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Abstract: In this paper, a comparison between two well-known finite time heat engine models is
presented: the Carnot-like heat engine based on specific heat transfer laws between the cyclic system
and the external heat baths and the Low-Dissipation model where irreversibilities are taken into
account by explicit entropy generation laws. We analyze the mathematical relation between the
natural variables of both models and from this the resulting thermodynamic implications. Among
them, particular emphasis has been placed on the physical consistency between the heat leak and
time evolution on the one side, and between parabolic and loop-like behaviors of the parametric
power-efficiency plots. A detailed analysis for different heat transfer laws in the Carnot-like model
in terms of the maximum power efficiencies given by the Low-Dissipation model is also presented.

Keywords: thermodynamics; optimization; entropy analysis

1. Introduction

A cornerstone in thermodynamics is the analysis of the performance of heat devices. Since the
Carnot’s result about the maximum possible efficiency that any heat converter operating between
two heat reservoirs might reach, the work in this field is mainly focused on how to fit real-life devices
as close as possible to the main requirement behind the Carnot efficiency value, i.e., the existence of
infinite-time, quasi-static processes. However, real-life devices work under finite-time and finite-size
constraints, thus giving finite power output. Over the last several decades, one of the most popular
models in the physics literature to analyze finite-time and finite-size heat devices has been the
so-called Carnot-like model. Inspired by the work reported by Curzon–Ahlborn (CA) [1], this model
provides a first valuable approach to the behavior of real heat engines.

In this model, it is assumed an internally reversible Carnot cycle coupled irreversibly with two
external thermal reservoirs (endoreversible hypothesis) through some heat transfer laws and some
phenomenological conductances related with the nature of the heat fluxes and the properties of the
materials and devices involved in the transport phenomena. Without any doubt, the main result
was the so-called CA-efficiency η = 1−

√
τ (where τ = Tc/Th is the ratio of the external cold and

hot heat reservoirs). It accounts for the efficiency at maximum–power (MP) conditions when the
heat transfer laws are considered linear with the temperature difference between the external heat
baths and the internal temperatures of the isothermal processes at which the heat absorption and
rejection occurs. Later extensions of this model included the existence of a heat leak between the
two external baths and the addition of irreversibilities inside of the internal cycle. With only three
main ingredients (heat leak, external coupling, and internal irreversibilities) the Carnot-like model
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has been used as a paradigmatic model to confront many research results coming from macroscopic,
mesoscopic and microscopic fields [1–28]. Particularly relevant have been those results concerned
with the optimization not only of the power output but also of different thermodynamic and/or
thermo-economic figures of merit and additionally the analysis on the universality of the efficiency at
MP (or on other figures of merit as ecological type [29–34]).

Complementary to the CA-model, the Low-Dissipation (LD) model, proposed by Esposito et al.
in 2009 [35], consists of a Carnot engine with small deviations from the reversible cycle through
dissipations located at the isothermal branches which occur at finite-time. The nature of the
dissipations (entropy generation) are encompassed in some generic dissipative coefficients, so that
the optimization of power output (or any other figure of merit) is made easily through the contact
times of the engine with the hot and cold reservoirs [36–39]. In this way, depending on the
symmetry of the dissipative coefficients, it is possible to recover several results of the CA-model.
In particular, the CA-efficiency is recovered in the LD-model under the assumption of symmetric
dissipation. Recently, a description of the LD model in terms of characteristic dimensionless variables
was proposed in [40–42]. From this treatment, it is possible to separate efficiency-power behaviors
typical of CA-endoreversible engines as well as irreversible engines according to the imposed time
constraints. If partial contact times are constrained, then one obtains open parabolic (endoreversible)
curves; otherwise, if total time is fixed, one obtains closed loop-like curves.

The objective of this paper is to analyze in which way the Carnot-like heat engines (dependent
on heat transfer laws) and the LD models (dependent on a specific entropy generation law) are
related and how the variables of each one are connected. This allows for an interpretation of the heat
transfer laws, including the heat leak, in terms of the bounds for the efficiency at MP provided by the
LD-model, which, in turn, are dependent on the relative symmetries of the dissipations constants and
the partial contact times.

The article is organized as follows: in Section 2, a correspondence among the variables of the
two models for heat engines (HE) is made. In Section 3, we study the region of physically acceptable
values for the Carnot-like HE variables depending on the heat leak. In Section 4, the study of the
MP regime is made, showing that a variety of results between both descriptions can be recovered
only in a certain range of heat transfer laws; in particular, we analyze the efficiency vs. power curves
behaviors. Finally, some concluding remarks are presented in Section 5.

2. Correspondence between the HE’s Variables of Both Models

A key point to establish the linkage between both models is the entropy production. By equaling
the entropy change stemming from both frameworks it is possible to give the relations among the
variables that describe each model (see Figure 1).

In the LD case (see Figure 1a), the base-line Carnot cycle works between the temperatures Tc

and Th > Tc, the entropy change along the hot (cold) isothermal path is ∆S = −Qh
Th

(∆S = +Qh
Tc

) and
the times to complete each isotherm processes are th and tc, respectively. The adiabatic processes,
as usual, are considered as instantaneous, though the influence of finite adiabatic times has been
reported in the LD-model in [43]. The deviation from the reversible scenario in the LD approximation
is considered by an additional contribution to the entropy change at the hot and cold reservoirs
given by

∆S Th = −∆S +
Σh
th

, (1)

∆S Tc = ∆S +
Σc

tc
, (2)
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where Σh and Σc are the so-called dissipative coefficients. The signs −(+) take into account the
direction of the heat fluxes from (toward) the hot (cold) reservoir in such a way that Qc and Qh are
positive quantities. Then, the total entropy generation is given by

∆Stot =
Σh
th

+
Σc

tc
. (3)

Figure 1. (a) Sketch of a low dissipation heat engine characterized by entropy generation laws ∆S Th

and ∆S Tc ; (b) Sketch of an irreversible Carnot-like heat engine characterized by generic heat transfers
Qh, Qc and QL.

At this point, it is helpful to use the dimensionless variables defined in [40]: α ≡ tc/t,
Σ̃c ≡ Σc/ΣT and t̃ ≡ (t ∆S)/ΣT, where t = th + tc and ΣT ≡ Σh + Σc. In this way, it is possible
to define a characteristic total entropy production per unit time for the LD-model as

˙̃∆Stot ≡
∆Stot

t̃∆S
=

∆Stot

t
ΣT

∆S2 =
1
t̃

[
1− Σ̃c

(1− α)t̃
+

Σ̃c

αt̃

]
. (4)

In the irreversible Carnot-like HE, the entropy generation of the internal reversible cycle is zero
and the total entropy production is that generated at the external heat reservoirs (see Figure 1b).
By considering the same sign convention as in the LD model Qh = Thw ∆S ≥ 0 and Qc = Tcw ∆S ≥ 0,
where ∆S is the entropy change in the hot isothermal branch of the reversible Carnot cycle, and a heat
leak QL ≥ 0 between the reservoirs Th and Tc, then

∆STh = −Qh
Th
− QL

Th
= −∆S +

(
1− a−1

h − τ
QL

Tc∆S

)
∆S, (5)

∆STc =
Qc

Tc
+

QL

Tc
= ∆S +

(
ac − 1 +

QL

Tc∆S

)
∆S, (6)

where ah = Th/Thw ≥ 1 and ac = Tcw/Tc ≥ 1. By introducing a characteristic heat leak
Q̃L ≡ QL/ (Tc∆S) and a comparison with Equations (1) and (2) gives the expressions associated
with the dissipations

Σh
th

=
(

1− a−1
h − τQ̃L

)
∆S, (7)

Σc

tc
=

(
ac − 1 + Q̃L

)
∆S. (8)
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By assuming that the ratio tc/(tc + th) is the same in both descriptions, then we introduce
α = 1/(1 + th/tc) into the Carnot-like model, and Σ̃c = Σc/ΣT and t̃ = t∆S/ΣT are

Σ̃−1
c = 1 +

(
1− α

α

)(
1− a−1

h − τQ̃L

ac − 1 + Q̃L

)
, (9)

t̃ =
1

α
(

ac − 1 + Q̃L

) [
1 +

(
1−α

α

)(
1−a−1

h −τQ̃L

ac−1+Q̃L

)] , (10)

which are the relations between the characteristic variables of the LD model and the variables of the
Carnot-like HE. This is summarized in the following expression:

Σ̃c

αt̃
= ac − 1 + Q̃L. (11)

3. Physical Space of the HE Variables

We stress that all the above results between variables hold for arbitrary heat transfer laws in
the Carnot-like model. As a consequence, above equations provide the generic linkage between both
descriptions, and, from them, useful thermodynamic information can be extracted.

In Figure 2a, the internal temperatures for the irreversible Carnot-like HE, contained in ah and ac,
are depicted with fixed values τ = 0.2, α = 0.2 and Σ̃c = 0.5. Notice that, in order to obtain thermal
equilibrium between the auxiliary reservoirs and the external baths (i.e., to achieve the reversible
limit), it is necessary that QL = 0. As soon as a heat leak appears, Thw < Th, meanwhile Tcw = Tc is
always a possible configuration. As the heat leak increases in the HE, the internal temperatures get
closer to each other until the limiting situation where Thw = Tcw (see contact edge in Figure 2a).

Figure 2. (a) Thw and Tcw from Equation (9). Note how, as the heat leak increases, the possible
physical combinations of Thw and Tcw become more limited; (b) t̃(Q̃L, ac) according to Equation (10).
The representative values α = 1

5 = τ, Σ̃c = 1
2 have been used, however, the displayed behavior is

similar for any other combination of values.

As a heat leak appears, the reversible limit t̃→ ∞ is no longer achievable. This is better reflected
in Figure 2b, where we plot the total operation time t̃ depending on ac and Q̃L (see Equation (11)).
Only when ac → 1 and Q̃L → 0 can large operation times be allowed. We can see in this figure that the
existence of a heat leak imposes a maximum operational characteristic time to the HE. The total time
is noticeably shorter as the heat leak increases, in agreement with the fact that, for t̃ ≤ 1, the working
regimes are dominated by dissipations. It could be said that the heat leak behaves as a causality effect
in the arrow of time of the heat engine.
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Notice that, in Figure 2, there is a region of prohibited combinations of Q̃L and ac. This has to do
with the physical reality of the engine (negative power output and efficiency). In [41], the region of
physical interest in the LD model under maximum power conditions was analyzed. In the Carnot-like
engine, some similar considerations can be addressed as follows: in a valid endoreversible HE,
the internal temperatures may vary in the range ah ∈ (1, τ−1) and ac ∈ (1, τ−1a−1

h ) in order to
have Tc ≤ Tcw ≤ Thw ≤ Th, ac = τ−1a−1

h being the condition for Tcw = Thw implying null work
output and efficiency. From Equation (9), it is possible to obtain two conditions on Q̃L(α, Σ̃c, ac, ah, τ)

(initially assumed to be ≥ 0) according to the values ah = 1 and ah = τ−1. For ah = 1, we obtain that

Q̃L = −
(ac − 1)

(
1−Σ̃c

Σ̃c

)
1−Σ̃c

Σ̃c
+ τ

(
1−α

α

) ≤ 0, (12)

whose only physical solution is Q̃L = 0. Then, as long as there is a heat leak in the device, the internal
hot reservoir cannot reach equilibrium with the external hot reservoir and the reversible configuration
is not achievable. On the other hand (as can be seen in Figure 2a), the largest possible heat leak (i.e.,
the largest dissipation in the system) has as an outcome that Thw → Tcw → Tc, that is, ac → 1 and
ah → τ−1. In that limit, Equations (9) and (11) give

Q̃L,max =
(1− τ)

(
1−α

α

)
1−Σ̃c

Σ̃c
+ τ

(
1−α

α

) =
Σ̃c

αt̃
, (13)

and, since in this case all the input heat is dissipated to the cold external thermal reservoir, the HE has
a null power output. In Figure 3, we depict the range of possible values that Q̃L can take (from 0 up
to Q̃L,max) in terms of α and t̃. By means of Equation (13), it is established a boundary condition for
physically acceptable values of the irreversible Carnot-like HE in terms of the LD variables, which is

t̃ =
α
(

1− Σ̃c

)
+ Σ̃cτ (1− α)

α (1− α) (1− τ)
. (14)

Figure 3. Possible values of Q̃L as a function of the control parameters α and t̃. We used the values
Σ̃c = 0.8 and τ = 0.2.
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Up to this point, we have proposed a generic correspondence between the variables of both
schemes: the LD treatment, based on a specific entropy generation law, and the irreversible
Carnot-like engine based on heat transfer laws. In the following, we will further analyze the
connection given by Equation (11) with the focus on different heat transfer laws and the maximum
power efficiencies given by the low-dissipation model.

4. Maximum-Power Regime

As is usual, the power output is given by

P =
η Qh

tc + th
. (15)

In [41], it was shown that, in the MP regime of an LD engine display, an open, parabolic
behavior for the parametric P − η curves when α = αP̃max

is fixed and for Σc ∈ [0, 1]. On the other
hand, by fixing the value of t̃ = t̃P̃max

, one obtains for the behavior of η vs. P loop-like curves
(see Figure 4 in [41]). In the irreversible Carnot-like framework, open η vs. P curves are characteristic
of endoreversible CA-type engines, and, when a heat leak is introduced, one obtains loop-like curves.
The apparent connection between the behavior displayed by fixing t̃ or α in the low dissipation
context with the presence of a heat leak, or the lack of it, is by no means obvious. A simple analysis
of the MP regime in an irreversible Carnot-like engine in terms of the LD variables will shed some
light on this issue and will also provide us a better understanding of how good the correspondence
is between both schemes.

4.1. Low Dissipation Heat Engine

In terms of the characteristic variables, the input and output heat are

˙̃Qh ≡ Q̃h

t̃
=

Qh
Tc∆S

ΣT

t ∆S
=

(
1− 1− Σ̃c

(1− α)t̃

)
1
τt̃

, (16)

˙̃Qc ≡ Q̃c

t̃
=

Qc

Tc∆S
ΣT

t ∆S
=

(
1− Σ̃c

α t̃

)
1
t̃

, (17)

giving a power output and efficiency as follows:

P̃ ≡ −W̃
t̃

= − W
Tc∆S

ΣT

t ∆S
=

[
1
τ
− 1− 1

τ

(
1− Σ̃c

(1− α)t̃

)
− Σ̃c

αt̃

]
1
t̃

, (18)

η̃ ≡ P̃
˙̃Qh

= −W
Qh

= η =
1− τ − 1−Σ̃c

(1−α)t̃
− τΣ̃c

αt̃

1− 1−Σ̃c
(1−α)t̃

. (19)

The optimization of P̃(t̃, α; Σ̃c, τ) is accomplished through the partial contact time α and the total
time t̃, whose values are

αP̃max

(
Σ̃c, τ

)
=

1

1 +
√

1−Σ̃c
τΣ̃c

, (20)

t̃P̃max

(
Σ̃c, τ

)
=

2
1− τ

(√
τΣ̃c +

√
1− Σ̃c

)2
, (21)
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with an MP efficiency given by

ηP̃max

(
Σ̃c, τ

)
=

(1− τ)

[
1 +

√
τΣ̃c

1−Σ̃c

]
[

1 +
√

τΣ̃c
1−Σ̃c

]2

+ τ
(

1− Σ̃c
1−Σ̃c

) . (22)

One of the most relevant features of this model is the capability of obtaining upper and
lower bounds of the MP efficiencies without any information regarding the heat fluxes nature.
These limits are

η−
P̃max

=
ηC
2
≤ ηP̃max

(τ, Σ̃c) ≤
2− ηC

ηC
= η+

P̃max
, (23)

corresponding to Σ̃c = 1 and Σ̃c = 0 for the lower and upper bounds, respectively. For the symmetric
dissipation case, Σ̃c = 1/2(= Σ̃h), the well known CA-efficiency η

sym
P̃max

= 1−
√

τ = ηCA is recovered.

4.2. Carnot-Like Model without Heat Leak (Endoreversible Model)

Now, let us consider a family of heat transfer laws depending on the power of the temperature
to model the heat fluxes Qh and Qc (see Figure 1b) as follows:

Qh = Tk
hσh

(
1− a−k

h

)
th ≥ 0, (24)

Qc = Tk
c σc

(
ak

c − 1
)

tc ≥ 0, (25)

where k 6= 0 is a real number, σh and σc are the conductances in each process and th and tc are the
times at which the isothermal processes are completed. The adiabatic processes are considered as
instantaneous, a common assumption in the two models. According to Equation (15), power output
is a function depending on the variables ac, ah and the ratio of contact times; k, τ and σhc are not
optimization variables for this model. The endoreversible hypothesis ∆SThw = −∆STcw gives the
following constriction upon the contact times ratio

tc

th
= σhcacahτ1−k

(
1− a−k

h
ak

c − 1

)
, (26)

where σhc ≡ σh/σc. Since there is no heat leak, the efficiency of the internal Carnot cycle is the same
as the efficiency of the engine, then acahτ = 1− η, and the dependence of ah is substituted by η. Then,
in terms of α, Equation (26) is

α

1− α
= σhcτk (1− η)

1− ak
cτk

(1−η)k

ak
c − 1

 . (27)

The optimization of power output P (ac, η; σhc, τ, Th, k) in this case is achieved through ac and η.
The maximum power is obtained by solving

(
∂P
∂ac

)
η
= 0 for ac and

(
∂P
∂η

)
ac

= 0 for η. From the first

condition, we obtain P∗, which is

P∗ (η; σhc, τ, Th, k) = σhTk
h

(
η

1− η

)
(1− η)k − τk(√

σhc + (1− η)
k−1

2
)2 . (28)



Entropy 2017, 19, 182 8 of 13

This function has a unique maximum corresponding to ηPmax , which is the solution to the
following equation

√
σhc (1− η)

[
τk − (1− η)k (1− kη)

]
+ (1− η)

k+1
2
[
(1− (1− k) η) τk − (1− η)k+1

]
= 0, (29)

and depends on the values σhc, τ and the exponent of the heat transfer law k as showed in [9].
In Figure 4a, ηPmax is depicted for the limiting cases σhc → {0, ∞}. All of the possible values of ηPmax

for different σhcs are located between these two curves. It is well-known that, for the Newtonian heat
transfer law (k = 1), ηPmax = ηCA is independent of the σhc value. As the heat transfer law departs
from the Newtonian case, the upper and lower bounds cover a wider range of efficiencies. Then,
the limits appearing in Equation (23) are fulfilled for a limited region of k values in the Carnot-like
model. From Figure 4a, it is possible to see that the results stemming from an endoreversible engine
are accessible from an LD landmark only in the region k ∈ (−1, 2.5] (for other values of k, there are
efficiencies outside the range given by Equation (23)). By equaling these efficiencies with the LD
one (see Equation (22)) and solving for Σ̃c, we obtain those values that reproduce the endoreversible
efficiencies. This is depicted in Figure 4b. Notice also that not all Σ̃c symmetries are allowed for every
k ∈ (−1, 2.5]. For example, with a heat transfer law with exponent k = −1, all the possible values of
the efficiency can be obtained if the parameter Σ̃c varies from 0 to 1, that is, all symmetries are allowed.
Meanwhile, for k = 1, only the symmetric case Σ̃c = 1/2 is allowed, reproducing the CA efficiency.
For k outside (−1, 2.5], there are efficiencies above and below the limits in Equation (23) with no
Σc values that might reproduce those efficiencies, thus limiting the heat transfer laws physically
consistent with predictions of the LD model.

Figure 4. (a) upper and lower bounds of the MP efficiency in terms of the exponent of the heat transfer
law k of the Carnot-like heat engine; (b) the Σ̃c values that reproduce the upper and lower bounds of
the endoreversible engine.

Inside the region where the LD model is able to reproduce the asymmetric limiting cases
(σhc → {0, ∞}), the correspondence between the two formalisms has not an exact fitting. In order to
show this, we will address the symmetric dissipation case.

As can be seen from Figure 4, in the endoreversible CA-type HE, for every k, there is one σhc
that reproduces the CA efficiency. On the other hand, in the LD model, the symmetric dissipation is
attached to ηCA. If we use the α and t̃ values of MP of the LD model and calculate the values of ac and
ah associated with them (instead of calculating them according to Equations (28) and (29)), we can see
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whether they allow us to recover the correct value of σhc that in the endoreversible model gives the
CA efficiency or does not. That is, for Σ̃c = 1/2, Equations (20) and (21) reduce to

α
sym
P̃max

=

√
τ

1 +
√

τ
, (30)

t̃sym
P̃max

=
1 +
√

τ

1−
√

τ
. (31)

From Equation (11), we obtain ac and with the condition η = ηCA, with Tcw/Thw = acahτ =

1− η =
√

τ we calculate ah, thus

asym
c,P̃max

=
1 +
√

τ

2
√

τ
, (32)

asym
h,P̃max

=
2

1 +
√

τ
. (33)

By using Equation (30), the ratio of contact times results in tc
th

= α
1−α =

√
τ, and, by using the

endoreversible hypothesis (Equation (26)), it is possible to obtain the value of σhc that would produce
the CA efficiency, being

σ
sym
hc,P̃max

=

(
1 +
√

τ
)k

τ
k
2 − 2kτk

2k −
(
1 +
√

τ
)k , (34)

which for k = 1 gives σ
sym
hc,P̃max

=
√

τ and for k = −1 gives σ
sym
hc,P̃max

= 1/τ. Nevertheless,
by substituting Equation (34) into Equation (29), the MP efficiency is not exactly the CA one, as can
be seen in Figure 5. Showing that the correspondence between both models is a good approximation
only in the range k ∈ [−1, 1], and is exact only for k = −1 and k = 1.

Another incompatibility of the two approaches comes up in the Newtonian heat exchange
(k = 1): meanwhile, the Carnot-like scheme ηCA is independent of any value of σhc, and, in terms
of the LD model, ηCA is strictly attached to a symmetric dissipation Σ̃c = 1/2(= Σ̃h). Then, the only
law that has an exact correspondence for all values of Σ̃c and σhc is the law k = −1.

Figure 5. Maximum-power efficiency for the symmetric case Σ̃c = 1/2, assuming the LD condition
that tc

th
=
√

τ and using the resulting σhc value that fulfills the endoreversible hypothesis. Notice that
the matching with the CA efficiency is approximate for the interval k ∈ [−1, 1] and is exact for
k = {−1, 1}, as can be seen in the zoom of this region on the right side of the figure.

4.3. Carnot-Like Model with Heat Leak

Now, let us consider a heat leak of the same kind of the heat fluxes Qc and Qh, that is,

QL = Tk
hσL

(
1− τk

)
(th + tc) ≥ 0, (35)
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then, the characteristic heat leak is

Q̃L =
QL

Qc
= ac

Tk
hσL

(
1− τk

)
(th + tc)

Tk
c σc

(
ak

c − 1
)

tc
=

ac σLc

(
1− τk

)
α τk

(
ak

c − 1
) . (36)

The power output of the engine is the same than in the endoreversible case; however, a difference
with the previous subsection arises, and now the efficiency is given by the following expression:

η =
Qh + QL −Qc −QL

Qh + QL
= 1− Qc + QL

Qh + QL
= 1−

1 + QL
Qc

Qh
Qc

+ QL
Qc

= 1− 1 + Q̃L

Q̃h + Q̃L
, (37)

where we have used the fact that Tc∆S = Qc to introduce the characteristic heats in the last expression.
From Equation (37), it can be derived that, if the heat leak increases, the efficiency diminishes.

In Figure 6, we can observe how the upper and lower bounds of the efficiency appearing in Figure 4
are affected by the introduction of a constant heat leak. Now, by using Equation (37) and the fact
that in the endoreversible case η = 1− Q̃−1

h , we have plotted the Q̃L values that leads the efficiency
ηCA for k = 1 (of the endoreversible case) down to the value ηC/2 (see point A in Figure 6), which is
Q̃L = 1−

√
τ√

τ(1+
√

τ)
; and the value Q̃L = 1−τ

2τ that lead to an efficiency ηC/ (2− ηC) for k = −1 (of the

endoreversible case) to ηC/2 (see point B in Figure 6).

Figure 6. Influence of the heat leak over the optimized efficiencies appearing in Figure 4. See the text
for explanation.

Notice in Figure 6 that, for Q̃L = 0.1, there is a region around k = 1 where ηCA is outside the
shaded region of maximum power efficiencies. Then, for these values of k and Q̃L, the symmetric
dissipation case, always attached to the ηCA efficiency, is out of reach. Additionally, there is not a
heat transfer law that fulfills both upper and lower bounds for maximum power efficiency given by
the LD model as occurred for k = −1 in the endoreversible case. The additional degree of freedom
caused by the appearance of the heat leak makes more complex the analysis of the validity of the
correspondence between both models, which, in general, should be handled numerically.

5. Conclusions

We analyzed Carnot-like heat engines (dependent on heat transfer laws) and the LD models
(dependent on a specific entropy generation law) and studied how the variables of each one are
connected. We were able to provide an interpretation of the heat transfer laws, including the heat
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leak, in terms of the bounds for the efficiency at MP provided by the LD-model, which, in turn,
are dependent on the relative symmetries of the dissipations constants and the partial contact times.

By comparing the entropy production of the low dissipation model and the Carnot-like model,
we proposed a connection between the variables that describe each model. We show that, for an HE,
the region of physical interest is independent from the operation regime, being equivalent to that
for a maximum power LD-HE. That is, η

(
t̃P̃max

, α, Σ̃c, τ
)
≥ 0 defines the acceptable α values, and

η
(

t̃, αP̃max
, Σ̃c, τ

)
≥ 0 those of t̃ (gray shaded areas in Figure 7a,b, respectively). These considerations

on the LD model are recovered from physical considerations on the Carnot-like HE. Thus, the
difference in the performance of the HEs is not due to the physical configurations of the system,
but it comes from the approximations that these models rely on: one over the entropy and the other
over the heat fluxes.

Figure 7. (a) Physically well behaved region of the α–Σ̃c variables. The shaded areas come from the LD
model and the dashed curves come from the Carnot-like model; (b) The same for the t̃–Σ̃c variables.
Notice the agreement in both models. In these plots, we use τ = 0.2.

We show that the heat leak disappears when fixing the partial contact time in the LD
engine, leading to typical endoreversible open parabolic power vs. efficiency curves. However,
the connection between the endoreversible case and the LD model is exact only for heat transfer
laws with exponents k = 1 and k = −1, and a good approximation in the region k ∈ (−1, 1). On the
other hand, the presence of a heat leak fixes the total operation time and the partial contact time is not
constrained, thus, allowing the heat leak to act as an additional degree of freedom (the same efficiency
is achieved with different combinations of partial contact time ratios and heat leaks). The reversible
limit is not accessible in this case, a maximum operation time is established, and when the heat leak
dissipation effects are important, the efficiency may be zero, which is the origin of the loop behavior
of the irreversible P̃ vs. η curves. The connection in the case with heat leak is more complex and its
validity depends on the value of Q̃L.
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