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Abstract: With the increasing number of bug reports coming into the open bug repository, it is
impossible to triage bug reports manually by software managers. This paper proposes a novel
approach called En-LDA (Entropy optimized Latent Dirichlet Allocation (LDA)) for automatic bug
report assignment. Specifically, we propose entropy to optimize the number of topics of the LDA
model and further use the entropy optimized LDA to capture the expertise and interest of developers
in bug resolution. A developer’s interest in a topic is modeled by the number of the developer’s
comments on bug reports of the topic divided by the number of all the developer’s comments.
A developer’s expertise in a topic is modeled by the number of the developer’s comments on bug
reports of the topic divided by the number of all developers’ comments on the topic. Given a new
bug report, En-LDA recommends a ranked list of developers who are potentially adequate to resolve
the new bug. Experiments on Eclipse JDT and Mozilla Firefox projects show that En-LDA can achieve
high recall up to 84% and 58%, and precision up to 28% and 41%, respectively, which indicates
promising aspects of the proposed approach.

Keywords: automatic bug report assignment; bug resolution; entropy measure; Latent
Dirichlet Allocation

1. Introduction

One of the most compelling aspects of OSS (Open Source Software) is that they are developed
predominantly based on voluntary contribution from geographically-distributed software developers
without rigorously-controlled planning and management as that found in proprietary software
development [1]. To succeed in development, OSS developers need to collaborate with each other
in the entire life cycle of OSS. Community-intensive development, which is explained as collective
effort and group influences on software development, is becoming an important characteristic of OSS
development. Members of an OSS community share a well-developed and repeatedly emphasized set
of values and ideology with a sense of obligation, and they keep an intrinsic connection with other
members in the community [2].

Open bug repository, which is often called an issue tracking system, is widely adopted for
software projects to support software development. Open source software projects adopt open bug
repositories to support its development and maintenance in managing bugs. With open bug repository,
geographically-distributed software developers and users report bugs of the software by submitting
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bug reports to the repository. In this way, open source software is iteratively developed and the quality
of the produced software can be improved [3].

The large number of new bug reports submitted to open bug repository increase the burden of
bug triagers. For instance, about 200 bugs are filed to the Eclipse bug repository per day near its release
dates [4], and, for the Debian project, it is about 150 [5]. To make things worse, bug reports are always
triaged manually, which is time consuming and error prone. About two person-hours per day have to
be spent on this activity to triage Eclipse bugs [6]. Nearly 25% of Eclipse bug reports are reassigned [7]
as inaccurate bug report assignment [8].

Although a bug was fixed by only one developer as recorded in the open bug repository,
bug resolution is essentially a social process [9,10]. The collaborative action of developers invested in
fixing the bug cannot be neglected. The bug tracking system is a platform facilitating bug resolution
through developersąŕ coordination [8]. Taking the bug report #18994 (https://bugs.eclipse.org/bugs/
show_bug.cgi?id=18994) from the Eclipse JDT project as an example, “Eric Gamma” submitted this
bug report initially and 27 comments on how to fix the bug were posted by five persons. In order to
build complicated software systems successfully, developers need to collaborate with each other to
resolve bugs [11].

This paper proposes an entropy optimized topic model based recommendation approach,
called En-LDA (Entropy optimized Latent Dirichlet Allocation) to recommend developers for bug
resolution in collaborative behavior. This work is motivated and inspired by two observations
obtained from Eclipse JDT and Mozilla Firefox projects. The first observation is that bug resolution
is a collaborative activity among developers despite the fact that the bug was recorded as fixed by
merely one developer. The contribution of those developers who posted comments following the
bug report cannot be neglected. The second observation is that developers always participate in and
contribute to bug resolution in the formation of technical clusters. That is to say, a software system
usually involves multiple technical aspects and each of them is implemented by the developers in one
or more artifacts [12]. Developers tend to participate in resolving different bugs of one or some of the
technical aspects based on their own technical concerns.

Inspired by the above observation, En-LDA builds topic models of developers using their historical
bug resolution records. Specifically, for each bug report, its natural language contents are extracted and
preprocessed to train topic models. To decide the optimal number of topics inherent in the historical
bug reports, we adopt entropy to measure the purity of the output of the LDA model. The basic
idea is that we regard each bug report as a bag of words and measure entropy of each word given
a bug report by using topics as the probabilistic labels of the word. Then, the entropy of words in
all bug reports are aggregated to gauge the overall entropy of words given the distribution of words
with respect to topics and the distribution of topics with respect to bug reports. With the entropy
optimized LDA model, developers who actually participated in the bug resolution are extracted and
mapped to the topics. Then, the association, which is a bilateral relationship between developers and
trained topics, is established. When a new bug is coming into the open bug repository, En-LDA ranks
the developers based on their interest and expertise with respect to the bug report. We evaluate the
proposed approach with precision, recall and F1 measure.

The remainder of this paper is organized as follows. Section 2 presents the background knowledge
to understand the proposed approach. Section 3 proposes En-LDA with its details. Section 4 describes
the experiments on Eclipse JDT and Mozilla Firefox bug data and explains the experimental results.
Section 5 concludes this paper.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=18994
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2. Background

2.1. Entropy

Entropy [13] is defined as the amount of information in a transmitted message in information
theory (see Equation (1)), where pi is the probability of the ith event in the transmitted message with m
possible events:

Entropy = −
m

∑
i=1

pilog(pi). (1)

For instance, if the message is a sequence as {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, then the entropy of the message
should be − 10

10 log2
10
10 , that is, 0. However, if the message is a sequence as {1, 0, 0, 1, 0, 1, 1, 1, 1, 1},

then the entropy of the message should be − 3
10 log2

3
10 −

7
10 log2

7
10 , that is, 0.88. The larger the entropy

value is, the more uncertainty contained in the message. This paper introduces entropy to measure
the purity of information of the output of the LDA model. By setting a different number of topics for
LDA, we measure the entropy of the output. The smaller the entropy is, the better is LDA to model the
historical bug reports.

2.2. Open Bug Repository

When a developer or user encountered a bug when using open source software, he or she
usually files the bug to the open bug repository in form of a bug report. Many open bug repositories
(e.g., Bugzilla, JIRA, GNATS and Trac) have been adopted in open source projects. We explore the
Eclipse JDT and Mozilla Firefox open bug repositories, which use Bugzilla for bug management.
Since other repositories are similar to Bugzilla, we believe our approach can be generalized to them
with minor changes.

2.2.1. Bug Report

In Bugzilla, bugs are stored in the form of bug reports, which consist of pre-defined fields,
text description, attachments and dependencies. Pre-defined fields record basic attributes of
a bug. Some attributes such as creation date and the reporter who files this bug are unchangeable.
Other attributes may be changed over bug lifetime, such as product, component, priority and severity.
Some attributes may be frequently modified by authorized persons, such as the assignee, the current
state and the final resolution. In addition, for each bug, a list of persons who may be interested in it
can be extracted from the cc (carbon copy) list.

The text description of a bug report refers to the natural language contents, including the title of
this bug report, a full description of this bug, and comments posted by some developers. These textual
contents provide us with abundant information through which we can gain a deep insight into the
details of a bug. In this paper, we extract only the title and the full description contents of bugs to
build topic models.

Besides the pre-defined categorical fields and textual contents, the bug reporters and developers
may also upload attachments as non-textual information, such as a screenshot of erroneous behavior [6]
or execution traces.

2.2.2. Bug Life-Cycle

During their lifetime, bugs go through a series of states. Figure 1 depicts the life-cycle of bugs in
Bugzilla (see also: http://www.bugzilla.org/docs/tip/html/lifecycle.html).

When a new bug is filed, a bug report whose initial state is set to NEW is submitted to the
repository. Once it has been triaged and assigned to a developer, its state is modified to ASSIGNED.
If this bug has been closed, its state is set to RESOLVED, VERIFIED or CLOSED. In the meantime,
the resolution to this bug is marked. If the resolution results in changing code base, this bug is marked
as FIXED. When a bug is determined as duplicated to other bugs, it is set to DUPLICATE. If a bug will

http://www.bugzilla.org/docs/tip/html/lifecycle.html)
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not be fixed, or it is not an actual bug, it will be set to WONTFIX or INVALID, respectively. If a bug was
once resolved but has been reopened, it is marked as REOPENED. In our study, we only consider the
bugs whose final resolution is FIXED and final state is RESOLVED, VERIFIED or CLOSED. The state
sequence tracking the activity of bugs can be extracted from bug repositories, such as the time a bug is
filed, the time it is assigned to a developer, and the time it is resolved.
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3. The Proposed Approach

3.1. LDA Topic Model

Automatic topic extraction from documents is extensively studied in text mining and machine
learning area [14]. The basic idea is to discover the latent structure of documents, which is inspired
by words’ co-occurrence in the corpus. For instance, LDA (Latent Dirichlet Allocation) [15], which
is used in this study, models the documents in the same corpus as generated by some or all of the
given K topics, while the words in each document come from the word distribution given by those
topics. Using the discovered structure, documents can be linked through the topics to which they are
assigned [16].

Topic models have several advantages in discovering structures from unstructured data. First, no
training data are required for building topic models. Given unstructured data that we want to explore,
it is very efficient to compute the LDA distributions of the data by using Gibbs sampling [17]. That is,
we only need to properly set some parameters such as the number of topics, the number of iterations,
and two hyper parameters, α and β, respectively. This makes topic models easy to use in practice.
Second, topic models can operate on the raw, unstructured data without expensive data acquisition or

Figure 1. The life-cycle of a bug in Bugzilla (see also http://www.bugzilla.org/docs/tip/html/lifecycle.html).

3. The Proposed Approach

3.1. LDA Topic Model

Automatic topic extraction from documents is extensively studied in text mining and machine
learning area [14]. The basic idea is to discover the latent structure of documents, which is inspired
by words’ co-occurrence in the corpus. For instance, LDA (Latent Dirichlet Allocation) [15], which is
used in this study, models the documents in the same corpus as generated by some or all of the
given K topics, while the words in each document come from the word distribution given by those
topics. Using the discovered structure, documents can be linked through the topics to which they are
assigned [16].

Topic models have several advantages in discovering structures from unstructured data. First,
no training data are required for building topic models. Given unstructured data that we want to
explore, it is very efficient to compute the LDA distributions of the data by using Gibbs sampling [17].
That is, we only need to properly set some parameters such as the number of topics, the number of
iterations, and two hyper parameters, α and β, respectively. This makes topic models easy to use in
practice. Second, topic models can operate on the raw, unstructured data without expensive data
acquisition or preparation cost [18]. Third, topic models have been proven to be fast and scalable to
large scale of data [19].

http:// www.bugzilla.org/docs/tip/html/lifecycle.html)
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Because of these advantages, more and more fields such as social sciences [20] and computer
vision [21] have benefited from topic models. In software engineering, the topic model has
been successfully applied to solve many problems such as trend analysis in commit logs [22],
bug localization [23], and code evolution [16,24,25].

In our study, the natural language contents of bug reports are the unstructured data we operated
to discover topics, with which we used to group bugs together. Furthermore, we also group developers
together based on their historical bug resolving activities on the grouped bugs.

3.2. Entropy Optimized LDA Model

One difficulty in using LDA for automatic bug report assignment is how to decide the optimal
number of topics K of the historical bug reports to measure the expertise and interest of developers
appropriately. In the prior work [15], the number of topics K is decided by heuristics or by trial and
error. However, the performance of bug report assignment using the LDA approach can be further
improved by optimizing the parameter K.

This paper proposes an entropy based measure to optimize the number of topics inherent in
the historical bug reports as described in Equation (2). The basic idea is that we regard each bug
report as a word bag and measure the entropy of each word given a bug report dm using topics as the
probabilistic labels of the word. Then, the entropy of words in all bug reports are aggregated to gauge
the overall entropy of words given the distribution of words with respect to topics and the distribution
of topics with respect to bug reports:

Entropy(K) =
M

∑
m=1

K

∑
k=1

p(zm = k|d = dm)

(
Nm

∑
n=1
−pt,k,m ln pt,k,m

)
. (2)

Here, M is the number of historical bug reports as the input for the LDA model. K is the number
of topics inherent in the LDA model. Nm is the number of words in the bug report dm. zm is the topic
for the bug report dm, and zn is the topic for the word wn. Within a bug report, we normalize the sum
of probabilities of word wn = t with respect to the topic zn = k being equal to one. That is to say,
we regulate pt,k,m = p(wn=t|zn=k)

∑Vm
n=1 p(wn=t|zn=k),

where Vm is the size of word vocabulary in the bug report dm.

In other words, pt,k,m denotes the probability that the word wn is t under the kth topic.
We can see from Equation (2) that when the number K is small, for instance, K is set as 1 in the

extreme case, the probability p(zm = k|d = dm) would be one since all of the bug reports have only
one topic, and the probability p(wn = t|zn = k) would be a very small number since all the words
are under the same topic at this time. In this case, the overall entropy of the output of the LDA
model would be very large. However, when the number of topics K becomes large, the probability
p(zm = k|d = dm) would be small since the number of topics zm inherent in the bug report dm would
be large, and the probability p(wn = t|zn = k) would be a very large number for a very small number
of words; meanwhile, for most words, this probability would be very small since all the words would
be distributed under different topics. In this case, the entropy of the output of the LDA model would
also be very large. Thus, by using the entropy optimized LDA model, we first compute a series of
entropy values with different parameters K and then select the optimal K with the minimum entropy
measured by Equation (1). Based on the above analysis, it is necessary to tune an optimal number of
topics K inherent in the historical bug reports to minimize the entropy of the output of LDA model as
described in Equation (2).

3.3. Associating Developers and Topics

The association between developers and topics are based on the association between developers
and bug reports. Similar to Anvik et al. [6], prior to associating developers and topics, we eliminated
the developers who were not active or no longer available to participate in bug resolving activities.
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The association between developers and bug reports is computed with a probabilistic model
that calculates the probability of a developer being interesting and expertise in resolving the bugs.
Given a new valid bug, the probability of a developer being a candidate to resolve can be expressed
as the conditional probability P(dev|d = dm). It can be calculated by summing over probabilities
that can be calculated by multiplying the probability of this bug belonging to a particular topic
(i.e., P(zm = k|d = dm)) with the probability of this developer being a candidate for this topic
(i.e., P(dev|zdev = k)):

P(dev|d = dm) =
K

∑
k=1

P(zm = k|d = dm)× P(dev|zdev = k). (3)

In Equation (3), P(dev|zdev = k), which is the probability of a developer being a candidate for
resolving new bugs whose topic is k, is calculated in Equation (4). Given a topic, the probability of
a developer being a candidate for the topic comprises two parts. The first part is the probability of the
developer being active to participate in resolving bugs of this topic, i.e., the developer’s interest in
the bug report, denoted as P(dev→ topic k). The second part is the probability of the developer being
expertise in resolving bugs of this topic, denoted as P(topic k→ dev). We set a weight denoted by θ to
balance the interest and expertise a developer in the bug report:

P(dev|dm = k) = θ × P(dev→ topic k)+
(1− θ)× P(topic k→ dev).

(4)

Here, P(dev→ topic k) is calculated as Equation (5):

P(dev→ topic k) =
Ndev,topic k

Ndev
. (5)

Ndev,topic k is the number of historical bugs that belong to the topic k and are resolved by this
developer. Note that Ndev,topic k is not an integer because one bug report may have more than one
topic thus the proportion of each topic is a decimal fraction. Ndev is the number of historical bugs that
are resolved by this developer. The probability of a developer having expertise in a given topic is
calculated as Equation (6). Ntopic k is the number of historical bugs that belong to the particular topic k.
Note that here Ntopic k is also not an integer:

P(topic k→ dev) =
Ndev,topic k

Ntopic k
. (6)

3.4. Recommendation

When a bug report is filed to the bug repository, a list of developers who are highly potential to
participate in and contribute to resolving it are recommended according to the values calculated as
Equation (3).

The values of the probabilities of a new bug belonging to all topics are calculated with the built
topic models. Then, for each developer, the probability of he or she being a candidate to resolve the
bug (i.e., P(dev|d = dm)) is calculated. Next, according to the calculated probabilities of all developers,
En-LDA ranks the developers in descending order. Finally, the Q developers with top probabilities are
selected as the recommended developers.

4. Experiments

4.1. The Data

In this research, the historical bug reports are extract from the Eclipse JDT open bug repository
(see: http://bugs.eclipse.org/bugs/) and Mozilla Firefox open bug repository (see: http://bugzilla.

http://bugs.eclipse.org/bugs/
http://bugzilla.mozilla.org/
http://bugzilla.mozilla.org/
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mozilla.org/). We follow Guo et al. [26] to use 2.5 years as the time interval to collect bug reports in
order to reduce possible changes in status and fields (such as products and components investigated
in the paper) in the future. Thus, we extract the bug reports whose final resolution was FIXED and
final state was the one of CLOSED, VERIFIED and RESOLVED. For the Eclipse JDT project, 2698 bug
reports (from 10 October 2001 to 31 January 2009) are used in the empirical study. For the Mozilla
Firefox project, 3005 bug reports (from 1 September 2008 to 31 July 2009) are used in the experiments.

We eliminate developers who participated in few bug resolution and retain those developers
who contribute 90% bug resolution in the OSS projects. As a result, 31 developers participate 90%
bug resolution in total in the Eclipse JDT project and in the Mozilla Firefox project, and 96 developers
participate 90% bug resolution in total. Consequently, the numbers of developers used in Eclipse JDT
and Mozilla Firefox projects decrease from 74 and 282 to 31 and 96, respectively.

Meanwhile, the bug reports, whose sizes of participants after the elimination decrease to 0,
were removed as well. For the Eclipse JDT project, the size of training set (from 10 October 2001 to
31 January 2009) and testing set (from 1 February 2009 to 16 June 2010) decrease to 2448 and 110.
For the Mozilla Firefox project, the size of the training set (from 1 September 2008 to 31 July 2009)
decreases from 3005 to 3003 and the testing set (from 1 August 2009 to 31 August 2009) remain the same.

4.2. Experiments Setup

The preprocessing including tokenization, stop word elimination and stemming are conducted on
the natural language contents. We obtain the stop-words from the USPTO (United States Patent and
Trademark Office) patent full-text and image database (online: http://patft.uspto.gov/netahtml/PTO/
help/stopword.htm). It includes about 100 usual words. The Porter stemming algorithm is used for
English stemming processing which can be downloaded freely (online: http://tartarus.org/~martin/
PorterStemmer/). Meanwhile, the participants of each bug report were extracted as well. The numbers
of participants in resolving these bugs were 74 and 282 for Eclipse JDT and Mozilla Firefox projects,
respectively. Given the activity logs of bug reports, we are able to find out the contributors of bug
resolving. Then, affiliations between bug reports and participants are built as a graph.

Once the natural language contents of bug reports were extracted, En-LDA builds topic models
for these bug reports. In order to train topic models with LDA, we the use Stanford Topic Modeling
Toolbox (TMT, version 0.4.0) (see: http://nlp.stanford.edu/software/tmt/) to build topic models with
setting the number of topics K, the number of iterations R = 100, and two hyper parameters α = 50/K
and β = 0.01. The higher the α value, the higher the probability that a document (i.e., a bug report) will
be associated with multiple topics. The higher the β value, the higher the probability that a topic will
be associated with multiple words. Then, according to the bug-topic distributions, En-LDA maps each
bug with multiple topics inherent within it with their probabilities.

For the hyper parameters and the number of iterations when using Gibbs Sampling for LDA
model construction, we actually tune these parameters using exhaustive search for α from 30/K to
100/K with 10/K as the interval, and β from 0.01 to 0.1 with 0.01 as the interval and the number
of iterations from 50 to 500 with 50 as the interval. With the hyper parameter composition α as as
50/K, β as 0.01 and the number of iterations as 100, the proposed En-LDA approach has produced the
best performance.

Figure 2 shows the entropy values computed using Equation (2) when we set different numbers
of topics from 5 to 30 with increment as 1 for Eclipse JDT and Mozilla Firefox projects. We can see that
when we set K as 20 for the Eclispe JDT project and as 23 for the Mozilla Firefox project, the entropy
values become its minima. Moreover, the overall entropy values of the Eclipse JDT project are larger
than that of the Mozilla Firefox project. We explain that the number of bug reports in the Eclipse JDT
project are larger than in the Mozilla Firefox project. For this outcome, in the following experiments,
we set the optimal K as for the Eclipse JDT project and the optimal K as 23 for the Mozilla Firefox
project. For the outcome of the LDA model, we also tune a different number of K and find that the
optimal K decided by entropy is the best choice.

http://bugzilla.mozilla.org/
http://bugzilla.mozilla.org/
http:// patft.uspto.gov/netahtml/PTO/help/stopword.htm
http:// patft.uspto.gov/netahtml/PTO/help/stopword.htm
http://tartarus.org/~martin/PorterStemmer/
http://tartarus.org/~martin/PorterStemmer/
http://nlp.stanford.edu/software/tmt/
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Figure 2. Entropy values in setting a different number of topics for Eclipse JDT and Mozilla Firefox projects.

Tables 1 and 2 show the top 10 words assigned to five of 20 topics for the Eclipse JDT and Mozilla
Firefox projects, respectively. In LDA, topics are collections of words that co-occur frequently in the
corpus. Table 1 shows four topics extracted from the Eclipse JDT bug report natural language contents.
Each column entry presents a topic and its top 10 words that co-occur most frequently. We can see that
topic 1 is roughly about the concern of UI (User Interface) interactions. Topic 2 is roughly about project
management. Topic 3 is roughly about debugging the dialog component. Topic 4 is roughly about errors
on methods.

Table 1. Top 10 Words Assigned to 4 of 20 Topics in Eclipse JDT.

Rank Topic-1 Topic-2 Topic-3 Topic-4

1 menu source launch error
2 action package debug compiler
3 selection folder run interface
4 view jar context annotation
5 context files default quick
6 show create config warning
7 editor src resource method
8 clean explorer dialog override
9 open path remote problem

10 add copy tab missing

Table 2 shows four of the 23 topics extracted from the Mozilla Firefox bug report natural language
contents. Each column entry presents a topic and its top 10 words that co-occur most frequently.
We can see that topic 1 is roughly about the concern of the method body. Topic 2 is roughly about error
trace. Topic 3 is roughly about multimedia. Topic 4 is roughly about performance enhancement.

Figure 2. Entropy values in setting a different number of topics for Eclipse JDT and Mozilla
Firefox projects.

Tables 1 and 2 show the top 10 words assigned to five of 20 topics for the Eclipse JDT and Mozilla
Firefox projects, respectively. In LDA, topics are collections of words that co-occur frequently in the
corpus. Table 1 shows four topics extracted from the Eclipse JDT bug report natural language contents.
Each column entry presents a topic and its top 10 words that co-occur most frequently. We can see that
topic 1 is roughly about the concern of UI (User Interface) interactions. Topic 2 is roughly about project
management. Topic 3 is roughly about debugging the dialog component. Topic 4 is roughly about errors
on methods.

Table 1. Top 10 Words Assigned to 4 of 20 Topics in Eclipse JDT.

Rank Topic-1 Topic-2 Topic-3 Topic-4

1 menu source launch error
2 action package debug compiler
3 selection folder run interface
4 view jar context annotation
5 context files default quick
6 show create config warning
7 editor src resource method
8 clean explorer dialog override
9 open path remote problem
10 add copy tab missing

Table 2 shows four of the 23 topics extracted from the Mozilla Firefox bug report natural language
contents. Each column entry presents a topic and its top 10 words that co-occur most frequently.
We can see that topic 1 is roughly about the concern of the method body. Topic 2 is roughly about error
trace. Topic 3 is roughly about multimedia. Topic 4 is roughly about performance enhancement.



Entropy 2017, 19, 173 9 of 13

Table 2. Top 10 Words Assigned to 4 of 23 Topics in the Mozilla Firefox project.

Rank Topic-1 Topic-2 Topic-3 Topic-4

1 return error image cache
2 const fail video parser
3 null log background time
4 string unit color leak
5 static dom border document
6 class fix media content
7 type check frame html
8 check pass element event
9 fix content box cycle
10 method reply canvas thread

4.3. Evaluation

We used the historical bug resolution records in the open bug repository to calculate the precision
and recall of En-LDA. For each historical bug report, En-LDA will recommend a number of developers
to participate in resolving the bug. Notice that instead of finding out the actual bug fixers, we aim at
recommending the developers who have a high potential to participate in and contribute to resolving
newly filed bugs. Therefore, we evaluated our approach with the average value of recall other than
that of precision. The values of precision and recall are calculated as Equations (7) and (8):

Precision =
|{dev1, dev2, ..., devK}

⋂
{Ground Truth}|

|{dev1, dev2, ..., devK}|
, (7)

Recall =
|{dev1, dev2, ..., devK}

⋂
{Ground Truth}|

|{Ground Truth}| . (8)

Here, {dev1, dev2, ..., devK} is the recommendation result for a new bug report, and {Ground Truth}
consists of real developers who participated in and contributed to resolving the new bug report.

4.4. Experimental Results

For the Eclipse JDT project, on average, two developers participate in each bug resolution in
the testing set. For this reason, we vary the number of recommended developers, i.e., Q, from 1 to
5. For the Mozilla Firefox project, on average, five developers participate in each bug resolution.
Thus, Q is varied from 1 to 7. Tables 3 and 4 present the average precision and recall of developer
recommendation for the Eclipse JDT and Mozilla Firefox projects, respectively.

Table 3. The average precision and recall for the Eclipse JDT project. The numbers in bold indicate the
best performances.

θ
Precision (%)/Recall (%)

Top 1 Top 2 Top 3 Top 4 Top 5

0 5/4 9/13 24/53 22/73 18/82
0.1 6/5 9/16 25/61 24/76 18/82
0.2 6/6 9/17 28/71 22/77 22/84
0.3 7/6 11/19 22/68 23/80 19/81
0.4 8/7 13/21 21/63 24/82 18/81
0.5 12/08 15/23 22/63 23/74 20/73
0.6 17/11 16/25 23/62 21/70 19/76
0.7 18/15 18/30 22/61 19/71 18/71
0.8 16/13 21/38 21/55 19/63 16/72
0.9 13/11 17/32 20/43 18/51 14/71
1 10/9 10/19 19/26 12/39 12/53
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Table 4. The average precision and recall for Mozilla Firefox project. The numbers in bold indicate the
best performances.

θ
Precision (%)/Recall (%)

Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7

0 29/8 33/19 31/24 28/28 26/32 26/37 25/43
0.1 31/10 34/18 32/25 29/29 29/35 26/39 25/42
0.2 31/11 35/19 32/23 31/30 28/35 29/39 25/43
0.3 32/10 36/20 31/24 32/30 28/36 28/41 27/46
0.4 33/11 37/20 33/26 33/31 27/35 28/44 25/48
0.5 35/10 37/21 34/28 31/31 28/37 31/43 29/52
0.6 33/9 41/24 37/28 32/33 32/43 32/48 32/58
0.7 33/9 39/22 34/29 33/45 31/42 30/48 29/52
0.8 32/10 38/21 35/31 35/48 31/42 29/48 28/53
0.9 31/11 32/20 32/32 31/47 29/41 28/47 25/51
1 32/9 27/16 27/21 22/29 24/33 23/41 24/48

We can see from Table 3 that, for the Eclipse JDT project, the precision and recall peak at θ = 0.2
(i.e., 28% and 84%, respectively, with the top 3 and top 5 recommended developers). For the Mozilla
Firefox project (see Table 4), the average precision and recall peak at θ = 0.6 (i.e., 41% and 58%,
respectively, with the top 2 and top 7 recommended developers). Instead of finding out the actual bug
fixers, we aim at retrieving developers who have a high possibility to participate in and contribute to
resolving newly arrived bugs. This is similar to the interesting developers mentioned in [7]. A bug
report’s resolution is attributed to developers’ collaborations other than a single developer’s effort.

We can see from Tables 3 and 4 that, for the Eclipse JDT project, the parameter should be set as 0.2
and for the Mozilla Firefox project, the parameter θ should be set as 0.6 for the best performances in
using En-LDA for bug report assignment. We explain the outcome as the number of bug reports and
candidate developers for training and testing of the Eclipse JDT project being smaller than that of the
Mozilla Firefox project. We draw the conclusion that if we have a large number of bug reports and
candidate developers, the parameter θ should be set larger than 0.5. Otherwise, the parameter should
be set as less than 0.5.

We hold that recall is a better measure than precision to gauge the performance of the proposed
approach. The reason lies in the fact that the number of developers in ground truth is different from
each other bugs. That is, different bug reports have a different number of developers participating in
its resolution—for example, if a bug was resolved by a collaboration of two developers in the ground
truth, and, in testing, we recommend five developers as potential resolvers. Then, the precision must
be smaller than 40%. However, it is acceptable, for real practice, that the two developers were included
in the five developers in the ground truth, especially in the case that more than 100 developers are
involved in the whole OSS project. With this stand of point, we regard that, in terms of the average
recall, our approach is promising in recommending potential bug resolvers. In fact, for the bug report
assignment, what we are looking for is to find “enough” number of developers to make contributions
rather than to find all correct developers as that in a traditional commodity recommendation. This is
the reason why we use recall and precision for performance measure.

The different recommendation results between Eclipse JDT and Mozilla Firefox projects is due to
two reasons. The first reason is that the average number of real developers is two for the former project,
but it is five for the latter project. When the number of recommended developers is approximate to
the number of real developers, the interest of developers should be considered. However, when the
number of recommended developers is much larger than real developers, the developers’ expertise is
an important factor because, even if some recommended expert developers have little interest in the
bug, there are still some expert developers who will be interested in resolving the bug.

The second reason is that the duration of Eclipse JDT is much shorter than that of the Mozilla
Firefox project. When we use a data set with a short time period for training the topic models
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in the proposed approach, it would be better to consider the developers’ interest in a developer’s
recommendation. However, when the training data set lasts for a long period, the developers’ expertise
will be more helpful than interest in recommending the “right” developers to resolve the bug.

We admit that the proposed approach is sensitive to parameter θ. The way it affects the
recommendation results varies for different bug repositories. We suggest that, prior to putting En-LDA
into practice, some trials should be conducted to find the optimal θ. Once the optimal θ was produced,
our approach to recommending potential bug resolvers is useful.

We also find some similar research to the paper as Anvik et al. [6], Xia et al. [27] and Canfora
and Cerulo [28]. For Anvik et al. [6] and Xia et al. [27], what they take into account in their research
is to predict the single fixer to fix the bug rather than a group of developers who may contribute to
resolve the bug reports, and it is not surprising that the experiment results of Xia et al. [27] are much
better than us with accuracy approximately 0.8, considering that bug report assignment is a more
complicated problem than fixer prediction. Moreover, in our prior work [5], we find that multi-label
classification is not good at bug report assignment although it succeeds in predicting the final fixer
of the bug report. Canfora and Cerulo [28] use information retrieval to locate candidate developers
for change requests. Their basic idea is that developers that have resolved similar change requests in
the past are the best candidates to resolve the new one. We can see from Canfora and Cerulo [28] that,
in the Mozilla project, their experimental results are comparable to us. However, they only consider
one developer for recommendation because the bug tracking system assigns each change request to
only one developer.

5. Conclusions

This paper proposes a novel approach called En-LDA to automatic bug report assignment by
using entropy and the LDA model. The entropy measure is used to optimize the number of topics
and the LDA model is used to capture the expertise and interest of developers on bug reports.
The contribution of the paper lies in two aspects. First, we propose En-LDA for automatic bug report
assignment. Second, we explore the Eclipse JDT and Mozilla Firefox open bug repositories to examine
the performances of the proposed approach. The experimental results demonstrate that our topic
models based approach can achieve high recall up to 84% and 58% with the top 5 and top 7 developers
for Eclipse JDT and Mozilla Firefox, respectively. Moreover, the developers’ interest and expertise on
bug reports influence automatic bug report assignment in different ways. We argue that developers’
interest can not be ignored in recommending developers for bug resolution.

Although experimental results have shown the promising aspects of our approach, we admit that
this study is still on its initial stage. In the future, we will examine our approach on more open bug
repositories to comprehensively evaluate our approach. It is obvious that when a new bug has been
triaged and assigned to some developers, and if it is resolved by them, the topic models should be
updated. We will consider this condition as well. In addition to these, we will take the relationships
between topics into account. In view of the fact that topics may change over time [16,25], we will also
take the evolution of topics to which developers pay attention into consideration.
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