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Abstract: We consider the rate R and variance σ2 of Shannon information in snippets of text based
on word frequencies in the natural language. We empirically identify Kolmogorov’s scaling law
in σ2 ∝ k−1.66±0.12 (95% c.l.) as a function of k = 1/N measured by word count N. This result
highlights a potential association of information flow in snippets, analogous to energy cascade in
turbulent eddies in fluids at high Reynolds numbers. We propose R and σ2 as robust utility functions
for objective ranking of concordances in efficient search for maximal information seamlessly across
different languages and as a starting point for artificial attention.
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1. Introduction

Exponential growth of Internet usage [1] is driving the development of new algorithms to
efficiently search text for potentially relevant information. As smartphones will overtake personal
computers in Internet traffic by 2020 [2], identifying maximal information in concise text is increasingly
important. Objective search may be approached by utility functions based on word statistics in the
natural language (e.g., [3]), viewing text as linguistic networks (e.g., [4]).

Herein we discuss utility functions based on Shannon information theory [5,6] which are
applicable to snippets of text obtained by key words search. These concordances ([7] and references
therein) are extracted from documents obtained from the Internet. Real-world searches require robust
utility functions that are well-defined in the face of words that fall outside common dictionaries or
in mixed language documents. In a computerized extraction of concordances from large numbers of
documents, such utility functions enable the ranking of text, facilitating in-depth document search in
any given language.

Shannon quantifies information by surprise factors of symbols used in discrete encoding of
messages by probability of occurrence. In digital computer communications, message size is typically
much greater than the size of the dictionary of symbols D = {0, 1}. However, conveying information
by snippets generally comprises very few words from a natural language dictionary. Miller [8]
refers to such snippets as “chunks”. Shannon and Miller hereby discuss principally distinct limits
of large and small message size in data transmission, measured by size relative to the dictionary.
Miller posits (without proof) that the Shannon information and variance fulfill similar roles in
human communication.

In this Letter, we report on empirical power law behavior in information rate and variance in
concordances as a function of size N measured by total word count. A distinguishing feature of the
present study is emphasis on relatively short concordances of N = 20–200 words, distinct from entire
books (e.g., [9]).
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To illustrate and set notation, consider a dictionary D = {Yes, No, Perfect}. Messaging by a source
S0 with uniform probability distribution pi = 1/3 (i = 1, 2, 3) features an information rate

R0 = − ∑
wiεD

pi log pi = log 3; (1)

that is, R0 = log2 3 bits per word, defined by the average surprise factor − log pi. Messaging over
a proper subset D′ = {Yes, No} by a source S′ with probability distribution pi = 1/2 (i = 1, 2; p3 = 0)
features a reduced information rate

R = log 2 ' − ∑
wiεD′

pi log pi =
2
3

R0, (2)

where the right-hand-side provides an approximation based on the probability distribution of S0.
By probabilities, S0 is preferred over S as a source of messages. In the present study, we aim to rank
messages accordingly, in the form of concordances extracted from online text by key word search.

In real-world applications, our symbols of encoding are words with typical frequencies determined
by the natural language. Sources may display variations in word probabilities reflecting individual
word preferences. For computational analysis of messages across a broad range of sources, we consider
a truncated dictionary D of the most common words, whose probability distribution approximates
that of all words in a more comprehensive dictionary, dropping words that are exceedingly rare, not
traditionally included in dictionaries, or of foreign origin. Such D is readily extracted from a large
number of documents, randomly selected over a broad range of subjects. Fixing D, pi for each wiεD is
established by normalizing inferred word frequencies,

∑
wiεD

pi = 1. (3)

For instance, {Yes, No, Perfect} have relative probabilities

pyes : pno : pper f ect = 1 : 2.49 : 0.0559 (4)

based on a truncated dictionary D defined by a top list of 10,000 words (Table 1).

Table 1. Probabilities of a truncated dictionary D of the 10,000 most common words in the English language.
Words not listed in D are assigned probability zero. Probabilities refer to words regardless of case.

Index Word Probability ×10−3 Comment

386 apple 0.0256 Upper and lower case

6481 perfect 0.1525 "

6034 no 6.7556 "

9946 yes 2.7188 "

- Woolsthorpe 0 Newton’s city of birth, not in Merriam-Webster

In text, words contribute to the information rate per word according to

ri = −pi log pi. (5)

A sum over all wi in D obtains the mean rate

RD = ∑
wiεD

ri = 9.11 bits word−1. (6)
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Relative to the maximum R0 = 13.30 bits word−1 for a uniform probability distribution (pi = 10−4

for all i), we have

RD = 0.6854 R0, (7)

illustrated by (2) in our example above.
The result (6) illustrates Miller’s classic result on approximately 8–10 mostly binary features

identified in speech analysis [8,10]. However, (7) under-estimates information rates in short expressions
due to the non-unform probability distribution of words in the natural language (Table 1). It becomes
meaningful only in the large N limit, for text approaching the size of a dictionary. While this limit
may apply to large bodies of text, it is not representative for messages in direct human-to-human
communication or human–machine interactions.

To begin, we consider the above for communications in a data base of 90,094 concordances of
size N = 20–200 comprising a total of 8,842,720 words, extracted from the Internet by various key
word searches and evaluated for Shannon information rates and associated variances (Section 2).
Statistical properties are observed to satisfy power law behavior. They are analyzed for their
dependence on k = 1/N, motivated by a heuristic analogy between information flow across messages
of various size and inertial energy cascade over turbulent eddies. The latter serves as a model for
energy flow over complex nonlinear dynamics involving a large number of degrees of freedom,
satisfying Kolmogorov scaling as a function of wave number k [11–13] (Section 3). Results for our data
base of concordances are given in terms of power law indices and compared with Kolmogorov scaling
(Section 4). In Section 5, we summarize our findings.

2. A Data-Base of Concordances

We compiled a data-base of 90,094 concordances C with size N = 20–200 from thousands of
documents on the Word Wide Web (Figure 1). They are extracted by key word search covering a broad
range of generic topics in sports, culture, science, and politics [14,15]. For each search, concordances
are extracted from about M = 80 online source pages identified with the highest document rank by
existing Internet search, and downloaded for analysis as described below by parallel computing on
a cluster of personal computers. Experimentally, we determined top lists of concordances ranked
by information rate (8) (below), which remain essentially unchanged when M reaches 80; M less
than 50 occasionally fails to capture concordances of highest text rank as defined below. On this
basis, our results are also expected to be reasonably independent of the choice of Internet document
search engine.

As snippets, concordances always comprise a small subset of a dictionary, including D containing
most common words mentioned above. For N on the order of tens to hundreds of words, RD in (7) is
not directly meaningful for estimating information in concordances due to selection effects: snippets
contain few words, many of which are relatively common by non-uniformity of word frequencies in D
(Table 1) with relatively significant contributions to information flow rate ri in (5).

Information rates in concordances are obtained by summing (5) over all distinct words therein,

R = − ∑
wiεC′

pi log pi. (8)

Our focus is to quantify statistical properties of R as a function of N given D. Here, C′ shall
denote its list of q distinct words in C that are in D. This reduction avoids over-counting of words,
and implicitly assigns probability zero to words that are not in D. The first is important for accuracy,
the second renders (8) robust in the face of words that are not included in D, because they are rarely
used (Table 1) or of foreign origin. Assigned pi = 0, these exceptional words are not included in (3).
Since (8) has a well-defined limit as pi approaches zero, it applies to real-world text extracted from



Entropy 2017, 19, 198 4 of 9

documents online by generic search engines. Distinct words C′ in C that are in D comprise q ≤ N
words, typically about one-half of N (Figure 1).
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Figure 1. (a) Histogram of 90,094 concordances C in the data-base, shown by various sizes N measured
by total word count; (b) Fractions p/N and q/N of counts of distinct words and, respectively, distinct
words in a truncated dictionary D of the 10,000 most common words.

Table 2 illustrates a top list of concordances, obtained by the key word search “apple pie” and
text ranked by R. A search with relatively few key and generic words readily obtains well over ten
concordances per document (i.e., on the order of one thousand in M = 80 documents extracted from
the Internet by existing document search). Identification of those potentially most relevant to the user
necessitates computerized ranking, here by the utility function R.

Table 2. Sample concordances of N = 50 words selected by key words “apple pie” (bold) ranked by
information rates R. Included are the standard deviations σ (obtained by [14,15]).

Rank Concordance R σ

1

.. splash of brandy. My homemade apple pie is like a siren call to
my family. All I have to do is pick up the phone and say “pie” to my father and
he’s here in less time than it takes to clear a place at the table. You know
when people ..

1.1202 1.6275

2

.. of pumpkin and apple together just make my heart happy. The photos are
gorgeous and your lattice is freaking perfect! :) I have never been to an apple
orchard either but I always envision it as a marvelous occasion. Maybe one day
I will go! Pinning this pie for future reference ;) Reply ..

1.0987 1.5144

... ... ... ...

10

.. that I’ve baked apple pie, this recipes was easy to follow AND most
importantly it came out delicious. Received lots of compliments on this so
Thank You!!!! Curious to know if there are any supplements for the sugar
though, trying to make a version for my parents who are trying to cut back ..

1.0263 1.5126

In studying statistical properties of R as a function of concordance size N, we further consider the
unnormalized variance

σ2 = ∑
C′

(
ri − q−1R

)2
(9)
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suggested by Miller’s conjecture on information measured by variance, N−1σ2. Dependence on N in
the statistical properties of σ2 will be found to satisfy a power law with index α,

σ2 ∝ Nα. (10)

The index α in (10) will be determined by detailed partitioning of information flow in large
amounts of text into multiple messages, i.e., in expressions, statements, snippets and the like across
different sizes. In the absence of detailed modeling, σ2 in (10) is expected to be tightly correlated to
R in (8) in an intuitive analogy of information and energy flow. In fluid dynamics, representing a
nonlinear system with a large number of degrees of freedom, energy flow satisfies Kolmogorov scaling
in conservative cascade to small scales in fully developed turbulence [16].

3. Kolmogorov Scaling in Energy Flow

Turbulent motion in high Reynolds number (Re) fluid flow demonstrates power law behavior
in energy cascade by nonlinear dynamics that includes period doubling. Its inertial range comprises
a large number of degrees of freedom ∝ Re

9
4 , over which energy flow cascades over eddies of size λ,

breaking up conservatively into increasingly smaller eddies across wave numbers

kmin ≤ k < kmax. (11)

Here, k = 2π/λ, kmin refers to eddies set by the linear size of the system, and kmax refers to the
wave number at which viscous dissipation sets in. This cascade persists by power input ε0 at kmin.
In the inertial range (11), the ε0 is conserved across k, posing a constraint on the spectral energy density
E(k), satisfying Plancherel’s formula

e =
∫ ∞

0
E(k)dk (12)

with

[E(k)] = [λ][e]. (13)

Since [ε0] = [e] s−1, [e] = λ2 s−2, dimensional analysis obtains the Kolmogorov scaling

E(k) = Cε
2
3
0 k−

5
3 ∝ λ

5
3 . (14)

The Kolmogorov index 5/3 has been found to be remarkably universal in fully developed
turbulence, from fluid dynamics [17] to broadband fluctuations in gamma-ray light curves [18].

4. Power Law and Kolmogorov Scaling in Information Flow

By (5), information rates of concordances

R = ∑
C′

ri < RD (15)

are increasing as a function of size N, formally satisfying

lim
N→∞

∑
C′

ri = lim
N→∞

− 1
N ∑

C
ni log pi = RD, (16)

where ni denotes the number of times a word wi appears in C. The latter is a consequence of the fact
that C′ approaches D in the limit as N becomes arbitrarily large.
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For our data base, Figure 1 shows concordance averages of relative counts p/N of distinct
words (avoiding multiplicities of recurring words) and the relative counts q/N of distinct words in D.
The average value of p/N is found to be somewhat similar to R/R0 in (7), with a minor dependence
on the choice of N.

Figure 2 shows σ2 and its correlation to R. Expressed in terms of the normalized standard deviation

Y = σR−1/2 ∝ N
1
2 , (17)

which points to

σ ' 0.2125 N
1
2 R

1
2 . (18)
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Figure 2. (a) N−1σ2 correlation with R (all concordances, blue dots) show scaling with R.
This correlation is effectively linear for most of R (red curve), evidencing Miller’s conjecture on
the equivalence of variance with information. However, nonlinearity sets in when R is large (black
curve); (b,c) Y = σR−

1
2 scales with N1/2 with an essentially Gaussian distribution in fluctuations.

Figure 3 shows the power law behavior as a function of k = 1/N obtained by weighted nonlinear
model regression computed by the MatLab function fitnlm [19] with weights according to concordance
counts (Figure 1). The results with 95% confidence levels are

σ2 ' 0.0013 k−1.66±0.12, R ' 0.0381 k−0.62±0.08. (19)

Scaling of σ2 in (19) is consistent with (18) combined with scaling of R in (19).
Figure 3 shows a slight concave curvature in the residuals to the linear fit to the data. While this is

within the 95% confidence level shown, this feature may be a real deviation from power law behavior,
perhaps associated with nonlinear scaling at large R (Figure 2). A detailed consideration is beyond the
present scope, however.
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Figure 3. Power law behavior (19) in the mean R and variance σ2 in a data set of concordances (Figure 1)
as a function of k = 1/N.

5. Conclusions

We identify Kolmogorov scaling (19) in the variance of concordance information with power law
scaling in association with information rate as a function of size N = 20–200.

We present Kolmogorov scaling in variance as an empirical result, which suggests that information
flow over snippets is analogous to energy cascade over eddies. Since Kolmogorov scaling in the inertial
range (11) critically depends on conservation of energy, (19) suggests that perhaps there is a similar
conservation law at work in information flow by concordances.

Our observed power law scalings (19) give a succinct statistical summary on communication by
concordances in the natural language. At sizes much smaller than the size of a dictionary, the results
are fundamentally different from what is obtained in Shannon’s large N limit of binary strings in
computer-to-computer communications, arising from the strongly non-uniform probability distribution
in words in the natural language.

Figure 4 further shows a generally increasing efficiency R/U, normalized to the upper bound U
defined by word probabilities sorted in descending order (pi′+1 ≤ pi′ , i = 1, 2, · · · , |D|),

U = − ∑
i≤N

pi′ log pi′ . (20)

Relatively long concordances show an increase to about 40% efficiency, beyond about 25% in
short concordances. Twitter’s tweets of 140 characters—corresponding to about 24 words on average
at a mean of about five letters and one space per word in English—hereby appears sub-optimal by a
factor of about two. Reasonably efficient social networking communication obtains with tweets on the
order of 1000 characters.
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Figure 4. Information rate efficiency R/U as a function of concordance size N.

Based strictly on word frequencies in natural language, R and/or σ provide robust utility functions
for objective ranking of snippets by potential relevance. This can be used for efficient search through
a large body of documents from a variety of sources by limiting output to a top list of ranked
concordances [14,15]. A suitable sample of source documents is readily extracted from the Internet by
existing search engines.

A generalization to search seamlessly across different languages is obtained by first translating key
words to a second language in which to obtain a body of source documents and concordances therein.
Ranking by R and/or σ based on word frequencies in this second language produces a top list that can
be translated back to the first language. This process is highly efficient, by limiting translations to a
moderate number of concordances, circumventing the need for any document translation in full [20].

Power law behavior (19) in snippets of text also points to novel directions to machine learning.
For instance, ranking by R and/or σ may be a first step to artificial attention—with concordances larger
in size than tweets—to select snippets as input to further processing (e.g., generating new queries by
artificial intelligence).
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