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1. Introduction

Mathematical modeling is a very important branch of applied mathematics. By using this
approach, we can convert a real world problem into a mathematical module and then analyze it in
a better manner. In the 1990s when researchers were faced with the blood or blood’s constituent
dynamical transport phenomena, they used classical theory to describe these processes [1–3]. After that,
many researchers conducted research in that direction to remove the complexity of this phenomenon [1–7].

Regarding research modules , one of the most important modules is Bergman’s minimal model [4–6].
In this model, a body is described as a compartment with a basal concentration of glucose and insulin.
Bergman’s minimal model has two variations. the first describes glucose kinetics, and the second
describes insulin kinetics. The two models have mostly been used to understand the kinetics during
IVGTT test (Glucose Tolerance Test) [7,8].

In applied mathematics, one of the most used concepts is the derivative. Derivatives show the
rate of change of a function. This is helpful to describe many real phenomena. After this research,
mathematicians faced some complex problems of the real world; to solve them, mathematicians
introduced the fractional derivative [9–13]. The concept of fractional calculus has great importance in
many branches and is also important for modeling real world problems [14–17].

For this reason, many researchers have engaged in a great amount of research work, conferences,
and paper publications. Various definitions of fractional derivatives have been given to date. Recently,
researchers have described a new fractional derivative operator named the Caputo–Fabrizio fractional
derivative [18–21]. In this paper, we use this operator to describe the Bergman’s minimal glucose-
insulin model and solve it by the iterative technique.
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2. The Caputo–Fabrizio Fractional Order Derivative

Singularity at the end point of the interval is the main problem that is faced with the definition
of the fractional order derivative. To avoid this problem, Caputo and Fabrizio recently proposed a
new fractional order derivative that does not have any singularity. The novel fractional derivative
given by Caputo and Fabrizio is more suitable to describe the rate of change in concentration of the
model because its kernel is non-local and non-singular. The definition is based on the convolution of a
first-order derivative and the exponential function, given in the following definition:

Definition 1. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]. Then, the new fractional order Caputo derivative is
defined as:

Dα
t (f(t)) =

M(α)

(1− α)

∫ t

a
f′ (x) e[−α t−x

1−α ] dx . (1)

Here M(α) denotes the normalization function such that M(0) = M(1) = 1; for detail, see [18]. If the
function does not belong to H1(a, b), then the derivative can be written as

Dα
t (f(t)) =

α M(α)

(1− α)

∫ t

a
(f (t)− f (x)) e[−α t−x

1−α ] dx . (2)

Remark 1. The authors state that if σ = 1−α
α ∈ [0, ∞), α = 1

1+σ ∈ [0, 1], then Equation (2) reduces to

Dα
t (f(t)) =

N(σ)

σ

∫ t

a
f′ (x) e[−

t−x
σ ] dx, N(0) = N(∞) = 1 (3)

and
lim
σ→0

1
σ

e[−
t−x
1−α ] = δ(x− t) . (4)

As we have defined a new derivative above, then there should be its anti-derivative; the integral of this new
fractional derivative is given by Losada and Nieto [19].

Definition 2. The fractional integral of order α (0 < α < 1) of the function f is defined below:

It
α ( f (t)) =

2 (1− α)

(2− α) M (α)
f (t) +

2α

(2− α) M (α)

∫ t

0
f (s) ds , t ≥ 0 . (5)

Remark 2. It is clear from Equation (5) that the fractional integral of order α (0 < α < 1) is an average of
function f and its integral of order 1. Hence we get the condition [19]:

2 (1− α)

(2− α) M (α)
+

2α

(2− α) M (α)
= 1 , (6)

the above term yields an explicit formula,

M (α) =
2

(2− α)
, 0 < α < 1 . (7)

Due to the above relation, Nieto and Losada [19] anticipated that the new Caputo derivative of
order 0 < α < 1 could be written as:

CF
0 Dα

t (f(t)) =
1

(1− α)

∫ t

a
f′ (x) e[−α t−x

1−α ] dx . (8)

Theorem 1. Here f (t) denotes the normalization function such as

f (s)(a) = 0, s = 1, 2, ..., n (9)
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then, we have
Dα

t (Dn
t ( f (t))) = Dn

t (Dα
t ( f (t))) (10)

For more detail see [18,19].

3. Bergman’s Minimal Model Fractional Module

The minimal model of the glucose insulin kinetics has been proposed to describe the time course
of these concentrations. We will use the standard formulation of the minimal model represented by
the following system of differential equations:

CF
0 Dα

t (G(t)) = − (p1 + X(t)) G(t) + p1Gb, 0 < α < 1
CF
0 Dβ

t (X(t)) = −p2X(t) + p3 (I(t)− Ib) , 0 < β < 1
CF
0 Dγ

t (I(t)) = p6 [G(t)− p5]
+ t− p4 (I(t)− Ib) , 0 < γ < 1

 (11)

subject to initial conditions,

G (0) = G0, X (0) = X0, I (0) = I0 (12)

The parameters for the minimal model (11) are given in Table 1.

Table 1. Parameter used in minimal model (11).

Parameter Unit Description

G(t) (mg/dL) Blood glucose concentration
X(t) (1/min) The effect of active insulin
I(t) (mU/L) Blood insulin concentration
Gb (mg/dL) Basal blood glucose concentration
Ib (mU/L) Basal blood insulin concentration
p1 (1/min) Insulin-independent glucose clearance rate
p2 (1/min) Active insulin clearance rate (upt. decrease)
p3 (L/(min2·mU)) Increase in uptake ability caused by insulin
p4 (1/min) Decay rate of blood insulin
p5 (mg/dL) The target glucose level
p6 (mUdL/L·mg·min) Pancreatic release rate after glucose bolus

This model can be used to describe the pancreas as the source of insulin. In a healthy individual,
a small amount of insulin is always created and cleared [4]. This helps to keep the basal concentration
Ib. The glucose-independent production and clearance of insulin is proportional to the blood insulin
concentration. If the insulin level is above basal concentration, clearance increases. On the other hand,
if the insulin level is below basal concentration, production increases. When the glucose level gets high,
the pancreas reacts by releasing more insulin at a given rate. To explain this mathematically, one has to
derive a function describing the reaction of the pancreas. This function was derived by Bergman et
al. and adjusted by Gaetano et al. [7,8] to become Pancreas(t) = [G(t)− p5]

+ t, where [G(t)− p5]
+ =

max ([G(t)− p5], 0).

4. Existence of the Coupled Solutions

By using the Fixed-Point theorem, we define the existence of the solution. First, transform
Equation (11) into an integral equation as follows:

G (t)− G (0) = CF
0 Iα

t [− (p1 + X(t)) G(t) + p1Gb] , (13)

X(t)− X (0) = CF
0 Iβ

t [−p2X(t) + p3 (I(t)− Ib)] , (14)

I(t)− I(0) = CF
0 Iβ

t

[
p6 [G(t)− p5]

+ t− p4 (I(t)− Ib)
]

, (15)
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on using the definition defined by Nieto, we get

G (t) = G (0) + 2(1−α)
(2−α)M(α) {− (p1 + X(t)) G(t) + p1Gb}

+ 2α
(2−α)M(α)

∫ t
0 [− (p1 + X(s)) G(s) + p1Gb] ds ,

(16)

and
X(t) = X (0) + 2(1−β)

(2−β)M(β) [−p2X(t) + p3 (I(t)− Ib)]

+ 2β
(2−β)M(β)

∫ t
0 [−p2X(s) + p3 (I(s)− Ib)] ds,

(17)

we also have
I(t) = I (0) + 2(1−γ)

(2−γ)M(γ)

[
p6 [G(t)− p5]

+ t− p4 (I(t)− Ib)
]

+ 2γ
(2−γ)M(γ)

∫ t
0

[
p6 [G(s)− p5]

+ t− p4 (I(s)− Ib)
]

ds .
(18)

Let us consider the following kernels:

K1(t, G) = − (p1 + X(t)) G(t) + p1Gb , (19)

K2(t, X) = −p2X(t) + p3 (I(t)− Ib) , (20)

K3(t, I) = p6 [G(t)− p5]
+ t− p4 (I(t)− Ib) . (21)

Theorem 2. Show that K1, K2, and K3 satisfy Lipschiz condition.

Proof. First we prove this condition for K1. Let G and G1 be two functions, then we have

‖K1(t, G)− K1(t, G1)‖ = ‖(− (p1 + X(t)) G (t))− (− (p1 + X(t)) G1 (t))‖ , (22)

on using the Cauchy’s inequality, we get

‖K1(t, G)− K1(t, G1)‖ ≤ ‖(p1 + X(t))‖ ‖(G (t)− G1 (t))‖ , (23)

or
‖K1(t, G)− K1(t, G1)‖ ≤ H ‖(G (t)− G1 (t))‖ , (24)

where
‖(p1 + X(t))‖ ≤ H . (25)

Additionally, for K2,

‖K2(t, X)− K2(t, X1)‖ =
‖(−p2X(t) + p3 (I (t)− Ib))− (−p2X1(t) + p3 (I (t)− Ib))‖ ,

(26)

on using the Cauchy’s inequality, we get

‖K2(t, X)− K2(t, X1)‖ ≤ ‖(p2)‖ ‖(X (t)− X1 (t))‖ , (27)

or
‖K2(t, X)− K2(t, X1)‖ ≤ H1 ‖(X (t)− X1 (t))‖ , (28)

where
‖(p2)‖ ≤ H1 . (29)



Entropy 2017, 19, 114 5 of 11

Similarly, for K3,

‖K3(t, I)− K3(t, I1)‖ =∥∥∥[p6 [G(t)− p5]
+ t− p4 (I (t)− Ib)

]
−
[

p6 [G(t)− p5]
+ t− p4 (I1 (t)− Ib)

]∥∥∥ ,
(30)

by Cauchy’s inequality

‖K3(t, I)− K3(t, I1)‖ ≤ ‖p4‖ ‖(I (t)− I1 (t))‖ , (31)

or
‖K3(t, I)− K3(t, I1)‖ ≤ H2 ‖(I (t)− I1 (t))‖ , (32)

where
‖p4‖ ≤ H2 . (33)

We consider the following recursive formula

Gn (t) =
2(1− α)

(2− α)M (α)
K1(t, Gn−1) +

2α

(2− α)M (α)

∫ t

0
K1(s, Gn−1) ds , (34)

and

Xn (t) =
2(1− β)

(2− β)M (β)
K2(t, Xn−1) +

2β

(2− β)M (β)

∫ t

0
K2(s, Xn−1) ds , (35)

as well as

In (t) =
2(1− γ)

(2− γ)M (γ)
K3(t, In−1) +

2γ

(2− γ)M (γ)

∫ t

0
K3(s, In−1) ds . (36)

Now the difference between the consecutive terms is

Un (t) = Gn (t)− Gn−1 (t) =
2(1−α)

(2−α)M(α)
K1(t, Gn−1)− 2(1−α)

(2−γ)M(α)
K1(t, Gn−2)

+ 2α
(2−γ)M(α)

∫ t
0 {K1(s, Gn−1)− K1(s, Gn−1)} ds ,

(37)

Vn (t) = Xn (t)− Xn−1 (t) =
2(1−β)

(2−β)M(β)
K2(t, Xn−1)− 2(1−β)

(2−β)M(β)
K2(t, Xn−1)

+ 2β
(2−β)M(β)

∫ t
0 {K2(s, Xn−1)− K2(s, Xn−1)} ds ,

(38)

and
Wn (t) = In (t)− In−1 (t) =

2(1−γ)
(2−γ)M(γ)

K3(t, In−1)− 2(1−γ)
(2−γ)M(γ)

K3(t, In−1)

+ 2γ
(2−γ)M(γ)

∫ t
0 {K3(s, In−1)− K3(s, In−2)} ds .

(39)

It is worth noting that
Gn (t) = ∑∞

i = 0 Ui (t) ,
Xn (t) = ∑∞

i = 0 Vi (t) ,
In (t) = ∑∞

i = 0 Wi (t) .

Now take norm on both sides of Equations (37)–(39), respectively

‖Un (t)‖ = ‖Gn (t)− Gn−1 (t)‖ =∥∥∥∥∥∥
2(1−α)

(2−α)M(α)
K1(t, Gn−1)− 2(1−α)

(2−α)M(α)
K1(t, Gn−2)

+ 2α
(2−α)M(α)

∫ t
0 {K1(s, Gn−1)− K1(s, Gn−2)} ds

∥∥∥∥∥∥ ,
(40)

and
‖Vn (t)‖ = ‖Xn (t)− Xn−1 (t)‖ =∥∥∥∥∥∥

2(1−α)
(2−β)M(β)

K2(t, Xn−1)− 2(1−β)
(2−β)M(β)

K2(t, Xn−2)

+ 2β
(2−β)M(β)

∫ t
0 {K2(s, Xn−1)− K2(s, Xn−2)} ds

∥∥∥∥∥∥ ,
(41)
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as well as
‖Wn (t)‖ = ‖In (t)− In−1 (t)‖ =∥∥∥∥∥∥

2(1−γ)
(2−γ)M(γ)

K3(t, In−1)− 2(1−γ)
(2−γ)M(γ)

K3(t, In−2)

+ 2γ
(2−γ)M(γ)

∫ t
0 {K3(s, In−1)− K3(s, In−2)} ds

∥∥∥∥∥∥ .
(42)

From Equations (40)–(42), by using triangular inequality

‖Un (t)‖ = ‖Gn (t)− Gn−1 (t)‖
≤ 2(1−α)

(2−α)M(α)
‖K1(t, Gn−1)− K1(t, Gn−2)‖

+ 2α
(2−α)M(α)

∥∥∥∫ t
0 {K1(s, Gn−1)− K1(s, Gn−2)}

∥∥∥ ds,

(43)

‖Vn (t)‖ = ‖Xn (t)− Xn−1 (t)‖
= 2(1−β)

(2−β)M(β)
‖K2(t, Xn−1)− K2(t, Xn−2)‖

+ 2β
(2−β)M(β)

∥∥∥∫ t
0 {K2(s, Xn−1)− K2(s, Xn−2)} ds

∥∥∥ ,

(44)

and
‖Wn (t)‖ = ‖In (t)− In−1 (t)‖

= 2(1−γ)
(2−γ)M(γ)

‖K3(t, In−1)− K3(t, In−2)‖
+ 2γ

(2−γ)M(γ)

∥∥∥∫ t
0 {K3(s, In−1)− K3(s, In−2)} ds

∥∥∥ .

(45)

Since the kernel satisfies the Lipchitz condition, we obtain:

‖Un (t)‖ = ‖Gn (t)− Gn−1 (t)‖
≤ 2(1−α)

(2−α)M(α)
H ‖Gn−1 − Gn−2‖

+ 2α
(2−α)M(α)

K
∫ t

0 ‖Gn−1 − Gn−2‖ ds,

‖Vn (t)‖ = ‖Xn (t)− Xn−1 (t)‖
≤ 2(1−β)

(2−β)M(β)
H1 ‖Xn−1 − Xn−2‖

+ 2β
(2−β)M(β)

J1
∫ t

0 ‖Xn−1 − Xn−2‖ ds,

‖Wn (t)‖ = ‖In (t)− In−1 (t)‖
≤ 2(1−γ)

(2−γ)M(γ)
H2 ‖In−1 − In−2‖

+ 2γ
(2−γ)M(γ)

J2
∫ t

0 ‖In−1 − In−2‖ ds.

Theorem 3. Show that the Bergman’s Minimal Model Fractional Module is the minimal model of the glucose
insulin kinetics having a solution.

Proof. As we have seen that the above Equations (43)–(45) are bounded, and we have proven that the
kernels satisfy Lipschiz condition, therefore following the results obtained in Equations (43)–(45) using
the recursive technique, we get the following relation

‖Un (t)‖ ≤ ‖G (0)‖+
{{

2(1− α)

(2− α)M (α)
H
}n

+

{
2α

(2− α)M (α)
Kt
}n}

, (46)

and

‖Vn (t)‖ ≤ ‖X (0)‖+
{{

2(1− β)

(2− β)M (β)
H1

}n
+

{
2β

(2− β)M (β)
J1t
}n}

, (47)
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as well as

‖Wn (t)‖ ≤ ‖I (0)‖+
{{

2(1− γ)

(2− γ)M (γ)
H2

}n
+

{
2γ

(2− γ)M (γ)
J2t
}n}

. (48)

Therefore, the above solutions exist and are continuous. Nonetheless, to show that the above is
a solution of Equation (11), we get

G (t) = Gn (t)− Pn (t)
X (t) = Xn (t)−Qn (t)
I (t) = In (t)− Rn (t)

 , (49)

where Pn, Qn and Rn are remainder terms of series solution. Thus,

G (t)− Gn (t) =
2(1−α)

(2−γ)M(α)
K1 (t, G− Pn (t))

+ 2α
(2−α)M(α)

∫ t
0 K1 (s, G− Pn (s)) ds,

(50)

and
X (t)− Xn (t) =

2(1−β)
(2−β)M(β)

K2 (t, X−Qn (t))

+ 2β
(2−β)M(β)

∫ t
0 K2 (s, X−Qn (s)) ds,

(51)

as well as
I (t)− In (t) =

2(1−γ)
(2−γ)M(γ)

K3 (t, I − Rn (t))

+ 2γ
(2−γ)M(γ)

∫ t
0 K3 (s, I − Rn (s)) ds .

(52)

It follows from the above that:

G (t)− 2(1−α)
(2−α)M(α)

K1(t, G)− G (0)− 2α
(2−α)M(α)

∫ t
0 K1(s, G) ds

= Pn (t) +
2(1−α)

(2−α)M(α)
K1(t, G) + 2α

(2−α)M(α)

∫ t
0 {K1 (s, G− Pn (t))− K1 (s, G)} ds.

(53)

Now, applying the norm on both sides and using the Lipchitz condition, we get∥∥∥G (t)− 2(1−α)
(2−α)M(α)

K1(t, G)− G (0)− 2α
(2−α)M(α)

∫ t
0 K1(s, G) ds

∥∥∥
≤ ‖Pn (t)‖+

{
2(1−α)

(2−α)M(α)
H + 2α

(2−α)M(α)
Kt
}
‖Pn (t)‖ ,

(54)

similarly, we get ∥∥∥X (t)− 2(1−β)
(2−β)M(β)

K2(t, X)− X (0)− 2β
(2−β)M(β)

∫ t
0 K2(s, X) ds

∥∥∥
≤ ‖Qn (t)‖+

{
2(1−β)

(2−β)M(β)
H1 +

2β
(2−β)M(β)

J1t
}
‖Qn (t)‖ ,

(55)

and ∥∥∥I (t)− 2(1−γ)
(2−γ)M(γ)

K3(t, I)− I (0)− 2γ
(2−γ)M(γ)

∫ t
0 K3(s, I) ds

∥∥∥
≤ ‖Rn (t)‖+

{
2(1−γ)

(2−γ)M(γ)
H2 +

2γ
(2−γ)M(γ)

K2t
}
‖Rn (t)‖ .

(56)

On taking the limit n→ ∞ of Equations (54)–(56), we get

G (t) =
2(1− α)

(2− α)M (α)
K1(t, G) + G (0) +

2α

(2− α)M (α)

∫ t

0
K1(s, G) ds, (57)

X (t) =
2(1− β)

(2− β)M (β)
K2(t, X) + X (0) +

2β

(2− β)M (β)

∫ t

0
K2(s, X) ds, (58)

and

I (t) =
2(1− γ)

(2− γ)M (γ)
K3(t, I) + I (0) +

2γ

(2− γ)M (γ)

∫ t

0
K3(s, I) ds . (59)
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Equations (57)–(59) is the solution of the system (11); therefore, we can say that a solution
exists.

Uniqueness of the Solutions

In this part, we want to show that solutions presented in the above section are unique.
To prove this, we can another solutions for system (11), say G (t) , X (t) , and I (t); then:

G (t)− G1 (t) =
2(1−α)

(2−α)M(α)
{K1(t, G)− K1(t, G1)}

+ 2α
(2−α)M(α)

∫ t
0 {K1(s, G)− K1(s, G1)} ds,

(60)

apply the norm both sides of Equation (60),

‖G (t)− G1 (t)‖ ≤ 2(1−α)
(2−α)M(α)

{‖K1(t, G)− K1(t, G1)‖}
+ 2α

(2−α)M(α)

∫ t
0 {‖K1(s, G)− K1(s, G1)‖} ds.

(61)

On using the Lipchitz condition, having the fact in mind that the solution is bounded, we get

‖G (t)− G1 (t)‖ <
2(1− α)

(2− α)M (α)
HD +

{
2α

(2− α)M (α)
(J1Dt)

}n
(62)

this is true for any n; hence,
G (t) = G1 (t)

Similarly, we get
X (t) = X1 (t)

and
I (t) = I1 (t) .

Hence, it shows the uniqueness of the solution of system (11).

5. Application of Caputo–Fabrizio Derivative to Bergman’s Minimal Model

Watugala introduced the Sumudu transform in early 1990s [20]. The Sumudu transform is defined
over the set of functions:

A = { f (t)
∣∣∣∃M, τ1, τ2 > 0, | f (t)| < Me| t |τj , i f t ∈ (−1)j × [0, ∞)} , (63)

the Sumudu transform is defined by

G̃(u) = ST[ f (t)] =
∫ ∞

0
f (ut)e−tdt, u ∈ (−τ1, τ2) (64)

for detail, see [15,16,21].

Theorem 4. Let f (t) be a function for which the Caputo–Fabrizio exists; then, the Sumudu transform of the
Caputo–Frabrizio fractional derivative of f (t) is given as:

ST
(

CF
0 Dα

t

)
( f (t)) = M(α)

[
ST ( f (t))− f (0)

1− α + αu

]
. (65)



Entropy 2017, 19, 114 9 of 11

Solution of Fractional Module by Sumudu Transform

Since the Bergman’s Minimal Model Fractional Module has three equations, it may be challenging
to get the exact solution. To obtain the best solution, we will use an iterative technique with the help of
the Sumudu Transform.

Applying the Sumudu transform on both sides of (11), we get

M(α)

[
ST (G (t))− G (0)

1− α + αu

]
= ST {− (p1 + X(t)) G(t) + p1Gb} , (66)

or

ST (G (t)) = G (0) +
(1− α + αu)

M(α)
ST {− (p1 + X(t)) G(t) + p1Gb} . (67)

Applying the inverse Sumudu transform on both sides of (67), we get

(G (t)) = G (0) + ST−1
{
[1− α + αu]

M(α)
ST {− (p1 + X(t)) G(t) + p1Gb}

}
, (68)

and in the same manner

(X (t)) = X (0) + ST−1
{
(1− β + βu)

M(β)
ST {−p2X(t) + p3 (I(t)− Ib)}

}
, (69)

and

(I (t)) = I (0) + ST−1
{
(1− γ + γu)

M(γ)
ST
{

p6 [G(t)− p5]
+ t− p4 (I(t)− Ib)

}}
. (70)

We next obtain the following recursive formula from (68)–(70):

Gn+1 (t) = Gn (0) + ST−1
{
[1− α + αu]

M(α)
ST {− (p1 + Xn(t)) Gn(t) + p1Gb}

}
, (71)

Xn+1 (t) = Xn (0) + ST−1
{
(1− α + αu)

M(α)
ST {−p2Xn(t) + p3 (In(t)− Ib)}

}
, (72)

and

In+1 (t) = In (0) + ST−1
{
(1− α + αu)

M(α)
ST
{

p6 [Gn(t)− p5]
+ t− p4 (In(t)− Ib)

}}
. (73)

The solution is thus provided as:

G(t) = lim
n→∞

Gn(t) (74)

X(t) = lim
n→∞

Xn(t) (75)

I(t) = lim
n→∞

In(t) (76)

we get the required solution.

6. Numerical Solution

As a particular instance to be treated, we assume the base level blood glucose concentration
to be Gb = 92 mg/dL, while the base level blood concentration of insulin to be Ib = 7.3 mU/L.
The glucose clearance rate independent of insulin is p1 = 0.03082 min−1, the rate of clearance
of active insulin (decrease of uptake) is p2 = 0.02093 min−1, the increase in uptake ability caused
by insulin is p3 = 1.062× 10−5 L/(min2·mU), the decay rate of blood insulin is p4 = 0.3 min−1,
the target glucose level is p5 = 89.5 mg/dL, and the rate of pancreatic release after glucose bolus is
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p6 = 0.3349× 10−2 mUdL/L·mg·min. Substituting the above values in (74)–(76) with G0 = 287 mg/DL,
X0 = 0 mg/DL, and I0 = 403.4 mg/DL, the numerical solution is described by Figure 1.

(a) (b)

(c)

Figure 1. (a) X(t) vs. t (Red line—α = β = γ = 0.5; Blue Line—α = β = γ = 0.9); (b) I(t) vs. t
(Red line—α = β = γ = 0.5; Blue Line—α = β = γ = 0.9); (c) G(t) vs. t (Red‘Line—α = β = γ = 0.5;
Blue Line—α = β = γ = 0.9).

7. Conclusions

This paper is an attempt to describe the existence and uniqueness of the Bergman Minimal Model
which is extended by Caputo–Fabrizio fractional derivative in the context of glucose and insulin levels
in blood. We obtain the approximate solution of the Model and a numerical solution of the system
which shows that effect of time on the concentrations G(t), X(t), and I(t).
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