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Abstract: Polar codes are the first family of error correcting codes that provably achieve the capacity
of symmetric binary-input discrete memoryless channels with low complexity. Since the development
of polar codes, there have been many studies to improve their finite-length performance. As a result,
polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd
generation partnership project. However, the decoder implementation is one of the big practical
problems and low complexity decoding has been studied. This paper addresses a low complexity
successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check
(CRC) codes. While some research uses multiple CRC codes to reduce memory and time complexity,
we consider the operational complexity of decoding, and reduce it by optimizing CRC positions
in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not
only complexity reduction from early stopping of decoding, but also additional reduction from the
reduced number of decoding paths.

Keywords: polar codes; successive cancellation list decoding; multiple CRC codes

1. Introduction

Polar codes are the first family of error correcting codes that provably achieve the capacity for
symmetric binary-input discrete memoryless channels (B-DMCs) with low complexity successive
cancellation (SC) decoding [1]. Arikan introduced the channel polarization that splits the capacities
of information channels to one or zero as block length becomes longer [1]. As a dual phenomenon of
the channel polarization, the conditional entropies in source coding context are also polarized when the
joint entropy is broken down by the chain rule (this phenomenon is called the “source polarization”) [2].
The source coding using polar codes based on the source polarization is also proven to be optimal
for both lossless [3] and lossy source coding [4]. In addition, polar codes have been extended to
multi-terminal problems such as multiple access and broadcast channels in channel coding [5–8],
and Slepian–Wolf and Gelfand–Pinsker problems in source coding [9–11].

From the channel coding perspective, even though the SC decoding of polar codes achieves
the capacity, it was not as competitive in finite length performance as low-density parity-check
(LDPC) codes and turbo codes [12,13]. However, when both the concatenation of polar codes with
cyclic redundancy check (CRC) codes and the SC list (SCL) decoding that keeps the best multiple
decoding paths are used, the finite-length polar coding performance becomes comparable to the LDPC
coding [12]. Furthermore, a parity-check concatenation was proposed to improve the performance
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of polar codes based on CRC-aided SCL decoding [14]. Recently, thanks to their excellent error
performance and fine rate flexibility [15], polar codes have been adopted as a channel code for the
control channel of 5G new radio of the 3rd generation partnership project [16].

In order for polar codes to show comparable error performance to the LDPC codes in moderate
block lengths, the SCL decoding requires a rather large list size, e.g., L = 32. The list size L determines
the maximum number of decoding paths and affects the complexity of log-likelihood ratio (LLR)
calculation and sorting of path metrics (PMs). It is a linear factor in the decoding complexity. According
to [17,18], even for a list size smaller than 10, the SCL decoder has larger complexity than the LDPC
decoder, which leads to a considerable gap in power consumption between those decoders. Therefore,
a low complexity realization of the SCL decoding is important from a practical perspective, and some
recent research has reduced the decoding complexity by efficiently managing decoding paths. In [19],
decoding paths do not split when one of two child-paths is dominant. In addition, the decoding paths
that have low reliability are eliminated during decoding in [20]. The operational decoding complexity
of those schemes was lowered by the reduced average number of decoding paths.

Lately, some studies have used multiple CRC codes to address different complexity issues of the
decoding [21–23]. The scheme in [21] aims to reduce the memory complexity by selecting only the
most likely path after each CRC operation where more than one CRC is applied. In [22], the complexity
reduction due to CRC-based early stopping of decoding was reported. Finally, the method in [23]
reduces the worst decoding latency and space complexity for storing intermediate LLRs.

This paper addresses polar coding with multiple CRC codes similarly to [21–23], but we focus
more on optimization of the scheme in terms of decoding complexity. First, we define the operational
complexity, and then minimize it by optimizing CRC positions. In addition, the optimization of
CRC positions is extended to a modified decoding that uses a complexity reduction trick called
“instant decision” (first proposed in [24]). It is shown that the optimized CRC placement considerably
lowers the decoding complexity of the multi-CRC scheme in a wide range of signal-to-noise ratio (SNR).

The rest of this paper is organized as follows. In Section 2, the SCL decoding and its operational
complexity are introduced, and in Section 3, the encoding and decoding methods for the multi-CRC
scheme, and the optimization algorithm for CRC positions are explained. Section 4 provides the
performance and complexity of the proposed and conventional schemes, and Section 5 concludes
this paper.

2. SCL Decoding and Its Operational Complexity

This section introduces the basics of polar coding and the conventional SCL decoding [12,13], and also
defines the operational complexity of the SCL decoding with regard to hardware implementation.

2.1. Polar Encoding and SCL Decoding

We only consider binary polar codes with the kernel matrix F =
[

1 0
1 1

]
and n-fold polarization,

where n is a positive integer. Then, for N = 2n copies of a given symmetric B-DMC W, the channel
combining and splitting generate N split channels whose capacities polarize to one or zero [1].
The fraction of good split channels approaches the capacity of W as N goes to infinity. This phenomenon
is called the “channel polarization”. Polar coding transmits information through the good split channels
that have higher capacity. The index set of the good split channels is called the “information set”, and
is denoted by A. For a row vector u = (u1, u2, ..., uN) consisting of the information part (ui : i ∈ A)
and the frozen part (ui : i ∈ Ac), the codeword vector is given as x = (x1, x2, ..., xN) = uGN where
GN = BNF⊗n is the generator matrix, and BN is the bit-reversal permutation matrix (see [1] for more
details). If |A| = K, the code rate R is equal to K/N.

SC decoding is the first decoding method of polar codes [1]. Each element of u is successively decoded
in the increasing order of index. At the i-th decoding step, if i ∈ Ac, ûi is set as a frozen bit. Otherwise,
ui is decided by a maximum likelihood (ML) rule such as ûi = argmaxui=0,1Pr(y, (û1, ..., ûi−1)|ui) with
the aid of the previously estimated vector (û1, ..., ûi−1), where y is the output of the vector channel of W.
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When i = 1, (û1, ..., ûi−1) is defined as a void. At last, the SC decoder outputs û, which corresponds to a
single decoding path.

Later, SCL decoding was proposed to improve the error performance of finite-length polar
codes [13]. The SCL decoding maintains a list of L most likely paths down to the bottom of the
decoding tree as depicted in Figure 1. At the decoding step of an information ui, the number of
decoding paths is doubled until the list size reaches L without path selection. If the number of
candidate paths reached L, then, in the next step, 2L paths are generated and the best L paths are
selected based on their PMs. For a frozen bit, the number of paths does not need to increase because
we have only to take a valid child branch for each path. Finally, after decoding of all ui’s, the best path
is selected among L survivors.

l1=1 l2=1 l3=1 l4=2 l5=2

u1 u2 u3 u4 u5

0 0

1

0

0

0

1

0

1

0

l6=4

u6

l7=4

Figure 1. The temporary list size growth in the successive cancellation list (SCL) decoding (L = 4).

The CRC concatenation before polar encoding and CRC-aided SCL decoding are used to further
improve the error performance [12]. In [12], the message is CRC-encoded and its parity is usually
appended at the end of the message. The CRC code is used for the verification of survived decoding
paths at the last stage of SCL decoding. If the CRC code of length P is concatenated, then |A| = K + P,
but the code rate R is maintained as K/N. In this paper, the polar code that uses a single CRC code is
termed the “Single CRC (SCRC) scheme”.

2.2. Operational Complexity of the SCL Decoding for the SCRC Scheme

Because our concern is related to the overall computational complexity, we first define
the operational complexity of a hardware-friendly LLR-based SCL decoding algorithm for the
SCRC scheme. The overall complexity is counted in the number of addition-equivalent operations or
simply additions for convenience.

There are three main operations that largely affect the complexity. The first operation is the LLR
calculation for the information vector u in terms of the split channels. The SCL decoding runs the SC
algorithm for each of all L decoding paths. Therefore, two types of LLR calculations are used as in
the SC decoding. Note that the exact expressions for LLR calculation exist [25], but we consider their
approximations preferred in implementation:

γc = sgn(α)sgn(β)min(|α|, |β|), (1)

γv = β + (−1)uα, (2)

where α and β are the input LLRs, and u is the input bit, and sgn(·) returns the sign of the
argument [25–27]. Figure 2 shows the associated graph, where squares and circles represent the check
and variable nodes, respectively. Those operations are termed the “check/variable node operation”,
respectively. Each node operation can be implemented with a single addition or its equivalent [25].
Consequently, the total computational complexity can be counted in the number of additions.

Note that an SC decoding requires Nlog2N additions [1]. For the SCL decoding, roughly the list
size L is a linear factor in complexity. However, the list size and the number of candidate decoding
paths do not need to be the maximal size L during an entire decoding. The temporary list size can
be taken into account. The change in complexity calculation regarding the temporary list size is not
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negligible. Let us denote the temporary number of decoding paths of the i-th decoding step by li. More
precisely, li is the number of existing paths before the decoding or processing of ui. The temporary list
size does not increase if ui is a frozen bit or li = L.

Figure 2. The two node operations for the log-likelihood ratio (LLR) calculation.

The transience of the list size in a decoding progress is shown in Figure 1. The temporary list size
may increase slowly in the beginning because the front of sequence u is mostly filled with frozen bits.
When the sum of the numbers of check and variable node operations at the i-th SC decoding is
denoted by ni, the total number of node operations for an entire SCL decoding is ∑N

i=1 lini. Algorithm 1
calculates li, and we denote this function by f (·). The function f (A, li, i) returns li+1 for 1 ≤ i ≤ N − 1
(set l1 = 1). Here, li+1 is computed based on the SCL algorithm by checking whether i ∈ A or not.
Furthermore, ni is ∑t

j=0 2j where t is the number of consecutive zeros of (i− 1)2 from the rightmost
bit [1]. For example, when N = 8 and i = 7, (i− 1)2 = 110 and t is 1.

Algorithm 1 Calculation of li+1 for the SCL decoding, f (A, li, i)

Require: A, li, i
Ensure: li+1

1: if i ∈ A then
2: if 2li ≤ L then
3: li+1 ← 2li;
4: else
5: li+1 ← L;
6: end if
7: else
8: li+1 ← li;
9: end if

10: return li+1;

Second, sorting of PMs is considered for complexity evaluation. When an information bit is
decoded, the sorting of 2li ≤ 2L PMs is needed at the i-th decoding step. In this paper, the complexity
of sorting is represented in the number of additions. The sorting complexity depends on the
type of sorting [25]. Although a parallel sorting is preferred for fast decoder realization, a serial
sorting is also taken into account for minimal complexity reference. The quick sorter that requires
2lilog2(2li) comparisons for 2li paths is considered for a serial sorter. For a parallel sorter, we adopt
the bitonic sorter [17] requiring (li/2)log2(2li)(log2(2li) + 1) comparisons because it gives a good
complexity-speed tradeoff. If we assume the bitonic sorter, the number of comparisons at the i-th
decoding step, si, is computed as

si =

{
(li/2)log2(2li)(log2(2li) + 1), if i ∈ A and 2li > L,

0, otherwise.
(3)

We evaluate the sorting complexity in the number of additions since a comparison is equivalent
to an addition.
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Finally, the calculation of PM should be counted. PM calculation can also be approximated by
a single addition as follows [25]:

PMl
i =

{
PMl

i−1, if ul
i = (1/2)(1− sgn(LLRl

i)),

PMl
i−1 + |LLRl

i |, otherwise,
(4)

where l(1 ≤ l ≤ 2li) is the path index and LLRl
i is the LLR for ul

i [25].
The total decoding complexity CS for the SCRC scheme is the sum of the complexities of the node

and sorting operations, and the PM calculation as

CS = ∑(li + lini + si) = ∑ Ci
S, (5)

where Ci
S , li + lini + si is the temporal complexity of the i-th decoding step of the SCRC scheme.

We omit CRC computation in complexity evaluation because it is composed of bit operations
which are much lighter than real additions.

3. Low Complexity SCL Decoding with Multiple CRC Codes

As the list size L increases, the performance of the SCL decoding is improved, but the operational
complexity also increases. Actually, in the LLR-based SCL decoding under consideration, the total
operational complexity is the sum of Ci

S as in Equation (5), where each contributing term at Ci
S is

linearly or slightly superlinearly related with li. Therefore, the goal of this work is to reduce the
operational complexity of the SCL decoding by managing the temporary list size lower by the aid of
multiple CRC codes.

Previous research utilized multiple CRC codes to reduce the memory and time complexity of
the corresponding SCL decoding [21,23]. Although multiple CRC codes were used to reduce the
operational complexity in [22], in the complexity evaluation, the temporary list size was not counted
and only uniform (equal-length) message partitioning was considered.

However, we consider the operational complexity reduction via nonuniform message partitioning
and temporary list size management. If we can keep the temporary list size small, the overall complexity
can be reduced. In this paper, in order to minimize the complexity effectively, the positions of CRC
codes are optimized and a modified SCL decoding is employed.

3.1. Encoding and Decoding of the J-Tuple CRC Scheme

Let us consider a precoding of a partitioned message block with multiple CRC codes, followed
by polar encoding. Before the polar encoding, the message vector m is partitioned into J subblocks
(m1, m2, ..., mJ), and they are encoded serially with J-tuple CRC codes as shown in Figure 3. A CRC
encoding is carried out recursively to the concatenation of a CRC encoded block and a message
subblock. CRC code lengths are defined by (p1, p2, ..., pJ), and the CRC parities are denoted by
(r1, r2, ..., rJ). Through this nested encoding structure, undetected error by previous CRCs can be
detected by following CRCs. The length of j-th message subblock is denoted by k j and the total sum
of k j is K. Likewise, the total sum of pj is P. The CRC encoded message is encoded by a polar code.
This scheme is termed the “J-tuple CRC scheme”. In this scheme, the lengths of J message subblocks
can be determined by optimization of CRC positions that will be explained in Section 3.2.

We introduce a decoding scheme for the J-tuple CRC scheme that is described in Algorithm 2.
The temporary list size update is included in Algorithm 2 for a better presentation of the decoding
procedure. The decoding is based on the conventional SCL decoding. However, the decoding is
different in two aspects. First, J − 1 CRC operations are additionally conducted to discard incorrect
paths (lines 12–13 in Algorithm 2). Thus, due to the added J − 1 CRCs, the temporary list size vector
l = (l1, l2, ..., lN) varies depending on the decoding instance. Note, however, l of the SCRC scheme
is invariant because decoding path validity is checked only once at the bottom of the decoding tree.



Entropy 2017, 19, 183 6 of 13

If any of the CRCs fail in all decoding paths during the decoding, then the decoding is terminated and
a block error is declared. This event is called “early stopping” that is rare at a high SNR but frequent at
a low SNR. If the decoder finds paths with valid CRC, all such paths proceed to the next step. Note
that we do not assume that best effort decoding is required.

Figure 3. The cyclic redundancy check (CRC) encoding of the J-Tuple CRC scheme.

Algorithm 2 The ID-SCL decoding for the J-tuple CRC scheme

Require: Received vector, A, Ag, k, p
Ensure: Estimated codeword

1: l1 ← 1;
2: for i = 1 : N do

3: if i ∈ A then

4: if i ∈ Ag then

5: SCL decoding of ui maintaining number of survival paths and li+1 ← li;
6: else

7: SCL decoding of ui with list size of min(2li, L) and li+1 ← min(2li, L);
8: end if
9: else

10: Frozen bit decoding and li+1 ← li;
11: end if
12: if i indicates the last parity bit of the j-th CRC then

13: Discard jth-CRC-invalid paths and update li+1;
14: end if
15: end for
16: return ML codeword that passes the J-th CRC;

At each CRC operation, only valid paths—from a CRC perspective—survive so that the temporary
list size is spontaneously reduced to one or just a few. The temporary list grows as the decoding
proceeds, but if frozen bits follow consecutively, then the growth can progress slowly. This sporadic
reduction of temporary list due to multiple CRC operations induces non-negligible complexity
reduction.

Second, we consider a simple complexity reduction criterion for list management that was first
proposed in [24] for reduction of sorting complexity. When a highly reliable bit is processed, the list is
forced not to grow (lines 4–5 in Algorithm 2) and the sorting operation is skipped. Let Ag be the set
of indices where the capacity of corresponding split channels exceeds a certain threshold. (Ag may
alternatively be defined in terms of bit error rate.(period position)) When ui is processed, if i ∈ Ag,
we run the SC decoding instead of SCL decoding. The SC decoding decides the value of ui so that the
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temporary list size is maintained as li+1 = li even if li < L. Because ui for i ∈ Ag is highly reliable, the
correct path may not be ruled out by the value decision of ui. The list decoding with this criterion is
termed the “instant-decision-aided SCL (ID-SCL) decoding”. (Here, we view the conventional SCL
decoding operation as a delayed decision.)

In fact, the instant decision significantly reduces the complexity even though multiple CRC
codes are not applied because it skips sorting operations that account for a large portion of the total
complexity. In addition, the instant decision also has an effect of maintaining the temporary list size
lower. Therefore, it is expected that the multi-CRC scheme including its optimization can also reduce
the complexity under the ID-SCL decoding.

In the next subsection, the method of how to optimize CRC positions and determine Ag is
explained based on the aforementioned encoding and decoding methods. Note, however, that the
J-tuple CRC scheme can be decoded with or without the instant bit decision. Obviously, CRC positions
can be also optimized without the instant decision. The decoding without the instant decision is called
the basic SCL decoding for the J-tuple CRC scheme.

3.2. Optimization of J-Tuple CRC Positions with Respect to Complexity

We can optimize the positions of CRCs to minimize the operational decoding complexity of the
J-tuple CRC scheme. However, as mentioned above, since the decoding complexity of the J-tuple CRC
scheme is variable depending on the decoding instance, we perform the optimization considering the
average complexity based on the assumption that errors occur randomly in wrong paths. In order to
simplify the problem, we input predetermined lengths of the J-tuple CRC codes (p1, p2, ..., pJ) into the
optimization. Through decoding experiments, we determine (p1, p2, ..., pJ) empirically with regard
to performance and complexity such that ∑ pj = P, where P is the CRC length of the compared
SCRC scheme. In addition, because the minimum distance of the CRC concatenated polar code is
affected by the length of the last CRC, we allocate more bits to the last CRC code than others.

Now let us first consider optimization of the positions of J CRCs under the basic SCL decoding.
Note that the CRC positions are determined by the lengths of message subblocks. As mentioned,
the basic SCL decoding for the J-tuple CRC scheme follows Algorithm 2 without instant bit decision.
Therefore, for the J-tuple CRC scheme with a predetermined p, the optimization follows as:

k∗ = arg min
k∈ZJ ,∑ kj=K

Cavg
J , where Cavg

J , ∑(l̄i + l̄ini + s̄i), (6)

where Z is the set of integers. The average temporary list l̄ is obtained by Algorithm 3 with the inputA,
p and k. Algorithm 3 determines the average temporary list size l̄i by f (·) first, and when the j-th CRC is
possible, reduces the l̄i according to the function of pj as shown at line 5. Here, we assume that channel
quality is high enough so that the correct path always exists in the list, and many errors randomly
occur in wrong paths. Then, l̄i − 1 paths survive with probability of 1/2pj by the j-th CRC. Through
the Monte Carlo simulation introduced in Section 4, we confirmed that the estimated complexity
based on this assumption is very close to the experimental one. The average sorting complexity
vector s̄ = (s̄1, s̄2, ..., s̄N) is generated by Equation (3) with l̄ obtained by Algorithm 3. Note that the
optimization is appropriate for a small J because it is a joint optimization of J variables. In order
to avoid high complexity search for a large J, one can apply a greedy search that determines CRC
positions, one after another.

For a lower complexity implementation, the ID-SCL decoding is combined with the optimization
of the J-tuple CRC positions of Equation (6). As mentioned in Section 3.1, the ID-SCL decoding instantly
decides the information bits ∈ Ag, maintaining the temporary list size. Assume the good information
set Ag is defined by Ag = {i : Pi

e ≤ σTh} ⊂ A, where Pi
e is the bit error probability of the i-th split

channel, and σTh is a certain threshold. Let us consider the effect of the ID-SCL decoding on the CRC
position optimization. For example, assume there exists a burst of good split channels defined by Ag,
and a CRC is located before the burst of good split channels. Then, the CRC reduces the number of
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decoding paths, and the number of survival paths remains until the end of the burst because of the
ID-SCL decoding. Eventually, the interworking of the ID-SCL decoding and CRC position optimization
will give obvious complexity reduction. A more detailed example about the temporary list size is
presented in Section 4.

Algorithm 3 Calculation of l̄i’s for the basic SCL decoding of the J-tuple CRC scheme

Require: A, p, k
Ensure: l̄ =

(
l̄1, l̄2, · · · , l̄N

)
1: l̄1 ← 1
2: for i = 1 : N − 1 do

3: l̄i+1 ← f (A, l̄i, i);
4: if i indicates the last parity bit of the j-th CRC then

5: l̄i+1 ← 1 + (l̄i+1 − 1)/2pj ;
6: end if
7: end for
8: return l̄;

When we employ the ID-SCL decoding, the average temporary list size l̄i is computed by g(·) of
Algorithm 4 instead of f (·). Similarly, let l̄1 , 1 in Algorithm 4. Entire l̄ is obtained by the modified
version of Algorithm 3 in which f (·) at line 3 is replaced with g(·), and the input of Algorithm 3 is
changed to p, k, A and Ag. In addition, the average complexity of the sorting operation is modified as

s̄i =

{
(l̄i/2)log2(2l̄i)(log2(2l̄i) + 1), if i ∈ (A\Ag) and 2l̄i ≥ L,

0, otherwise,
(7)

where the bitonic sorter is assumed. Eventually, the optimization of CRC positions combined with
the ID-SCL decoding is performed by Equation (6) with new l̄ and s̄ calculated with Algorithm 4 and
Equation (7).

Algorithm 4 Calculation of l̄i+1 with Ag for the ID-SCL decoding, g(A,Ag,l̄i,i)

Require: A, Ag, l̄i, i
Ensure: l̄i+1

1: if i ∈ (A\Ag) then
2: if 2l̄i ≤ L then
3: l̄i+1 ← 2l̄i;
4: else
5: l̄i+1 ← L;
6: end if
7: else
8: l̄i+1 ← l̄i;
9: end if

10: return l̄i+1;

In the next section, we compare the proposed and conventional schemes with mixed criteria
of complexity and performance. That is, we assess the complexity reduction with only negligible
performance degradation.

4. Simulation Results and Analysis

This section provides performance and complexity of the proposed and conventional schemes.
In this paper, a Monte Carlo simulation has been carried out to evaluate the decoding performance
and complexity. The block lengths for simulation are 1024, 4096 and only rate one-half is considered.
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We use a binary-input additive white Gaussian noise channel. The number of total CRC parities
P = 16 and the list size L = 32 for all schemes. For J-tuple CRC schemes, J = 2, 3 are considered,
and p = (8, 8), (4, 4, 8) are used, respectively. All codes are optimized at Es/N0 = −1 dB by the density
evolution [28]. As the conventional schemes, the SCRC scheme and the J-tuple CRC scheme that has J
uniform message subblocks [22] are evaluated for comparison. The former is abbreviated as “SCRC”
and the latter as “U-JCRC”. The J-tuple CRC scheme is optimized in terms of the basic SCL decoding
or the ID-SCL decoding. They are all abbreviated as “O-JCRC”. For all the schemes, simulation is
performed under the basic and the ID-SCL decoding.

Table 1 shows the message vector k of O-JCRC and U-JCRC. In general, the optimal k, k∗,
differs depending on whether the ID-SCL decoding is applied or not. The threshold σTh for the
ID-SCL decoding also differs according to the block length and J because it is determined empirically
to minimize the performance loss, and maximize the complexity reduction for the SCRC scheme.
The ratio |Ag|/|A| is about 0.746 and 0.806 for N = 1024, 4096, respectively.

Table 1. The message vector k of the J-tuple CRC schemes for both serial and parallel sorters.
The threshold σTh for the ID-SCL decoding is 10−5 and 5× 10−8 for N = 1024, 4096, respectively.

2-CRC 3-CRC

U-2CRC O-2CRC O-2CRC with ID U-3CRC O-3CRC O-3CRC with ID

N = 1024 (256,256) (136,376) (107,405) (170,170,172) (18,118,376) (15,92,405)

N = 4096 (1024,1024) (548,1500) (485,1563) (682,682,684) (79,469,1500) (64,421,1563)

The comparison of the average temporary list sizes between the proposed and conventional
3-CRC schemes for N = 1024, L = 32 and P = 16 is shown in Figure 4. Figure 4a is under the basic
SCL decoding, and Figure 4b under the ID-SCL decoding. For SCRC in Figure 4a, the temporary list
size slowly increases up to L until the bit index reaches about 220. In the case of U-3CRC, the average
temporary list size decreases from L to 1+ 31/(24) = 2.94 two times due to use of two 4-bit CRC codes.
Its temporary list size, however, quickly increases to L again. For the proposed scheme, the temporary
list size of O-3CRC is also dropped two times, but the list size is maintained small for a burst of
consecutive frozen bits. In Figure 4b, the trend of the temporary list size is similar to that of Figure 4a.
However, for O-3CRC, the list size stays small longer due to instant decisions of highly reliable bits on
top of frozen operations.
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Figure 4. The average temporary list size of the proposed and conventional 3-CRC schemes for
N = 1024, L = 32 and P = 16; (a) with the basic SCL decoding; (b) with the ID-SCL decoding.
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Tables 2 and 3 show the complexity ratio of the J-tuple CRC schemes to the SCRC scheme
with the basic SCL and the ID-SCL decoding. The complexity ratios are estimated by the analysis in
Section 3, and the estimation is validated by simulation results. Here, O-2CRC and O-3CRC schemes
are optimized for serial and parallel sorters separately. As mentioned, the analysis is done under
the assumption that there is no early stopping of decoding that indicates a detected codeword error.
This assumption is consistent with a high SNR environment. Thus, the experimental complexity is
measured at the high SNR, e.g., ES/N0 = −1.0,−1.5 dB for N = 1024, 4096, respectively, by averaging
the number of addition-equivalent operations. The complexity ratio from the experiment is in the
parentheses of Tables 2 and 3. It is observed that the experimental values are very close to the estimated
ones. Note that the optimization of J-CRC scheme is performed based on the estimated complexity
and the estimation turned out to be pretty accurate. By the way, a large complexity reduction of the
ID-SCL decoding in Table 3 is obtained due to the skipping of sorting operations.

Table 2. The ratio (%) of complexity of the J-CRC scheme (basic SCL decoding) to the SCRC scheme
(basic SCL decoding) obtained by analysis and experiment. The experimental values are in parentheses
and obtained at ES/N0 = −1.0,−1.5 dB for N = 1024, 4096, respectively.

U-2CRC O-2CRC U-3CRC O-3CRC

Sorter Type Serial Parallel Serial Parallel Serial Parallel Serial Parallel

N = 1024 99.6 (99.5) 99.5 (99.4) 90.4 (90.6) 92.6 (92.6) 99.3 (99.3) 99.2 (99.1) 85.6 (85.2) 88.9 (88.4)

N = 4096 99.7 (99.5) 99.7 (99.8) 91.8 (91.7) 93.5 (93.3) 99.8 (99.7) 99.7 (99.7) 87.2 (87.3) 90.0 (89.9)

Table 3. The ratio (%) of complexity of the J-CRC scheme (ID-SCL decoding) to the SCRC scheme
(basic SCL decoding) obtained by analysis and experiment. The experimental values are in parentheses
and obtained at ES/N0 = −1.0,−1.5 dB for N = 1024, 4096, respectively.

U-2CRC O-2CRC U-3CRC O-3CRC

Sorter Type Serial Parallel Serial Parallel Serial Parallel Serial Parallel

N = 1024 62.7 (62.8) 53.3 (53.4) 57.3 (57.4) 49.2 (49.3) 62.9 (62.7) 53.5 (53.2) 52.0 (51.7) 45.1 (44.9)

N = 4096 65.6 (65.7) 55.6 (55.7) 60.7 (60.6) 51.8 (51.8) 67.3 (67.3) 56.9 (57.0) 56.2 (55.9) 48.2 (48.1)

Figures 5–7 give the performance and complexity comparison for the optimized 2-CRC and 3-CRC
schemes in a wide range of SNR. The complexity ratio includes the reduction from the early stopping
in the low SNR region, and it is calculated based on the complexity of SCRC (under the basic SCL
decoding). Only the parallel bitonic sorting is assumed in the scheme optimization and complexity
evaluation. The average complexity is obtained via simulation.

Figures 5 and 6 show the performance and complexity ratio of the proposed and conventional
2-CRC schemes. In Figures 5a and 6a, the negligible performance gap between the proposed and
conventional schemes is observed, and the error performance loss is within 0.05 dB. However,
Figures 5b and 6b display obvious visible difference in complexity. Especially, when the ID-SCL
decoding is applied to the SCRC scheme, about 40% of the complexity is reduced. For N = 1024,
the complexity reduction of O-2CRC under the basic SCL decoding is about 7% points compared to
U-2CRC at ES/N0 = −1.0 dB, but when the ID-SCL decoding is used, about 4% points are reduced
compared to “U-2CRC with ID”. In addition, at the low SNR, more complexity reduction is acquired
thanks to the early stopping. For N = 4096, the complexity reduction of O-2CRC under the basic SCL
decoding is about 22% points compared to U-2CRC at ES/N0 = −3.0 dB, and about 18% points are
reduced under the ID-SCL decoding compared to “U-2CRC with ID”.
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Figure 5. Comparison of the proposed and conventional 2-CRC schemes for N = 1024, R = 1/2,
L = 32 and P = 16; (a) block error rate; (b) complexity ratio.
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Figure 6. Comparison of the proposed and conventional 2-CRC schemes for N = 4096, R = 1/2,
L = 32 and P = 16; (a) block error rate; (b) complexity ratio.
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Figure 7. The complexity ratio of the proposed and conventional 3-CRC schemes for R = 1/2, L = 32
and P = 16; (a) N = 1024; (b) N = 4096.
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Figure 7 depicts the complexity ratio of the proposed and conventional 3-CRC schemes.
The performances for the 3-CRC schemes are not included in this paper because they are virtually the
same as for the 2-CRC scheme. For the 3-CRC scheme, the complexity reduction from the early stopping
is smaller than the 2-CRC scheme because the CRC of four bits located in the middle of vector u can not
eliminate most incorrect paths. Especially, if L = 32 and a CRC of four bits is used, then 32/(24) = 2
paths survive on average, which implies a lower probability of early decoding termination than the
2-CRC scheme. However, if the ID-SCL decoding is applied, there is more complexity reduction at the
high SNR. For N = 1024, about 12% points (about 9% points) are reduced compared to U-3CRC (U-3CRC
with ID), and about 11% points (about 9% points) for N = 4096 compared to U-3CRC (U-3CRC with ID).

Note that, for the proposed J-tuple CRC scheme, the complexity reduction can be increased, while
keeping the performance level by selecting Ag rigorously, not based on a threshold σTh. This paper
provides a simple and systematic algorithm that minimizes the complexity and performance loss by
adjusting the single parameter σTh.

5. Conclusions

This paper considers a low complexity SCL decoding for polar codes that utilizes multiple
CRC codes. In contrast with the other schemes using multiple CRC codes, we define the operational
complexity of the SCL decoding in consideration of the hardware implementation, and optimize the
CRC positions in terms of the complexity in combination with the ID-SCL decoding. Consequently,
the proposed decoding obtains not only the complexity reduction from CRC-based early stopping,
but also additional reduction from the reduced number of decoding paths accompanying negligible
performance loss. It is also observed that, according to J, there exists a tradeoff in complexity reduction
in the low and high SNR regions.
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