity, which is
often adapted to cloud-sourced data validation (e.g., [24,25]). When a subjective evaluation coincides
with an objective measurement, the commonality represents the degree of subjective–objective unity.
A highly reproducible subjective–objective unity can provide on-site practical measurement in field
science, typical in biodiversity assessment and soil texture analysis (e.g., [25,26]). This is because
these plausible subjective–objective unity measures also coincide with high inter-subjectivity after
sufficient training, which guarantees the accuracy of on-site application without confirming the
accordance with objective measurement each time. When the methodology is highly established
with respect to the accuracy and reproducibility, it belongs to inter-subjective objectivity, where each
subjective and objective measurement converges to the same result. The developmental process
of reproducible subjective evaluations that converge with objective measurements is depicted in
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Figure 1b). By training the subjective–objective unity of each human observer, their inter-subjectivity
increases, and the commonality of measurement augments to become a self-organizing loop between
the subjective–objective unity and inter-subjectivity by a mutual feedback to attain a higher degree of
inter-subjective objectivity.

Note that in a philosophical generalization (e.g., phenomenology), all data are the derivatives
of subjectivity, because a machine observation is also constructed on human perception in the
establishment of measurement principle, construction of sensing devices and data processing
workflows, and final interpretation. To avoid trivial argument that does not affect the reproducibility
of the results, we adopt the standpoint that separates the subjectivity and objectivity with the degree
of intervention to observation outcome between human and machine. We call this conceptual model
the inter-subjective objective model.

Figure 1. Schematic representation of the inter-subjective objectivity model. (a) Relations between two
subjectivities A and B, objectivity, inter-subjectivity between A and B, subjective–objective unity for
A and B, and inter-subjective objectivity are depicted as inclusion relations between each other set.
(b) Development of inter-subjective objectivity as effective measurements of citizen science. As the
inter-subjectivity increases along with the training of subjective–objective unity and inter-subjective
feedbacks, the accuracy and reproducibility of measurement based on subjectivity can be assured by
the convergence to inter-subjective objectivity.

2.2. Representative Model: Buoy–Anchor–Raft Model

In order to apply the inter-subjective objective model into a quantitative framework of actual data
processing, we develop a general example model with a more familiar and analogical terminology that
are intuitively easier to understand: the buoy–anchor–raft model, as schematically expressed in Figure 2.
The definition and correspondence to the inter-subjective objectivity model are given as follows:

• Buoy refers to subjective data that fluctuates on the sea surface, representing subjectivity. Buoy can
provide subjective estimates of an observation object lying on the objective sea floor, but the
observation is biased by subjective fluctuations.

• Anchor refers to objective data that is fixed on the sea floor representing objectivity, without the
influence from the subjective sea surface. Anchors can be connected to buoys, which provide the
evaluation of subjective fluctuation with respect to objective machine measurements.

• Raft represents the relationship between buoys, and refers to inter-subjectivity of data without
reference to anchors. A buoy can evaluate another buoy using relative difference of fluctuation
on a subjective sea surface, and the overall commonality between buoys is represented as the raft.
Nevertheless, it is based on an internal observation between buoys without an objective system
of units, and is therefore susceptible to a global drift of collective standard.

• Buoy–Anchor connection rope defines the degree of subjective–objective unity. As a buoy’s
movement is more controlled by its anchor, higher subjective–objective unity is assured.
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• Raft–Anchor connection ropes define the degree of inter-subjective objectivity. In addition to the
commonality between buoys represented as a raft, the effects of the global drift from subjective
sea surface could be controlled with anchors within a plausible range of error with respect to the
objective sea floor.

Figure 2. Schematic representation of buoy–anchor–raft model. Buoy, raft, anchor, and connection
rope refer to subjectivity, inter-subjectivity, objectivity, and subjective–objective unity, respectively.
Concrete real-world examples are given in Table 1.

Concrete examples of the buoy, anchor, raft in various social systems and scientific domains are
given in Table 1. While inter-subjective objectivity is a conceptual framework that classifies the quality
of observation, the buoy, anchor, and raft refer to actual constructs of databases implemented with
ICT. The terms arose from the developmental process of management systems in open systems
science [5], sharing the perspective with the transversal question of the grand challenge of AI
research regarding the effective extraction of scientific knowledge out of heterogenous data of
varying quality [27]. Without properly positioning the subjective background of the study, it is
often the case that established knowledge with large-scale experiments and statistical analyses is
revealed to be false in high-throughput discovery-oriented research, resulting in a null-field with
statistically prevailing bias [28]. As shown in Table 1, conceptual problematics for the implementation
of ICT in various fields can be mutually characterized with the use of the buoy–anchor–raft model.
This means the ICT infrastructure can be applied and shared in a synergistic way across domains,
which is beneficial, especially for open-source development advocated in complex systems science [21].
Recent development in the application programming interface for big data integration has increased the
support for this challenge, which calls for a general theoretical framework of information processing
that the buoy–anchor–raft model can provide (e.g., [29]).
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Table 1. Examples of buoy, raft, and anchor in various social systems and scientific domains.
Examples are not comprehensive, but a partial list of typical data from the recently increasing
public availability.

Economy Judiciary Biodiversity Record Medical Treatment

Buoy Demand, satisfaction Sense of justice, guilt Visual identification of species Pain, psychological state

Raft Price, exchange rate Law, court decision Identification with voting Diagnosis, prescription

Anchor Goods abundance Evidential matter DNA sequences Physiological markers

We then consider a mathematical expression of the buoy–anchor–raft model in view of providing
a simplified idea of computation with respect to the evaluation of inter-subjective objectivity.
Recently emerging contexts of citizen science make use of buoys as important information sources,
in contrast to objective science such as traditional physics, which is usually self-contained with anchors.
Buoys fluctuate with human subjectivity, which is scientifically called bias. Suppose we cannot directly
measure observation objects as anchors. This constraint does not necessarily arise from the observation
principle but rather from the resource limitation: For example, a field evaluation of biodiversity mostly
depends on human observation because massive DNA barcoding is too costly or even ineffective.
So, the accuracy of buoy data should be evaluated with other buoy–anchor connections compatible with
observation objects. By defining a buoy data B ⊂ X and corresponding measurable anchor data A ⊂ X,
a buoy–anchor connection C can be defined as an error function erf(·) between A and B:

C := erf(B, A). (2)

In case of n observation objects A = (a1, a2, · · · , an) ∈ Rn and B = (b1, b2, · · · , bn) ∈ Rn for
one observer, a typical example of buoy–anchor connection c ∈ R is given with the regularized mean
squared error:

c =
1
n

n

∑
i=1

(
ai − bi

ai

)2
. (3)

The regularization makes c accessible to the canonical evaluation of confidence interval, such as
t-test. As a generalization to m observers, let us describe

C =


c1

c2
...

cm

 , (4)

where

cj =
1
n

n

∑
i=1

(
aij − bij

aij

)2

, (j = 1, 2, · · · , m), (5)

given that

A =

 a11 · · · a1m
...

. . .
...

an1 · · · anm

 , B =

 b11 · · · b1m
...

. . .
...

bn1 · · · bnm

 . (6)

Next, we consider the raft model. In most social systems, the case-wise precise measurement
of anchors is impossible, and we call for the raft of common sense and other social feedbacks as
a premise of plausible judgement. Consider m observers with somehow quantifiable opinions (buoy)
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on n observation objects. We define the raft matrix R as follows, as a generalization of buoy data to m
observers and n observation objects:

R =

 r11 · · · r1m
...

. . .
...

rn1 · · · rnm

 , (7)

where the raft by definition refers to the commonality contained between these buoys. In a completely
equal society where every observer’s opinion is equally respected, we obtain the mean inter-subjective
evaluation E = (e1, · · · , en) on n objects as follows:

E :=

 e1
...

en

 =

 r11 · · · r1m
...

. . .
...

rn1 · · · rnm


 1/n

...
1/n

 . (8)

Decision-making based on the evaluation of raft can represent the community’s mean quantifiable
opinions, although it is not free from collective bias. It remains only within the framework
of inter-subjectivity. For a better evaluation in terms of inter-subjective objectivity, we need to
introduce a connection with anchors. Let us introduce a buoy–anchor connection C from Equation (4),
then an example of the inter-subjective objective evaluation E′ = (e′1, · · · , e′n) in the sense of raft–anchor
connection can be given by:

E′ :=

 e′1
...

e′n

 ∝

 r11 · · · r1m
...

. . .
...

rn1 · · · rnm

 [−log(C)], (9)

where

[−log(C)] =

 −log(c1)
...

−log(cm)

 . (10)

This means that the error function of the buoy–anchor connection is reflected as an entropy that
represents subjective–objective unity of each observer. The opinion of the observer with higher
subjective–objective unity is weighted according to the informational scarcity of subjective errors.
Such integrated evaluation incorporating the scoring system on observers’ quality are one of the
general solutions in web-based citizen science (e.g., [25]).

Note that the n objects of observation can also coincide with m observers themselves. As C can
be independently obtained from R, it can also accept subjective objects of observation where direct
anchors do not exist, such as psychological state or the quantification of qualia such as Quality Function
Deployment (QFD) [30] and pain scale [31]. In such cases, traditional methods only employ simple
raft evaluation E without anchors, as formalized in Equation (8). In contrast, with the buoy–anchor–raft
model, it is possible to relate indirect anchors to other related objectively quantifiable variables,
by expanding the database into a more comprehensive system. In either case, this model provides
accessibility to the inter-subjective objective evaluation by properly defining the buoy, anchor, raft and
its connections.

The correspondence between the buoy–anchor–raft model and computational variables developed
in the following sections are listed in Table 2.
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Table 2. Correspondence between buoy–anchor–raft model and computational variables in this article.

Section Number 2.2 3.1 3.2 3.3 3.4 4 5

Buoy B µ(·),
I(·)

µi(·),
qi(·)

Data contained
in vertices V

Com. order I and II
between N objects

Observations
A, B, C, D, E

P(·), Pa(·), Ps(·),
Pl(·), Po(·), H′Anchor A

Raft R, E
µ′(·, ·),
I2(·, ·)

λN(·)
Edge attribute

of E

Com. order I and II
b/w N observers, TDC,

I-I and I-N res. dim.
O(·)

H′2,
Dm(· : ·),
De(· : ·)

Buoy–Anchor C

Raft–Anchor E′

3. Complexity Measures

We consider the generalization of complexity measures with respect to essential information
processing in citizen science, based on the inter-subjective objectivity model with buoy–anchor–raft
constructs. The concept and definition of complexity vary according to the fields, such as algorithmic
complexity, statistical complexity, biological complexity, etc. In this paper, we take a generalized
definition of complexity measure as the projection from a system’s variables to one-dimensional
quantity, which is composed to express a distinctive characteristic of the system [32]. This includes
classical indices mentioned with the context of complexity, as well as various forms of information
expressed as numbers in ICT, such as feature dimensions of machine learning.

3.1. Complexity Measure and Search Function

We consider general forms of complexity defined on database X in relation to the search function.
Complexity measures are widely studied in information theory, with the underlying principle to
abstract a low-dimensional representative index of useful features for functional characterization of
complex systems [32]. Usually, complexity measures defined on n real variables are the epimorphism
to the one-dimensional real number line, Rn 7→ R. The general complexity measure for citizen science
is therefore the projection of the database to real value index, X 7→ R, with the condition that this
transformation will provide some utility for the management.

The importance of utility depends on the need for information retrieval in citizen science process,
or the conditions that are practically used in a database search. Indeed, the search function is actually
the retrieval of corresponding data set with respect to a given condition, such that

SR[Q(x)] := {x ∈ X|Q(x)}, (11)

where SR stands for the search result on database X with search query Q(·). For example, Q(·) is
an if–then construct that can specify the value range of real variables, or the matching with specific
symbolic sequence, which returns the corresponding data sets into SR.

In order to perform computation such as the calculation of the buoy–anchor–raft model evaluation,
the integral I of σ-finite measure µ on X with respect to the condition Q(·) can be defined as follows,
with indicator function 1(·|Q(·)):

I(Q(x)) :=
∫
X

1(x|Q(x))µ(dx), (12)

where

1(x|Q(x)) :=

{
1 i f x ∈ SR[Q(x)],
0 i f x /∈ SR[Q(x)].

(13)
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In one-dimensional case, µ can represent either of buoy or anchor. If we define µ : X 7→ R as the
function of occurrence probability p(·) of x ⊂ X, such as

µ(x) = −p(x)log(p(x)), (14)

then I coincides with entropy, one of the typical information theoretical complexity measures. µ can
also include joint distribution, such that with µ′:

µ′(x, y) = p(x, y) log
p(x, y)

p(x)p(y)
,

x 6= y,
x, y ∈ X,

(15)

in which case, the mutual information I2,

I2 :=
∫
X

1(x, y|Q(x), Q(y))µ′(dx, dy) (16)

can incorporate raft, buoy–anchor, and raft–anchor connections.
As a search query, Q(x) provides a value of complexity measure I; we can also inversely use

I to specify SR[Q(x)]. We consider the invertible map S−1
R : {x ∈ X|I} → {Q(x)} that generates

all possible queries {Q(x)} which return the set of x associated with the given value of complexity
measure I. For example, we can search the dataset with its entropy higher than a threshold Ic by setting

{Q(x)} := S−1
R

[{
x ⊂ X

∣∣∣∫
x

µ(dx) > Ic

}]
. (17)

Nevertheless, complexity measures that specifically define an arbitrary Q(x) are generally not
given explicitly. In practice, we usually compare the performance of known complexity measures with
respect to the ability to characterize the features on which we focus our analysis. The general task is
to invent a novel complexity measure that can exclusively separate patterns in X, given implicitly as
Q(x). For that purpose, the following theorem holds:

Theorem 1. For any search condition Q(x), we can construct an exclusively selective complexity measure I′

which can sort out effects from other variables, with the function G(·) : R 7→ {Q(x)}, such that

Q(x) = S−1
R
[
{x ∈ X|I′}

]
= G(I′), (18)

I′ = G−1(Q(x)). (19)

The definition of invertibility of G follows that of SR.

Proofs of the theorems are given in Appendix A.
The intuitive geometric meaning of the inverse function relationship between complexity

measures and search function is shown in Figure 3.
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Figure 3. Schematic representation of complexity measures as non-linear feature space and search
function as its inverse functions. (a) Utility characteristics of a complex system, or complexity measure
in general terms, is expressed with a complex configuration in parameter space. Parameters can
also represent other complexity measures. (b) Complexity measures transform parameter space into
non-linear feature space, which provides easier interpretation by sorting the order of a given utility.
The inverse functions of complexity measures therefore correspond to search functions with respect to
the search condition on utility.

3.2. Observation Commonality as Complexity

Inter-subjective objectivity is based on the commonality among subjectivity, inter-subjectivity,
and objectivity. Essential computation is therefore the search for commonality between different
observation datasets, whether it be from humans or machines. We consider the observation
commonality to be a complexity measure that conforms to inter-subjective objectivity, and analyze its
general mathematical structure.

We consider σ-finite probabilistic measures µ1, µ2 on measurable database space (X,B), where B
stands for Borel σ-algebra of X. Then, the convolution ∗ of µ1 and µ2 is defined as follows:

µ1 ∗ µ2(si) := ∑
j

µ2(sj)µ1(si−j) for si ∈ B(S), {si, sj, si−j} ∈ S, (20)

µ1 ∗ µ2(x) :=
∫
R

µ1(x− y)µ2(dy) for x ∈ B(R), x− y := {x− y|x ∈ x}, (21)

where B(S) and B(R) represent σ-algebra of S ⊂ X and R ⊂ X, respectively.
Through appropriate variable transformation, the convolution of probability measures with real

type variables (21) can be expressed as follows, as the probability of the sum of the variables [33]:

µ1 ∗ µ2(x) =
∫
R

∫
R

1(x + y|x + y ∈ x)µ1(dx)µ2(dy), x ∈ B(R). (22)

By choosing finite sets of x such as time period, geographic range, and other real type variable
range, as well as symbols for {si} such as name of observation object, one can define the commonality of
observations as a part of the convolution of the probabilities from different observers. The observation
µ1 and µ2 can be of any nature between subjectivity, inter-subjectivity, and objectivity.

We now consider the condition of valid observation with respect to the regularization of
probability measure as follows, for a general number of observers i ∈ {1, · · · , N}:∫

R
µi(dx) = 1. (23)

This means that by expanding the scale of the real type variable to infinity, one can observe its
occurrence with probability 1. The same formalization also applies to σ-finite measure on (S,B(S)),
which is integrated in the formalization with (R,B(R)).
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Next, consider a confined variable range r ⊂ R with positive probability measure µi(r) > 0.
This range can be of any complex form as long as it supports positive measure. In a real situation,
this can correspond to intermittent observation time interval, scattered geographical range, and other
discrete range of the real type variable. We define the rate of observation qi by observer i within
variable range r as

qi(r) :=
∫
R

1(x|x ∈ r)µi(dx) ≤ 1, (24)

which converges to (23) with r → R.
The commonality of observation between two observers i, j based on r is expressed as the

following convolution confined to r:

µi ∗ µj(r2) :=
∫
R

∫
R

1(x + y|x + y ∈ r2; x, y ∈ r)µi(dx)µj(dy)

=
∫
R

∫
R

1(x + y|x, y ∈ r)µi(dx)µj(dy)

=
∫

r

∫
r

µi(dx)µj(dy),

r2 := {x1 + x2|x1, x2 ∈ r},

(25)

which also means taking the sum of joint distributions µi · µj between all smallest measurable events in
r. The additional condition x, y ∈ r in 1(·) limits the integral of each variable within r, which includes
formal condition x + y ∈ r2. The following generalization holds:

Theorem 2. For N independent and valid observation µi(r) > 0 (i = 1, · · · , N) on variable range r ⊂ R, let

λN(rN) := µ1 ∗ µ2 ∗ · · · ∗ µi ∗ · · · ∗ µN(rN)

:=

∫
RN

1

(
Λ

N

∑
i=1

xi

∣∣∣Λ N

∑
i=1

xi ∈ rN ; xi ∈ r

) {1,··· ,N}

∏
i

µi(dxi)

=

∫
RN

1

(
Λ

N

∑
i=1

xi

∣∣∣xi ∈ r

) {1,··· ,N}

∏
i

µi(dxi),

rN :=

{
Λ

N

∑
k=1

xk

∣∣∣xk ∈ r

}
,

Λ := R \ {0,±∞},

(26)

where the coefficient Λ is a free parameter that remains invariant under the convolution. Then

λN(rN) =
N

∏
i

qi(r). (27)

This means that the N−1-th power of multiple convolution λN(rN) represents the geometric mean
of N independent valid observation rates. By choosing regularization factor Λ, rN corresponds to the

ensemble of possible mean values
(

Λ =
1
N

)
, integrated values (Λ = 1), and other weighted sum of

N random samplings from r. The regularization parameter Λ can further be generalized to an arbitrary

measurable function Λ(·) representing commonality characteristics, taking
N

∑
i=1

xi as a variable.

With the use of the logarithmic scale, the information of λN(rN) is the sum of those with
individual observation:

−log(µ1 ∗ µ2 ∗ · · · ∗ µi ∗ · · · ∗ µN(rN)) =
N

∑
i
(− log µi(r)). (28)
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As a similar property related to geometric mean, note that the following Young’s inequality
also holds:

|Λ| · ||µ1 ∗ µ2 ∗ · · · ∗ µi ∗ · · · µN || ≤
N

∏
i
||µi||, (29)

where || · || denotes total variation. This assures us that the variation of the commonality remains
within the order of the product of each observation’s variation.

However, it is important to note that as a general property of convolution,

λN(r) 6=
N

∏
i

qi(r). (30)

The equality only holds in case r → R or µi(rN) = µi(r) for i = 1, · · · , N, without implication for
the independence of observations. For the convolution on general subset rs ⊆ rN , the exact definition
is given by

λN(rs) :=

∫
RN

1

(
Λ

N

∑
i=1

xi

∣∣∣Λ N

∑
i=1

xi ∈ rs; xi ∈ r

)
µ1(dx1) · · · µN(dxN), (31)

though it requires direct calculation without relevance to qi(r). In order to obtain fast computable
form, the following asymptotical generalization holds:

Theorem 3. As N → ∞, for r ⊂ R, µi(r) > 0, i = 1, · · · , N and rs ⊆ rN , λN(rs) converges almost
everywhere to the following:

λN(rs) →
∫

rs
N (ΛνN , Λ2σ2

N)m(dx)×
N

∏
i

qi(r), (32)

where m(·) is the Lebesgue measure on R, andN (νN , σ2
N) represents the normal probability density distribution

with mean value νN and variance σ2
N as follows:

νN :=
N

∑
i=1

∫
R

1 (x|x ∈ r) xµi(dx),

σ2
N :=

N

∑
i=1

(∫
R

1 (x|x ∈ r) x2µi(dx)− (ν2
N − 2νN)

)
→

N

∑
i=1

(∫
R

1 (x|x ∈ r) x2µi(dx)− ν2
N

)
.

(33)

A numerical example of the convolution λN(rN) is presented in Figure 4. Theorems 2 and 3 can
be directly generalized to Rn(n ∈ N), with r ⊂ Rd.
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Figure 4. Numerical example of convolution λN(rN). For two kinds of probability measure µ1

(green distribution) and µ2 (blue distribution) on r ⊂ R (supported by black rug), the convolution
λN(rN) with N = 2, 4, 8, 16 are shown with different colors based on random sampling of 600, 000× N

points from
N
2

pairs of µ1 and µ2. The case of Λ = 1 is simulated, which shows the canonical

convergence towards normal distribution following the central limit theorem with σN →
√

Nσ,

where σ =
1
2
(β1 + β2) as defined in (33) and (A13). For simplicity, νN is adjusted to 0 by the symmetric

selection of µ1, µ2, and r.

3.3. Topological Structure of Complexity 1: Total Order of Observations

We consider the topological structure of inter-subjective objectivity based on the complexity,
defined as the convolution between different observations. As the commonality within inter-subjective
objectivity is defined with multiple different observations, the topological ordering based on these
complexity measures is possible with N > 2 observations of any nature.

We consider the commonality space with respect to each observation dataset as a point,
and commonality between them as the distance between each pair of points. This can be considered as
the undirected complete graph with N vertices, and its pair-wise complexity measure as NC2 edges
length. The general property of Euclidean space allows a complete graph of size N to be embedded
in N − 1 dimensions (e.g., any line between two points is one-dimensional space, and any triangle
with three points is two-dimensional surface, etc.), although an additional quantitative restriction
such as triangle inequality on each triplet of edges is required. In order to treat an arbitrary set of the
complexity measures and yield general characteristics of commonality space, we need to focus not on
the actual values of complexity, but on the topological order between them.

Let us first consider the total order between complexity values with N > 2 observation data
contained in N vertices V := {vi}i=1,··· ,N . One can determine the total order between NC2 edges
E := {ek}k=1,··· ,NC2 := {vi, vj 6=i ∈ V} by taking a mean order relationship between each pair of edges
by the following algorithm (namely the pair-wise order algorithm):

1. For each pair of edges {ei, ej 6=i ∈ E}, calculate the order relation ei ≤ ej or ei ≥ ej with respect to
the given complexity measure as an edge attribute such as length.

2. Score each edge ei by mapping to integer z : ei 7→ Z by adding +1 if ei ≥ ej 6=i and by adding −1
if ei ≤ ej 6=i, with respect to all other edges ej 6=i.

3. The sorting with the score {z(ei)} provides the total order of E.
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Note that the quantitative difference is completely lost in the case of antisymmetry, (ei = ej) ≡
(ei ≤ ej) ∧ (ei ≥ ej). We will consider the meaning of this information loss with respect to other
compatible sets of observation in Section 3.4.

Next, we consider the topological order of complexity for N > 2 observations according to the
total order of these commonalities. We need here to translate the total order between edges E to that of
observations V. This can be obtained by calculating the NC3 triplet of N > 2 vertices and associated
total order of edges with the following algorithm (namely, the triplet order algorithm schematically
represented in Figure 5):

1. For each triplet of observation Vi,j,k := {vi, vj 6=i, vk 6=i,j ∈ V} and associated edges {ei := {vi, vj},
ej := {vj, vk}, ek := {vk, vi}}, update score of each observation by mapping to integer
z′ : Vi,j,k 7→ Z with the following six rules:

2. If ei ≥ ej ≥ ek, then z′(vi) = z′(vi)− 1, z′(vj) = z′(vj) + 1, z′(vk) = z′(vk) + 0.
3. If ei ≥ ek ≥ ej, then z′(vi) = z′(vi) + 1, z′(vj) = z′(vj)− 1, z′(vk) = z′(vk) + 0.
4. If ej ≥ ei ≥ ek, then z′(vi) = z′(vi) + 0, z′(vj) = z′(vj) + 1, z′(vk) = z′(vk)− 1.
5. If ej ≥ ek ≥ ei, then z′(vi) = z′(vi) + 0, z′(vj) = z′(vj)− 1, z′(vk) = z′(vk) + 1.
6. If ek ≥ ei ≥ ej, then z′(vi) = z′(vi) + 1, z′(vj) = z′(vj) + 0, z′(vk) = z′(vk)− 1.
7. If ek ≥ ej ≥ ei, then z′(vi) = z′(vi)− 1, z′(vj) = z′(vj) + 0, z′(vk) = z′(vk) + 1.
8. The sorting with the score {z′(vi)|i = 1, · · · , N} provides the total order of V.

The commonality order of V represents the topological structure of collective intelligence in citizen
science with respect to inter-subjective objectivity, which corresponds to the topological inclusion
relation of the Venn diagram in Figure 1.

Figure 5. Schematic representation of the triplet order algorithm that calculates the total order of
three observations with respect to the complexity defined on the pair-wise commonality between
them. Three observations A, B, and C are expressed as vertices of triangle in a two-dimensional
surface, whose edge lengths A–B, B–C, and A–C represent the commonality of each vertex pair.
For simplicity, the triangles are projected as regular triangles, but the actual edge lengths generally
differ, which provides the total order of edges. The six case statements of the algorithm are shown
separately. Given the total order between the edges in blue magnitude relation, the corresponding
total order of observations are depicted with orange axes at the side of each triangle. Orange axes
superimposed with triangles signify that by orthogonally projecting the vertices onto them, the total
order of vertices are obtained, whose generalization is developed in the Section 3.4. This holds
for arbitrary three positive values of edge length without the constraint of triangular inequality,
by considering appropriate projection of the triangles to a non-Euclidian surface.
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3.4. Topological Structure of Complexity 2: Permutation between Total Orders of Observations

We expand the situation to two sets of N > 2 observations—namely, observation I and II.
For example, observer I and II observing N objects, or N observers observing 2 different objects I and
II. It can also represent the application of two different complexity measures I and II to N observations.
For simplicity, we limit the formalization to two sets of N > 2 observations, but generalization to
a greater number of sets is possible.

In the general case, total orders I and II do not necessarily coincide. The relationship between
two total orders with N observations can be described with the permutation of N elements (Figure 6a).
In order to analyze the permutation between total orders, let GN be a symmetric group with degrees of
N. For g ∈ GN , we define a linear transformation Lg : SN 7→ SN by

Lg : (v1, · · · , vN) 7→ (vg(1), · · · , vg(N)), (34)

which describes the permutation between commonality orders I and II.
We define a subspace S′(g) of SN by

S′(g) = {vi ∈ S|vi 6= vg(i)}, (35)

which represents the subspace with compromise of total order. While by defining its
complementary subspace

S′′(g) = {vi ∈ S|vi = vg(i)}, (36)

we obtain the subspace in which there is no compromise, or the complete matching of two commonality
orders. The whole commonality space can be divided into S′(g) and S′′(g):

SN = S′(g)× S′′(g). (37)

As depicted in Figure 6a,b, the compromise between two commonality orders is expressed as
a non-linear folding relationship between them. Making the assumption that the complexity measure
is a continuous function, the integrated complexity measure that supports both commonality orders
can be expressed as a folded structure (topologically speaking), such as the shape of the letter “N”
(also the capital letter of Non-identical), taking the commonality measure of I and II as an affine
coordinate: the example with a red dotted line in Figure 6b shows that we can compose an integrated
commonality measure by bending the commonality measure II in an “N” shape with respect to
that of I kept straight (in “I” shape, for Identical), which resolves the compromise. The “N” shape
transformation of commonality measure means to change the topology of commonality order with
respect to a permutation g ∈ GN (g(i) > g(j), 1 ≤ i < j ≤ N), while that of “I” shape represents the
identical order (g(i) < g(j), 1 ≤ i < j ≤ N). The non-compromising part of the two commonality
orders conserves its order to the projection onto any linear combination of the two commonality
measures, which topologically do not require “N” shape folding, but maintain “I” shape matching.

For simplicity, We call the topological compromise between commonality orders the I–N
compromise, and we call topologically identical matching I–I matching. Then, I–I matching
subspace S′(g) can be obtained as the linear combination of commonality measures I and II,
and the subspace required for the resolution of I–N compromise corresponds to the complementary
space S′′(g) (Figure 6b,c).

We call S′(g) an I–I space that consists of I–I dimensions, and S′′(g) an I–N resolution space
that consists of I–N resolution dimensions. The mean commonality order of two commonality
orders projected onto I–I space (red solid arrows in Figure 6b,c) can be obtained with the use of the
pair-wise order algorithm in Section 3.3, applied not to commonality itself, but to commonality orders.
We call this the I–N mean commonality order, since it adopts the mean total order of commonality
orders of I and II, resolving the I–N compromise. Note that the information lost by antisymmetry
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of the pair-wise order algorithm does not affect the division of I–I and I–N resolution subspaces.
Geometrical representation of the I–N compromise, I–I matching, and these corresponding dimensions,
spaces, and the I–N mean commonality order are given in Figure 6.

We finally consider a statistical test on the degree of coincidence (TDC) between
2 commonality orders.

Figure 6. Integration of two commonality orders. (a) The correspondence between commonality orders
I and II (orange arrows) can be described as the permutation between N observations (black circles),
providing the topology of I–I matching (green dotted line) and I–N compromise (blue dotted line);
(b) Affine space with respect to the commonality orders I and II as coordinate system (orange arrows)
for the resolution of I–N compromise. The I–N mean commonality order (red solid arrow) can
be calculated from the pair-wise order algorithm (Section 3.3) applied on the commonality orders
I and II, which makes the I–I matching identical to the I–I dimension (green arrow) and sets the
mean order to I–N compromise. One I-N resolution dimension is required to resolve one I–N
compromise (blue arrow). The implicit structure of the integrated commonality order with continuity
assumption takes a complex form reflecting I–N compromises (red dotted arrow as an example),
which corresponds to the complex utility configuration in Figure 3a; (c) The general case with
an arbitrary number of I–N compromises. Total commonality space of N − 1 dimensions is divided
between I–N resolution dimensions (blue arrows) and I–I dimensions (green arrow), between which
I–N mean commonality order can be defined (red arrow). k < N axes of I–N resolution dimensions are
required to resolve k I–N compromises (blue arrows). Taking the I–I dimensions and I–N resolution
dimensions as Affine coordinates, the integrated commonality order is projected onto the I–N mean
commonality order as a simplest sorted order of utility, which corresponds to Figure 3b.

Theorem 4. Statistical test on the degree of coincidence (TDC) between two commonality orders:
Given that commonality orders I and II with N observations follow a uniformly random permutation

with GN as null hypothesis, the degree of coincidence dc between the three commonality orders follows
a binomial distribution:

kI-I := #{(i, j)|g(i) < g(j), 1 ≤ i < j ≤ N, g ∈ GN},
P[dc = kI-I] := MCkI-I pkI-I(1− p)N−kI-I

∼ B(M, p),
(38)

where B(M, p) signifies a binomial distribution of parameters M = NC2 and p = 0.5, kI-I represents the degree
of coincidence as the number of I–I matching, #(·) returns the size of the set, and P[·] the probability of the degree
of coincidence dc.
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With respect to the buoy–anchor–raft model in Section 2.2, the following correspondence is possible:

• Two observers observing N objects: Commonality orders I and II can correspond to either subjective
(buoy) or objective (anchor) observation. The I–N resolution provides integrated commonality
measure such as buoy–anchor connection and raft evaluation according to the nature of the
observation. TDC provides connections between buoys and/or anchors.

• N observers observing two different objects: The commonality of N observers—whether it be
subjective (buoy) or objective (anchor)—are ranked with respect to two different objects I and
II. The I–N resolution provides a mean ranking of N observers’ commonality upon these
observations. TDC provides the reproducibility of commonality among N observers.

• Application of two different complexity measures to N observations: For example, the case of
raft–anchor connection where N subjective observers (buoys) are ranked with inter-subjective
commonality (raft evaluation) and weighted with two different anchors. The I–N resolution
provides mean ranking of N observers’ inter-subjective objectivity, integrating multiple criteria of
inter-subjective and objective evaluation. TDC represents statistical dependencies between
two complexity measures in response to a given inter-subjective objective measurement.
While significant matching between two commonality orders assures the reproducibility based on
the coincidence of observation with these measures, non-significance can also be used to quantify
complementarity of different evaluations [32].

4. Computational Complexity

The computation of complexity measures and commonality orders depends on the exhaustive
calculation of combinatorics between observations. The computational complexity of such calculation
should also be investigated in terms of topological complexity, in order to yield a general theoretical
platform that does not depend on the particularity of the database.

4.1. Topological Complexity of Commonality

First, we investigate topological order of commonality among N observations. Using the
convolution as commonality (27), we define the maximum commonality order O : X 7→ N as follows:

O(r ⊂ X) := max{k ∈ 1, · · · , N|λk(r) > 0}. (39)

The general topological structure of O(X) is depicted in Figure 7.
On the cardinality of O(X), the following holds:

Theorem 5. As #(X)→ ℵ0, ∃r ⊂ X such that #({r|O(r) = ∞}) = ℵ0, where ℵ0 represents aleph-naught.

This means that for any elaborated inter-subjective objectivity, there is always the possibility
to develop another different set of observations that attains higher inter-subjective objectivity by
increasing the dataset. This structure assures the representation of a paradigm shift in science
when sufficient contradicting evidence gained a majority compared to an old model. For example,
minority reports in biology that may lead to novel discoveries in the future can be properly stored and
distinguished from erroneous reports as more evidence accumulates [27].
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Figure 7. Topological hierarchy of commonality between observations. For example, five observations
A, B, C, D, E are depicted with correspondence to the commonality order of each topological subset.
The Venn diagram on the left represents the commonality structure within observation probability
database X5 on variable X (N = 5 in Section 4.2), where coincident observation is superimposed.
The maximum commonality order is the projection between these topological subsets to the natural
number N in right axis, describing the number of matching observations. Venn diagram cited from [34].

4.2. Algorithmic Complexity

Secondly, we evaluate the computational complexity with respect to the computing time scale.
Since data-driven citizen science requires real-time computation in a highly interactive manner
with observation process, the algorithmic complexity of the calculation of complexity measures
is an essential limiting factor of performance. As commonality is based on the intersection of
multiple observations, its exhaustive computing confronts combinatorial explosion as datasets increase.
Although computation of complexity itself, or resolution of search query as mathematical theorem is
provable and an algorithmic solution can be found, the computation resource is another practical issue
for real-world implementation—especially in distributed observation.

The computational time scale required for the sorting of a database according to a given utility
such as commonality is listed in Table 3. Under a general condition with the observation probability
database XN of size N, XN := {µi(x)|x ∈ X, i = 1, · · · , N}, maximum complexity lies in the calculation

of commonality order based on the intersection of
⌊

N
2

⌋
or
⌈

N
2

⌉
elements, whose sorting time

belongs to factorial order of N . The case with N = 5 is depicted in Figure 7. This means that
an algorithmic burden exists towards the calculation of middle-scale commonality with respect to the
data size. As an inter-subjective objectivity successfully increases in citizen science, this peaking of
algorithmic complexity in intermediate scale may hinder the effective feedback necessary for guided
self-organization.

However, in a practical situation, the actual computation time may remain in polynomial order if
effective data size shrinks with respect to the increase of maximum commonality order:

Theorem 6. By defining the diminution rate of data combination ∆ : N 7→ R with respect to maximum
commonality order 1 ≤ i ≤ N ∈ N as

∆(i) :=
NCdim({XN |O(X)=i})

NCdim({XN |O(XN)=i−1})
(40)
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the order of its product is upper bounded by the d-th root of maximum computational complexity at N′ =
⌊

N
2

⌋
N′

∏
i

∆(i) ≤ d
√
O(NdN′), (41)

where dim(·) returns the size of the database, and d > 0 represents the polynomial order of the algorithm
O(Nd) with respect to the data size N.

From this result, we can conjecture that for N′′ ≤ N′,

N′′

∏
i

∆(i) ≤ O(N
c
d ) (42)

will assure exhaustive feedback with polynomial response time of degree c. Usually, the left side is
based on the past calculation of lower maximum commonality order, we can annotate interactively
whether interactive information processing can assure comprehensive feedback. This will add
a criterion on the criticality of guided self-organization mediated by computation, which will be
explored in Section 5.

Another methodology other than exhaustive computing is to implement a local gradient algorithm
as a local interaction that leads to a global heuristic solution without top-down control. This can also
be achieved with the use of limited maximum commonality order (e.g., O(X) = k < N′), which will
keep its computational time within polynomial order O(Ndk).

Table 3. Algorithmic complexity for the calculation of commonality orders. With respect to the
maximum commonality order in (39), an exhaustive number of combinations with the use of
observation probability database XN of size N and the time scale required for the sorting of the
commonality measure is shown. Sorting time is based on the worst-case performance of canonical
algorithms such as bubble sort and quick sort (polynomial degree d = 2). O(·) denotes asymptotic

notation of Landau. O(X) =
⌊

N
2

⌋
and

⌈
N
2

⌉
require the maximum calculation and sorting time.

Note that the total computation time is upper-bounded by the sorting process (d = 2) than the
combinatorics of commonality (d = 1), though calculation time of each commonality such as
convolution should be further considered in actual implementation.

Maximum Commonality Order O(X) Number of Combination Sorting Time (d = 2)

2 NC2 O((NC2)
2) = O(N4)

3 NC3 O((NC3)
2) = O(N6)

...
...

...⌊
N
2

⌋
or
⌈

N
2

⌉
NCb N

2 c=NCd N
2 e O

((
NCb N

2 c
)2
)
= O

((
NCd N

2 e
)2
)
= O

(
N2·b N

2 c
)

...
...

...
N NCN = 1 O((NCN)

2) = O(1)

4.3. Big Data Integration

Thirdly, we consider the computational complexity required for big data integration. As open
data is increasingly gaining its availability in citizen science, integration of massive databases from
different resources has become one of the most important data processing methods. The conversion
of different databases through the application programming interface is a basic protocol when the
database is distributed over multiple servers.

The computation required in big data integration is the extensive calculation of commonality in
the direct product of multiple databases. For simplicity, we consider the integration of two databases
XN and XM, with size N and M ∈ N, XN := {µi(x)|x ∈ X, i = 1, · · · , N}, XM := {µi(x)|x ∈ X,
i = 1, · · · , M}, respectively. A joint distribution between subsets of XN and XM needs to be determined
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with respect to common parameters in order to obtain an integrated database including the calculation
of up to (N + M)-th order of commonality, such as order-wise correlations [32]. Exhaustive computing
follows the argument in Section 4.2, giving the extension of Theorem 6:

Theorem 7. Given the diminution rate of data combination ∆′ : N2 7→ R, with respect to maximum
commonality order 1 ≤ i ≤ N ∈ N and 1 ≤ j ≤ M ∈ N, during the integration of two databases XN
and XM, respectively, as

∆′(i, j) :=
NCdim({XN |O(X)=i})

NCdim({XN |O(X)=i−1})
· NCdim({XM |O(X)=j})

NCdim({XM |O(X)=j−1})
, (43)

the order of its product is upper-bounded by the d-th root of maximum computational complexity at N′ =
⌊

N
2

⌋
and M′ =

⌊
M
2

⌋
(N′ ,M′)

∏
(i,j)

∆′(i, j) ≤ d
√
O([NN′MM′ ]d), (44)

where d > 0 represents the polynomial order of the algorithm O([NN′MM′ ]d) with respect to the data size N
and M.

In this formalization, computational complexity of database integration also confronts
combinatorial explosion with respect to data size. Similarly to (42), we then explore a practical
condition that effective maximum commonality order can be treated with polynomial time of degree
c > 0, such that

O([NN′MM′ ]d) ≤ O([N + M]c). (45)

For that purpose, we set the uniform sparseness u (0 < u < 1) of random databases representing
the density of combination that supports the existence of commonality at each order,

NCdim({XN |O(X)=k})

NCk
=

MCdim({XM |O(X)=k})

MCk
= u

for k = 1, · · · , N′ or M′,
(46)

which maintains the diminution rate of data combination ∆ (40) and ∆′ (43) invariant under
the definition. With respect to the total size of the database after integration L = N + M,
the following holds:

Theorem 8. As L→ ∞ in random data (46), the mean condition of (45) for all {N, M|N + M = L} converges
to the following inequality, which represents polynomial time constraints on computational complexity for
exhaustive calculation of newly emerging commonality order within data size L:

u ≤ O( f ∗ f (L)), (47)

where

f (x) :=
L

c
4d x−

L
8

√
L

, (48)
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and ∗ signifies the discrete convolution (20):

f ∗ f (L) :=
L−1

∑
N=1

f (N) f (L− N). (49)

Numerical observation of the proof is given in Figure 8.
This signifies that the convolution of the power function of each database’s size serves as the

complexity measure of big data integration with respect to computational complexity. This provides
the condition of data sparseness u such that exhaustive calculation of all newly generating commonality
orders within size L can be treated with polynomial time order c under algorithmic constraint d. As the
inequality indicates, the more data is sparse, the easier we can calculate joint commonality.

Figure 8. Numerical observation of the proof of Theorem 8. (a) Chebyshev’s inequality (A41) and
asymptotic convergence to O(L log L) (A44) with respect to N, M ≥ 1 (N + M = L), L = 10, 102, 103.

Y-axis is plotted with log scale. The equality in (A41) is given at N = M =
L
2

; (b) Behaviour of f (N)
√

L,

f (M)
√

L, and f (N) f (M)L with respect to L = 10, 102, 103. For visibility, the Y-axis scale is given as
log2(Y−1) that represents smaller Y value to the bottom, and Y-axis label shows the value of − log Y.
The surface below the solid line f (N) f (M)L represents the convolution multiplied by L, f ∗ f (L)L.
The mean value of solid line f (N) f (M)L therefore corresponds to the upper limit of u that satisfies the
polynomial constraint (45) with respect to given L. c = d = 2 were used for the simulation.

5. Conjectures on Guided Self-Organization

With effective feedbacks by computation, citizen science dynamics is expected to converge to
a critical state where objective is collectively optimized through the mutual increase of inter-subjective
objectivity. However, several aspects may intervene in the resulting self-organized state, on which we
need theoretical interpretation. In this section, general important aspects are exemplified in relation to
self-organized criticality.

5.1. Criticality by Limitation

The accuracy and reproducibility of observation is a primary factor that defines the consequent
resolution of information represented in a database. Computational complexity also gives constraint
on the speed of information processing for prediction. Several limiting factors may generically arise,
such as:
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1. Limitation by principle: Deterministic chaos inherent in a natural system does not allow for
long-term prediction, because the tiniest observation error of the present state will develop in
exponential order [35]. Short-term validity of meteorological prediction is a typical example.

2. Limitation by reproducibility: In a real world situation, we mostly encounter one-time-only events,
which do not allow reproduction under the same condition [5]. Available data is sparse with
respect to latent variables, which causes quantitative limitation of prediction [4].

3. Limitation by computational complexity: As explored in Section 4.2, extensive feedback based
on exhaustive computing is often impossible with respect to available computing resources.
The resolution of feedback may include time delay or incomplete optimization. Spatial-temporal
scale of the forecast also sets the constraint as a general trade-off between prediction accuracy and
computational resources. The coarser the forecast granularity is, the more costly the calculation
becomes, but the more likely it is to realize an accurate long-term prediction.

These limitations fundamentally regulate the order of significant digits in the prediction process,
at the edge of resulting precision where the accuracy reaches criticality. The whole dynamics is
also confined by the criticality of the observing phenomena itself, by which observers’ behaviour
is influenced.

5.2. Criticality by Successful Learning

The motivation of citizen science is not necessarily the construction of versatile artificial
intelligence, but the integration and augmentation of human capacity as well [4,12,13].
Successfulness of citizen science can also be defined in terms of information transition from machine
to human, on which criticality is assumed to appear.

Let us consider the case when successful learning mediated by computation transferred
an effective prediction model into human cognitive capacity. We take an example with Bayesian
estimation, which is also a general model of our brain function [36]. General formulation of Bayesian
estimation updates the parameter of hypothesized prior probability P(A) with respect to the observed
data P(B), and provides an estimation of posterior probability P(A′|B) given by Bayes’ theorem:

P(A′|B) :=
P(B|A)P(A)

P(B)
, (50)

where P(B|A) is considered as likelihood function, which updates P(A) to P(A′|B).
We now consider that the prior probability P(A)—or the model of prediction—depends on the

process of computation C and human decision D. As human decision is supported by computation,

P(A) := P(D|C). (51)

This formalization corresponds to Bayesian hierarchical modelling, where computation C provides
hyperparameter of human decision D as prior distribution:

P(D, C|B) :=
P(B|D)P(D, C)

P(B)
,

:=
P(B|D)P(D|C)P(C)

P(B)
.

(52)

When human successfully acquired the model represented in computational model,

P(D|C) ≈ P(D) (53)

as independent identical distribution, and
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P(D) ∼ P(C) (54)

as independent and informationally homologous distribution.
This criticality qualitatively corresponds to the saturation stage of Markov chain Monte Carlo

method (MCMC) in the optimization of a hierarchical model (52), where hyperparameter and
parameter converge to independent stable distributions. Therefore, by monitoring the dependency
of machine–human interaction with respect to the actual predictability, one can suggest whether the
computation model or human observation should change, or if the actual phenomenon is in transition:

• When the actual prediction accuracy is high and human–machine interaction is high, this indicates the
successful modelling of observing phenomenon with the use of computation.

• When actual prediction accuracy is high and human–machine interaction is low, it means the human has
achieved a successful understanding of the phenomenon with less dependency on a machine.

• When actual prediction accuracy is low and human–machine interaction is high, it indicates the possibility
that computational capacity is not sufficient to effectively treat the phenomenon. Otherwise,
the observing phenomenon might be in dynamical transition that effective computational model
needs to be changed.

• When actual prediction accuracy is low and human–machine interaction is low, more human effort needs
to be engaged both on actual observation and the utilization of the machine interface.

5.3. Criticality by Guided Optimization

The actual management task of citizen science is often firmly related to the sustainability of
a social–ecological system, where the achievement of robustness and resilience is an important criterion
of criticality [3,5]. A universally robust model with respect to an arbitrary variable cost function
is canonically given by uniform distribution, which is commonly adopted as a prior of Bayesian
estimation and random search algorithm [14]. It is also widely prevalent in biological phenomena,
as the survival rate depends on the geometric mean of evolutionary fitness, which is maximized with
uniformity in space, time, and statistical configuration [32,37].

On the other hand, a short-term management goal is usually biased by a given objective. How to
reconcile short-term local efficiency and long-term global sustainability is a crucial issue for guided
self-organization of management in citizen science.

In order to optimize the balance between different spatio-temporal scales, information geometry
can provide a theoretical compromise in terms of informational complexity. Suppose the actual
distribution of variable X ⊂ X is given by Pa(X), a short-term management goal as Ps(X), and idealized
long-term robust distribution as Pl(X). In many natural systems, the uniformity of Pl(X) supporting
robustness as the result of self-organization is expressed with entropy maximization principle under
parameter constraints such as resource availability and energy flux level [38].

For simplicity, take an example with Shannon’s diversity index H′ defined on discrete distribution
P(X) on symbols X = {s0, s1, · · · , sn}, such as frequency of n species in biodiversity observation.

H′ := −
n

∑
i=0

P(si) log P(si), (55)

where s0 represents the non-occurrence of any species. P(X) and H′ could be either buoy or
anchor. Note that H′ can be generalized to mutual information H′2 to express raft, buoy–anchor,
and raft–anchor connections,

H′2 := ∑
i,j

P2(si, sj) log
P2(si, sj)

P(si)P(sj)
, (56)

where P2(·, ·) denotes joint distribution on X× X.
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By maximizing H′, we can determine the most diverse distribution Pl as

Pl(si) =
1

n + 1
, (57)

which represents the most robust ecosystem taking on the assumption that every species including the
gap is equally invaluable in terms of ecosystem function in a randomly changing environment.

With respect to the short-term management goal, both H′(Pa) < H′(Ps) and H′(Pa) > H′(Ps)

could occur. However, a general relationship between biodiversity and ecosystem functions imposes
H′(Pa) < H′(Ps), meaning a net positive impact on biodiversity and good management in terms of
sustainability. H′ can be generalized to complexity measure G−1 in Section 3.1 with respect to the
commonality λ in Section 3.2, which will be detailed in Section 7.

Expressed as an exponential family, P(X) can be parameterized as a statistical manifold based on
the canonical setting of information geometry, with the dual-flat coordinates Θ = {θi|i = 1, · · · , n} and
H = {ηi|i = 1, · · · , n}, with potential functions φ and ψ, respectively, based on the Fisher information
metric g and connection coefficients Γ(α) [39,40]:

P(X, Θ) = exp

[
C(X) +

n

∑
i=1

θi fi(X)− ψ(Θ)

]
,

∂

∂θi
ψ = ηi,

∂

∂ηi
φ = θi,

φ(H) =
n

∑
i=1

θiηi − ψ(Θ),

(58)

under the correspondence of the following transformation for discrete distribution,

C(X) = 0,
fi(X) = 1(X|X = si),
ψ(Θ) = − log P(s0),

θi = log
P(si)

P(s0)
,

ηi = E[ fi(X)] = P(si).

(59)

The elements of Fisher information metric g =
(

gij
)

are given with respect to the dual coordinates,

gij =
∂

∂θi

∂

∂θj
ψ(Θ) =

∂ηj

∂θi
,

ginv
ij =

∂

∂ηi

∂

∂ηj
φ(H) =

∂θj

∂ηi
,

(60)

where
(

ginv
ij

)
is the inverse matrix of (gij). This relation defines Θ and H as the dual coordinate

systems orthogonal to each other with respect to g. The α-connection coefficients Γ(α) =
(

Γ(α)
ij;k

)
(i, j, k ∈ {1, · · · , n}) with respect to a real number α is given by the Fisher information metric as

Γ(α)
ij;k =

1
2

(
∂

∂θi
gjk +

∂

∂θj
gik +

∂

∂θk
gij − αE

[
∂

∂θi
log P(X)

∂

∂θj
log P(X)

∂

∂θk
log P(X)

])
, (61)

where E[·] is the mean value function. The values α = 1 and −1 are essential in information
geometry, which define the e- and m-flat connections, respectively, in terms of the invariance of



Entropy 2017, 19, 181 25 of 39

tangent space under the covariant differential ∇(α) on arbitrary coordinates {ξi}(i = 1, · · · , n) of the
statistical manifold:

∇(α)
∂

∂ξi

∂

∂ξ j
=

n

∑
k=1

Γ(α)
ij;k

∂

∂ξk
, (62)

where Γ(1)
ij;k = 0 for ξi = θi, and Γ(−1)

ij;k = 0 for ξi = ηi. For example, the model P(X; Θ) is e-flat with

respect to the coordinates Θ, and m-flat with respect to the coordinates H. ∇(±1) is called the dual-flat
connection of the statistical manifold. The concept of flatness defined by these connections further
extends to the concept of geometric parallel and geodesic. As an autoparallel submanifold with respect
to the connection, e- and m-flat geodesic Θ(w) and H(w) between two distributions P1(X) and P2(X)

are defined as follows with one-dimensional parameter w:

Θ(w) = wΘ(P1(X)) + (1− w)Θ(P2(X)), (63)

H(w) = wH(P1(X)) + (1− w)H(P2(X)). (64)

The unique ∇(α)-divergence D(α)(P1(X) : P2(X)) that satisfies D(P1(X) : P2(X)) ≥ 0 and
D(P1(X) : P2(X)) = 0⇔ P1(X) = P2(X), and that remains invariant under possible transformations
of the dual-flat coordinates with the connections ∇(±α) is given by

D(α)(P1(X) : P2(X)) = Ψ(P1(X)) + Φ(P2(X))−
n

∑
i=1

θi(P1(X))ηi(P2(X)), (65)

whose dual divergence coincides with Kullbuck–Leibler divergence in case of α = 1,

D(1)(P1(X) : P2(X)) = D(−1)(P2(X) : P1(X)) = ∑
X

P2(X) log
P1(X)

P2(X)
. (66)

From the Pythagorean relation and the projection theorem of Kullbuck–Leibler divergence on the
dual-flat statistical manifold [39] (p. 63), the following holds:

Theorem 9. Let (Θa, Ha), (Θs, Hs), and (Θl , Hl) be the dual-flat coordinates of Pa(X), Ps(X), and Pl(X),
respectively, with the canonical definition of e- and m-flat dual connections. We define the optimal distribution
Po(X) with coordinates (Θo, Ho) on m-flat geodesic between Pa(X) and Pl(X) with parameter w ∈ R as

Ho := wHa + (1− w)Hl . (67)

By optimizing Ho with orthogonal projection of e-flat geodesic from Θs to Θo as

w = arg min
w

(Dm(Po : Ps)) = arg min
w

(De(Ps : Po)), (68)

the following Pythagorean relations hold:

Dm(Pa : Ps) = Dm(Pa : Po) + Dm(Po : Ps),
Dm(Pl : Ps) = Dm(Pl : Po) + Dm(Po : Ps).

(69)

where Dm(· : ·) and De(· : ·) are Kullback–Leibler divergence and its dual divergence, respectively,

Dm(Po : Ps) := De(Ps : Po) :=
n

∑
i=0

Po(si) log
Po(si)

Ps(si)
. (70)

Figure 9 shows the geometrical structure of this theorem. In this case, supposing H′(Pa) <

H′(Ps) < H′(Pl) as effectiveness of complexity measure H′ for management, we want to find the
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optimal distribution of biodiversity Po balancing between Ps and Pl with respect to actual distribution
Pa, such that

H′(Pa) < H′(Ps) < H′(Po) < H′(Pl), (71)

based on statistical dependencies between variables that can be orthogonally separated with
Pythagorean relation. As a result, Po provides the optimized distribution with respect to minimum
informational discrepancy from the short-term objective to the ideal transition towards the long-term
most diverse state. The meaning of major components of Kullbuck–Leibler divergence to be used as
a guide of self-organization is listed as follows:

• Dm(Pa : Po): Discrepancy between actual distribution and optimum portfolio strategy that
orthogonally decomposes and attempts to achieve a balance between short-term management
objective and long-term sustainability.

• Dm(Pa : Ps): Target risk of short-term management objective.
• Dm(Po : Ps) = De(Ps : Po): Buffering element of robustness trade-off between short-term

management objective and long-term sustainability.
• Dm(Pl : Po): Potential risk of optimum portfolio w.r.t. long-term sustainability.
• Dm(Pl : Ps): Potential risk of short-term management objective w.r.t. long-term sustainability.
• Dm(Pl : Pa), Dm(Pa : Pl): Potential risk of actual distribution w.r.t. long-term sustainability.

Figure 9. Information geometrical optimization of diversity strategy portfolio with respect to actual
distribution Pa, short-term management objective Ps, and long-term sustainability Pl . On a dual-flat
statistical manifold based on Fisher information metric, each distribution is represented as a point
(black circles). The m-geodesic is depicted with a blue line, while the e-geodesic is shown with a red
line, which orthogonally cross at the optimized strategy Po. Topological correspondence between
complexity measure H′ (aligned on left orange arrow) and diversity strategy portfolio (Pa, Ps, Pl and Po)
is shown with dotted lines with respect to the magnitude relation.

6. Results from Biodiversity Management

We demonstrate the application of the model developed in this article to actual citizen science
observation data, taking a biodiversity observation activity supported by interactive database as
a typical example [17]. Sample data contain the observation by seven citizen participants on
48 subjective binary indices on species occurrence as buoy data on biological diversity, resulting in
336 samples. On the other hand, a buoy–anchor connection was established separately by objective
evaluation of each participant’s ability to detect these species.
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Commonality orders among seven observers were obtained for both inter-subjectivity based on
the mutual information of buoy data and subjective–objective unity by simply ranking with buoy–anchor
connection data. These orders are shown in Figure 10. A binomial test defined in (38) was performed
on the comparison between inter-subjective and subjective–objective commonality orders. The random
order distribution hypothesis was rejected with respect to 4% significance threshold. The matching was
more consistent in a higher order of commonality, which implies the intervention of subjective bias in a
lower order. With respect to the conjectures on criticality in Section 5, the results can be interpreted as
a significant self-organization process towards criticality with the increase of inter-subjective objectivity.

Figure 10. Results of inter-subjective and subjective–objective commonality orders in citizen
observation of biodiversity. Seven people represented with numerical ID are aligned with commonality
orders (a) based on inter-subjectivity; and (b) based on subjective–objective unity, which showed
a 3.92% residual error probability regarding the rejection of the random order distribution hypothesis
with respect to the binomial test (38).

7. Discussion

We have tackled the general situation in data-driven citizen science where scientific accuracy and
reproducibility can only be discussed at the intersection of subjectivity, inter-subjectivity, and objectivity.
Based on the conceptual definition of inter-subjective objectivity, a general topological structure
was characterized with respect to complexity measure, search function, computational complexity,
and criticality conditions. The results provide theoretical criteria for the development of information
and communication technology in view of effective assistance and guidance of citizen science from
a complex systems perspective.

The universality of the developed theory and models lies in the generality of the commonality
concept formalized as convolution. In reality, a joint distribution of N variables can be represented as
the function of convolution with degree N, which allows for extensive expression of informational
complexities [32].

For example, by choosing the time range T ⊂ R with positive Lebesgue measure m(T) > 0,
marginal distribution P(x|T) can be expressed as the time integral of probability measure µ, such as

P(x|T) :=
∫

T
µ(dt)

=
∫
R

1(t|t ∈ T)µ(dt)

= q(T),

(72)

according to (24).
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On the other hand, joint distribution P(x1, x2|T) is also the time integral of the products between
each variable’s probability measure µ1 and µ2, within simultaneous time range {dTi}i=1,··· ,n:

P(x1, x2|T) :=
n

∑
i

∫
dTi

∫
dTi

µ1(dt1)µ2(dt2)m(dTi),

n⋃
i

dTi = T.
(73)

where m(·) is Lebesgue measure on R. As defined in (25),∫
dTi

∫
dTi

µ1(dt1)µ2(dt2) = µ1 ∗ µ2(dTi
2),

dTi
2 :=

{
∑

i=1,2
ti

∣∣∣ti ∈ dTi

}
,

(74)

which derives the practical form for actual data processing as

P(x1, x2|T) :=
n

∑
i

µ1 ∗ µ2(dTi
2)m(dTi). (75)

Taking n→ ∞, we obtain

P(x1, x2|T) :=
∫

T
µ1 ∗ µ2(dT2)

=
∫

T
q1(dT)q2(dT)

=
∫

T
µ1(dT)µ2(dT),

(76)

the canonical definition of joint distribution with real value resolution of time.
This follows the generalization to N variables with (A5) as

P(x1, x2, · · · , xN |T) =
n

∑
i

λN(dTi
N)m(dTi),

dTi
N :=

{
Λ

N

∑
j=1

tj

∣∣∣tj ∈ Ti

}
,

n⋃
i=1

dTi = T.

(77)

Taking n→ ∞, it converges to

P(x1, x2, · · · , xN |T) =
∫

T
λN(dTN)

=
∫

T
µ1(dT)µ2(dT) · · · µN(dT).

(78)

Therefore, based on the commonality as convolution, we derive whole orders of the joint
distribution necessary for the calculation of known complexity measures. In a general form,
any complexity measure incorporating the information of a joint distribution can be described as the
function of convolution G−1(Q(λ)), following the formalization of Section 3.1.

Commonality order is also accessible to existing algorithms that extract the total order of system
elements, such as Dulmage–Mendelsohn decomposition [41] and phylogenetic tree analyses [42].
Although the calculation of joint distributions of all orders out of matrix data generally confronts
exponential computational time, total order based on partial combinatorics and statistical testing with
known distribution of p-value can provide a quick evaluation of matching on the results from different
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algorithms. The pair-wise and triplet order algorithms of N observations can be processed with O(N2)

and O(N3), respectively, similar to the range of most other ranking algorithms based on low-order
statistics. The comparison between N total orders of commonality requires only second-degree
polynomial time O(N2) (38). Taking such partial optimization and algorithm-wise comparison of
performance into account, as an extensive Bayesian estimator including human of Section 5.2, a deep
learning model with the use of massive parallel machine learning can be structurally effective for an
interactive recombination of an estimation model based on human feedback [4].

In order to effectively attain criticality in citizen science where knowledge acquisition, transfer,
and control are optimized through self-organization, we need to reach a collective intelligence that is
distributed in a parallel way both in our subjective mind and in objective reality. The cost of data-driven
science sometimes depends on the overly weighted objective measurement for complete modelling,
which can also hinder the agility of taking actions, and opportunity of effective interaction through
internal observation [3]. As explored in this article, if there exist natural laws extended in our collective
intelligence—much like the physical law in objective nature—we may count on such topological
structure, and it may be possible to take effective guidance through partial and distributed observation.
Such a way to organize collective intelligence among independent and parallel activity producers
could be considered as a social–environmental expansion of the “intelligence without representation”,
which is based on the direct interface to the world through perception and action, rather than
comprehensive representation of knowledge isolated from the environment [43]. Data acquisition
needs to generate potentially effective action strategies, or the affordance under global management
principles, instead of modelling the phenomena without essential intervention of actors [44]. This can
be described as data-affordance science in contrast to exhaustive data-driven science, in which we
substantially depend on the emergent topological structure of inter-subjective objectivity to make
decisions in real time, represented at the intersection of the human mind, computation, and natural
phenomena. The buoy–anchor–raft model developed as a mutual framework can provide a theoretical
basis that expands external observation of conventional science to internal observation necessary for
the management and knowledge extraction as a data-affordance science [5,27]. As a cumulative effect of
synergistic efficiency, observation and data processing could diminish within a computable time scale
by implicitly augmenting the knowledge representation incorporated into actual action principles.
With measurement–action unity as a process of affordance in both data and reality, a cost-effective
interface and a human-dependable system could be realized within the framework of internal
observation, as a crucial premise for a sustainable solution. The edge of criticality for a successful
citizen science—in terms of its nature and resource restriction—could find its limits neither in our
internal mind nor external world, but on the topology of these interactions.
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Appendix A

Proof of Theorem 1. Let us formulate Equation (12) as I = F−1(Q(x)). As I is an epimorphism but
not necessarily a monomorphism, its inverse function generally retrieves a larger subset of conditions
including Q(x):

F(I) ⊇ Q(x). (A1)

Recursively defining Q′(x) by specifying the value of I as

Q′(x) = S−1
R [{x ∈ X|I = const.}] , (A2)

one obtains the inverse function that brings us back exactly to the comprehensive search condition,
F′(I) = Q′(x).
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Now, we consider the epimorphism H : {Q(x)} → {Q′(x)} with its right-sided inverse as
H−1 : {Q′(x)} → {Q(x)} and H−1 ◦ H ◦ Q(x) = Q(x). We set Q′(x) = H ◦ Q(x), which gives
F′(I) = H ◦Q(x), then H−1 ◦ F′(I) = Q(x). Next, we consider I′ such that F′(I′) = Q(x). By resolving
F′ ◦ F′′(I) = H−1 ◦ F′(I) with respect to F′′ : R 7→ R, we obtain

I′ = F′′(I), (A3)

then
Q(x) = F′ ◦ F′′(I) = F′(I′), (A4)

which shows coincidence between F′ and G with exclusively selective complexity measure I′. The exact
construction of Q′, F′, H, and F′′ depends on the exhaustive computation process, whose computational
complexity is characterized in Section 4.

Proof of Theorem 2. From Tonelli’s theorem,

λN(rN) := µ1 ∗ µ2 ∗ · · · ∗ µi ∗ · · · ∗ µN(r)

=

∫
R

· · ·


∫

R

· · ·


∫

R


∫

R

1

(
Λ

N

∑
i=1

xi

∣∣∣xi ∈ r

)
µ1(dx1)

 µ2(dx2)

 · · · µi(dxi)

 · · · µN(dxN)

=


∫

R

1 (x1|x1 ∈ r) µ1(dx1)



∫

R

1 (x2|x2 ∈ r) µ1(dx2)

 · · ·

· · ·


∫

R

1 (xi |xi ∈ r) µ1(dxi)

 · · ·

∫

R

1 (xN |xN ∈ r) µ1(dxN)


=

N

∏
i

qi(r).

(A5)

Proof of Theorem 3. The central limit theorem with Lindeberg’s condition assures the following
convergence as the sampling number N′ → ∞ and the number of distribution N → ∞:

N′

∑
j=1

N

∑
i=1

xij

N′
→
∫
R
N (ν′N , σ′2N )m(dx), (A6)

where the variables xij ∈ Xi = {xi1, · · · , xiN′} follow independent distributions p(Xi),

Xi ∈ {X1, · · · , XN}, with finite mean α′i =
N′

∑
j=1

xij

N′
and variance β′2i =

N′

∑
j=1

x2
ij

N′
− α′2i taken over N′

samples, and

ν′N =
N

∑
i=1

α′i, (A7)

σ′2N =
N

∑
i=1

β′2i . (A8)

Based on the central limit theorem, we consider the numerical convergence of λN(rN) in a way
accessible to rS ⊆ rN . The convolution λN(rN) represents infinite random sampling of x ∈ rN :=
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{
Λ

N

∑
k=1

xk

∣∣∣xk ∈ r

}
at the limit of N′ → ∞, from N independent distributions {µi(x)|x ∈ r, i =

1, · · · , N} as the population distributions with finite mean αi and variance β2
i as follows:

αi =
∫
R

1 (x|x ∈ r) xµi(dx),

β2
i =

∫
R

1 (x|x ∈ r) x2µi(dx)− α2
i ,

(A9)

where each mean and variance is bounded within the total variation of r as

inf(r) ≤ αi ≤ sup(r), (A10)

βi ≤
sup(r)− inf(r)

2
=
||r||

2
. (A11)

If µi(x ∈ r) are finite measures, we obtain the following from the central limit theorem of
independent distributions with finitely bounded mean and variance:

λN(rN) →

∫
R

1 (x|x ∈ rN)N (ΛνN , Λ2σ2
N)m(dx)

×

∫
RN

1

(
Λ

N

∑
i=1

xi

∣∣∣xi ∈ r

)
µ1(dx1) · · · µi(dxi) · · · µN(dxN)

=

∫
R

1 (x|x ∈ rN)N (ΛνN , Λ2σ2
N)m(dx)×

N

∏
i

qi(r),

(A12)

where

νN =
N

∑
i=1

αi,

σ2
N =

N

∑
i=1

β2
i ,

(A13)

which coincides with (33) as N → ∞. In (A12), the term
N

∏
i=1

qi(r) serves as the overall normalisation

factor, since qi(r) is not necessarily normalized as a probability distribution with total probability 1.
Since the convolution is replaced by the integral of normal distribution with single variable,
by restricting on arbitrary subset rs ⊆ rN , we obtain the theorem (32):

λN(rs) →
∫
R

1 (x|x ∈ rs)N (ΛνN , Λ2σ2
N)m(dx)×

N

∏
i

qi(r)

=
∫

rs
N (ΛνN , Λ2σ2

N)m(dx)×
N

∏
i

qi(r).
(A14)

In case µi(x ∈ r) includes infinite measures that do not guarantee the above convergence, ∃x ∈ r,
such that µi(x) = ∞, though

m({x ∈ r|µi(x) = ∞}) = 0. (A15)
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Because, in the opposite case, m({x ∈ r|µi(x) = ∞}) > 0, µi(r) = qi(r) = ∞, which contradicts
the definition (24). Since infinite measures could only appear within a countable set of zero
Lebesgue measure,

µi({x ∈ r|¬Theorem 3 }) = 0, (A16)

which means for almost every x ∈ rs, the theorem holds.

Proof of Theorem 4. The null hypothesis can be represented as a random order distribution, in which
M = NC2 pairs of N observations are susceptible to generating an I–N compromise between I and II.
Choose an arbitrary commonality order I and consider the null hypothesis distribution of II.

With respect to an arbitrary pair (i, j) out of N observations, all permutations in GN can be
divided into two sets HI-I and HI-N, which correspond to those generating I–I matching and I–N
compromises, respectively:

HI-I := {gI-I ∈ GN |gI-I(i) = i′, gI-I(j) = j′, 1 ≤ i′ < j′ ≤ N}, (A17)

HI-N := {gI-N ∈ GN |gI-N(i) = j′, gI-I(j) = i′, 1 ≤ i′ < j′ ≤ N}. (A18)

Here,HI-I andHI-N are not groups, but the subsets of the same size,

#(HI-I) = #(HI-N) =
1
2

#(GN), (A19)

because

HI-N = gi′ j′ ◦ HI-I, (A20)

HI-I ∪HI-N = GN , (A21)

HI-I ∩HI-N = ∅, (A22)

where for k = 1, · · · , N,

gi′ j′(k) :=


j′ if k = i′,
i′ if k = j′,
k else.

(A23)

Then, with respect to the random permutation, the probability p that each pair from N
observations will be judged as I–I matching is given by:

p =
#(HI-I)

#(GN)
= 0.5, (A24)

which leads to the general probability of the occurence number of I–I matching (kI–I ≥ 1) follow
binomial distribution with parameters M = NC2 and p.

Note that the binomial distribution can be approximated to a normal distribution with N ≥ 7 in
this case, according to the condition of the mean value Mp > 5 and variance Mp(1− p) > 5.

Proof of Theorem 5. Take n > m ∈ N and consider the database X, #(X) = n, in which we divide
m observations with k =

⌊ n
m

⌋
elements and these intersections as commonality structure. b·c is

a floor function.
As the cardinality of rational number is ℵ0, any positive common fraction, or N2, can find

unique correspondence to N. Now, for an arbitrary k =
⌊ n

m

⌋
, ∃n′, such that k <

⌊
n′

m

⌋
(for example,

take n′ = m
⌈ n

m

⌉
with ceiling function d·e). Since k ∈ N, for simplicity, let us consider the
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correspondence n = km for any k, m ∈ N. With the use of Cantor’s pairing function 〈·, ·〉 : N2 7→ N,
we obtain the unique counting natural number 〈k, m〉 for all pairs of (k, m):

〈k, m〉 :=
1
2
(k + m)(k + m + 1) + m. (A25)

As n = km contains permutational symmetry with respect to k and m, the uniqueness does not
hold for 〈k, m〉 7→ n, though from the inverse function of 〈·, ·〉,

lim
〈k,m〉→∞

k = ∞, (A26)

lim
〈k,m〉→∞

m = ∞, (A27)

lim
〈k,m〉→∞

km = lim
〈k,m〉→∞

n = ∞. (A28)

As n→ ∞ is equivalent with either k→ ∞ or m→ ∞,

lim
n→∞
〈k, m〉 = ∞, (A29)

which results in

lim
n→∞

k = ∞, (A30)

lim
n→∞

m = ∞. (A31)

Taking n = #(X), m = O(r), and k = #({r|O(r) = m}) gives the theorem.

Proof of Theorem 6. From the definition of ∆(i), when there is no diminution of data or equivalently

λk(X) > 0 for all k ∈
{

1, · · · , N′ =
⌊

N
2

⌋}
,

O
(

N′

∏
i

∆(i)

)
=
O(N2)

O(1) ·
O(N3)

O(N2)
· · · ·O(N3)

· · · O(NN′−1)

· · ·
O(NN′)

O(NN′−1)

= O(NN′)

= d
√
O(NdN′).

(A32)

As the product monotonically decreases with respect to the decrease of each element, the above
relation gives the upper bound. Sorting time of N elements is usually given by O(N2), d = 2, and can
be generalized to algorithms with polynomial order d > 0.

Proof of Theorem 7. From

∆′(i, j) = ∆(i)∆(j), (A33)

we directly obtain

O

(N′ ,M′)

∏
(i,j)

∆′(i, j)

 = O
(

N′

∏
i

∆(i)

)
O
(

M′

∏
j

∆(j)

)
= O(NN′MM′)

= d
√
O([NN′MM′ ]d).

(A34)
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Proof of Theorem 8. The condition (45) can be translated into the following with respect to the data
sparseness u:

O([NCdim({XN |O(X)=N′})MCdim({XM |O(X)=M′})]
d) ≤ O([N + M]c), (A35)

O([uNCN′ · uMCM′ ]
d) ≤ O([N + M]c), (A36)

O([u2NN′MM′ ]d) ≤ O([N + M]c). (A37)

Expressed as the order of computational time on both sides of formula withoutO(·) for simplicity,

[u2NN′MM′ ]d ≤ [N + M]c, (A38)

and taking logarithmic scale,

d[log(u2NN′MM′)] ≤ c log L, (A39)

1
2

{N,M}

∑
k

⌊
k
2

⌋
log k ≤ c

2d
log L− log u. (A40)

We consider the application of Chebyshev’s inequality on the left side, such that

1
2

{N,M}

∑
k

⌊
k
2

⌋
· 1

2

{N,M}

∑
k

log k ≤ 1
2

{N,M}

∑
k

⌊
k
2

⌋
log k. (A41)

Since
⌊

k
2

⌋/
k
2
→ 1 as k→ ∞ and removing constant coefficient

1
2

, evaluation of the asymptotic

behaviour of (A41) can be derived essentially for the left side from fl(N, M) and the right side from
fr(N, M) defined as follows,

fl(N, M) := (N + M)(log N + log M),
fr(N, M) := N log N + M log M,

(A42)

with which (A41) is described as

1
2

fl(N, M) ≤ fr(N, M). (A43)

As N, M→ ∞ that becomes dominant as L→ ∞,

fl(N, M) ≤ O((N + M) log(N + M)),
fr(N, M) ≤ O((N + M) log(N + M)),

(A44)

since ∃D > 0, ∃C > 0, such that N, M ≥ D, then fl(N, M), fr(N, M) ≤ C · [(N + M) log(N + M)].
This condition holds with D ≥ 1, C ≥ 2 for both fl(N, M) and fr(N, M). Note that although explicit
inequality between fl(N, M) and fr(N, M) exists in (A43), these converge to the same asymptotic
order O(L log L) for all N and M, because as L→ ∞,

1 ≤ fr(N, M)

fl(N, M)
≤ 2,

1
2
≤ fl(N, M)

L log L
≤ 1,

(A45)

and

fr(N, M)

L log L
→ 1, (A46)
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which remain within the ranges of multiplication with constant. The relations (A45) and (A46) can

be proved by examining the minimum and maximum values of
fr(N, M)

fl(N, M)
,

fl(N, M)

L log L
, and

fr(N, M)

L log L
.

By considering with the range of 1 ≤ N ≤ L
2

from the symmetry between N and M (M = L− N),
we derive the following monotonicity conditions with respect to N,

∂ fl(N, M)

∂N
≥ 0, (A47)

∂ fr(N, M)

∂N
≤ 0, (A48)

from which we obtain the minimum value of
fr(N, M)

fl(N, M)
at N =

L
2

,

fr

(
L
2

,
L
2

)
fl

(
L
2

,
L
2

) = 1, (A49)

the maximum value of
fr(N, M)

fl(N, M)
at N = 1,

fr(1, L− 1)
fl(1, L− 1)

= 2× L− 1
L
→ 2, (A50)

the minimum value of
fl(N, M)

L log L
at N = 1,

fl(1, L− 1)
L log L

=
1
2

log(L− 1)
log L

→ 1
2

, (A51)

the maximum value of
fl(N, M)

L log L
at N =

L
2

,

fl

(
L
2

,
L
2

)
L log L

=
log L− log 2

log L
→ 1, (A52)

the minimum value of
fr(N, M)

L log L
at N =

L
2

,

fr

(
L
2

,
L
2

)
L log L

=
log L− log 2

log L
→ 1, (A53)

and the maximum value of
fr(N, M)

L log L
at N = 1,

fr(1, L− 1)
L log L

=
L− 1

L
log(L− 1)

log L
→ 1, (A54)

with the associated convergence as L → ∞. Numerical observation of the convergence between
fl(N, M), fr(N, M), and L log L is given in Figure 8a.
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As it converges to the same asymptotic behaviourO((N + M) log(N + M)) on both sides of (A43),
we apply the left side of Chebyshev’s inequality fl(N, M) to (A40), which gives asymptotical relation

1
8

fl(N, M) ≤ c
2d

log L− log u,

u ≤ L
c

2d N−
L
8 (L− N)−

L
8 ,

(A55)

where coefficient
1
8

is derived from the relation (A41), including the effect of transformation N′ =
⌊

N
2

⌋
and M′ =

⌊
M
2

⌋
. As L→ ∞ and taking the sum over N, it converges to the theorem:

Lu ≤
L−1

∑
N=1

L
c

2d N−
L
8 (L− N)−

L
8 ,

u ≤ f ∗ f (L).
(A56)

Numerical observation of the proof is given in Figure 8 (b).

Proof of Theorem 9. We consider the Θ coordinates of Po(X) as Θo, which constitutes the e-flat
geodesic Θ(w) = {θi(w)} between Ps(X) and Po(X) as

Θ(w) := wΘs + (1− w)Θo. (A57)

The tangent vector Te of the e-geodesic is expressed as

Te =
n

∑
i=1

d
dw

θi(w)
∂

∂θi
=

n

∑
i=1
{θi(Ps(X))− θi(Po(X))} ∂

∂θi
, (A58)

and the tangent vector Tm of the m-geodesic Ho as

Tm =
n

∑
i=1

d
dw

ηi(Po(X))
∂

∂ηi
=

n

∑
i=1
{ηi(Pa(X))− ηi(Pl(X))} ∂

∂ηi
. (A59)

Then the inner product < Te, Tm > of these tangent vectors at Po(X) is expressed as

< Te, Tm >=
n

∑
i=1
{θi(Ps(X))− θi(Po(X))}{ηi(Pa(X))− ηi(Pl(X))}, (A60)

since from the duality of the coordinates in (60),〈
∂

∂θi
,

∂

∂ηj

〉
=

{
1 if i = j,
0 else.

(A61)

As Pa(X), Pl(X), and Po(X) are aligned on the m-geodesic, the relation (A60) can be translated to

< Te, Tm > =
n

∑
i=1
{θi(Ps(X))− θi(Po(X))}{ηi(Pa(X))− ηi(Po(X))} · C1,

< Te, Tm > =
n

∑
i=1
{θi(Ps(X))− θi(Po(X))}{ηi(Pl(X))− ηi(Po(X))} · C2,

(A62)

with some constant C1 and C2.
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Now, from the definition of ∇(α)-divergence (65) and its dual divergence (66), the Pythagorean
relations between Kullback–Leibler divergences are expressed as

Dm(Pa : Po) + Dm(Po : Ps)− Dm(Pa : Ps)

= De(Po : Pa) + De(Ps : Po)− De(Ps : Pa)

=
n

∑
i=1
{θi(Ps(X))− θi(Po(X))}{ηi(Pa(X))− ηi(Po(X))} · (−1)

= − 1
C1

< Te, Tm >,

Dm(Pl : Po) + Dm(Po : Ps)− Dm(Pl : Ps)

= De(Po : Pl) + De(Ps : Po)− De(Ps : Pl)

=
n

∑
i=1
{θi(Ps(X))− θi(Po(X))}{ηi(Pl(X))− ηi(Po(X))} · (−1)

= − 1
C2

< Te, Tm > .

(A63)

When orthogonality holds between the e- and m- geodesic, < Te, Tm >= 0 for (A62), which proves
the Pythagorean relations from (A63).

Finally, we prove that Po(X) satisfies the minimum condition (68). By considering Po′(X) with
a parameter w′ 6= w as

Ho′ := w′Ha + (1− w′)Hl , (A64)

we obtain the Pythagorean relation

Dm(Po′ : Ps) = Dm(Po′ : Po) + Dm(Po : Ps),
De(Ps : Po′) = De(Po : Po′) + De(Ps : Po).

(A65)

Since Dm(Po′ : Po) = De(Po : Po′) ≥ 0 from the definition of divergence, Dm(Po′ : Ps) ≥ Dm(Po : Ps)

and De(Ps : Po′) ≥ De(Ps : Po) hold, which means Po(X) is a stationary point giving the minimum
value with respect to Dm(· : Ps) = De(Ps : ·), on the m-geodesic between Pa(X) and Pl(X). Note that
the theorem also holds when ∑

X
P(X) takes arbitrary finite values other than 1.
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