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Abstract: Logarithmic score and information divergence appear in information theory, statistics,
statistical mechanics, and portfolio theory. We demonstrate that all these topics involve some kind
of optimization that leads directly to regret functions and such regret functions are often given by
Bregman divergences. If a regret function also fulfills a sufficiency condition it must be proportional
to information divergence. We will demonstrate that sufficiency is equivalent to the apparently
weaker notion of locality and it is also equivalent to the apparently stronger notion of monotonicity.
These sufficiency conditions have quite different relevance in the different areas of application,
and often they are not fulfilled. Therefore sufficiency conditions can be used to explain when results
from one area can be transferred directly to another and when one will experience differences.
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1. Introduction

One of the main purposes of information theory is to compress data so that data can be recovered
exactly or approximately. One of the most important quantities was called entropy because it is
calculated according to a formula that mimics the calculation of entropy in statistical mechanics.
Another key concept in information theory is information divergence (KL-divergence) that is defined
for probability vectors P and Q as

D (P‖Q) = ∑
x

P(x) ln
P(x)
Q(x)

.

It was introduced by Kullback and Leibler in 1951 in a paper entitled On Information and Sufficiency [1].
The link from information theory back to statistical physics was developed by E.T. Jaynes via the
maximum entropy principle [2–4]. The link back to statistics is now well established [5–9].

Related quantities appear in information theory, statistics, statistical mechanics, and finance,
and we are interested in a theory that describes when these relations are exact and when they just
work by analogy. First we introduce some general results about optimization on state spaces of finite
dimensional C*-algebras. This part applies exactly to all the topics under consideration and lead to
Bregman divergences or more general regret functions. Secondly, we introduce several notions of
sufficiency and show that this leads to information divergence. In a number of cases it is not possible
or not relevant to impose the condition of sufficiency, which can explain why regret function are not
always equal to information divergence.

2. Structure of the State Space

Our knowledge about a system will be represented by a state space. I many applications the
state space is given by a set of probability distributions on a sample space. In such cases the state
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space is a simplex, but it is well-known that the state space is not a simplex in quantum physics.
For applications in quantum physics the state space is often represented by a set of density matrices,
i.e., positive semidefinite complex matrices with trace 1. In some cases the states are represented
as elements of a finite dimensional C∗-algebra, which is a direct sum of matrix algebras. A finite
dimensional C∗-algebra that is a sum of 1× 1 matrices has a state space that is a simplex, so the state
spaces of finite dimensional C∗-algebras contain the classical probability distributions as special cases.

The extreme points in the set of states are the pure states. The pure states of a C∗-algebra can
be identified with projections of rank 1. Two density matrices s1 and s2 are said to be orthogonal if
s1s2 = s2s1 = 0. Any state s has a decomposition

s = ∑ λisi

where si are orthogonal pure states. Such a decomposition is not unique, but for a finite dimensional
C∗-algebra the coefficients λ1, λ2, . . . , λn are unique and are called the spectrum of the state.

Sometimes more general state spaces are of interest. In generalized probabilistic theories a state
space is a convex set where mixtures are defined by randomly choosing certain states with certain
probabilities [10,11]. A convex set where all orthogonal decompositions of a state have the same
spectrum, is called a spectral state space. Much of the theory in this paper can be generalized to
spectral sets. The most important spectral sets are sets of positive elements with trace 1 in Jordan
algebras. The study of Jordan algebras and other spectral sets is relevant for the foundation of quantum
theory [12–15], but in this paper we will restrict our attention to states on finite dimensional C∗-algebras.
Nevertheless some of the theorems and proofs are stated in such a way that they hold for more general
state spaces.

3. Optimization

Let S denote a state space of a finite dimensional C∗-algebra and let A denote a set of self-adjoint
operators. Each a ∈ A is identified with a real valued measurement. The elements of A may represent
feasible actions (decisions) that lead to a payoff like the score of a statistical decision, the energy
extracted by a certain interaction with the system, (minus) the length of a codeword of the next
encoded input letter using a specific code book, or the revenue of using a certain portfolio. For each
s ∈ S the mean value of the measurement a ∈ A is given by

〈a, s〉 = tr(as).

In this way the set of actions may be identified with a subset of the dual space of S .
Next we define

F (s) = sup
a∈A
〈a, s〉 .

We note that F is convex, but F need not be strictly convex. In principle F(s) may be infinite, but we
will assume that F(s) < ∞ for all states s. We also note that F is lower semi-continuous. In this paper
we will assume that the function F is continuous. The assumption that F is a real valued continuous
function is fulfilled for all the applications we consider.

If s is a state and a ∈ A is an action then we say that a is optimal for s if 〈a, s〉 = F (s). A sequence
of actions an ∈ A is said to be asymptotically optimal for the state s if 〈a, s〉 → F (s) for n→ ∞.

If ai are actions and (ti) is a probability vector then we we may define the mixed action ∑ ti · ai
as the action where we do the action ai with probability ti. We note that 〈∑ ti · ai, s〉 = ∑ ti · 〈ai, s〉 .
We will assume that all such mixtures of feasible actions are also feasible. If a1 (s) ≥ a2 (s) almost
surely for all states we say that a1 dominates a2 and if a1 (s) > a2 (s) almost surely for all states s
we say that a1 strictly dominates a2. All actions that are dominated may be removed from A without
changing the function F. Let AF denote the set of self-adjoint operators (observables) a such that
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〈a, s〉 ≤ F (s) . Then F (s) = supa∈AF
〈a, s〉 . Therefore we may replace A by AF without changing the

optimization problem.
In the definition of regret we follow Servage [16] but with different notation.

Definition 1. Let F denote a convex function on the state space S . If F (s) is finite the regret of the action a is
defined by

DF (s, a) = F (s)− 〈a, s〉 . (1)

The notion of regret has been discussed in detail in [17–19]. In [20] it was proved that if a regret
based decision procedure is transitive then it must be equal to a difference in expected utility as in
Equation (1), which rules out certain non-linear models in [17,19].

Proposition 1. The regret DF of actions has the following properties:

• DF (s, a) ≥ 0 with equality if a is optimal for s.
• s→ DF (s, a) is a convex function.
• If ā is optimal for the state s̄ = ∑ ti · si where (t1, t2, . . . , t`) is a probability vector then

∑ ti · DF (si, a) = ∑ ti · DF (si, ā) + DF (s̄, a) .

• ∑ ti · DF (si, a) is minimal if a is optimal for s̄ = ∑ ti · si.

If the state is s1 but one acts as if the state were s0 one may compare what one achieves and what
could have been achieved. If the state s0 has a unique optimal action a we may simply define the regret
of s0 by

DF (s1, s0) = DF (s1, a) .

The following definition leads to a regret function that is essentially equivalent to the so-called
generalized Bregman divergences defined by Kiwiel [21,22].

Definition 2. Let F denote a convex function on the state space S . If F (s1) is finite then we define the regret
of the state s0 as

DF (s1, s0) = inf
(an)

lim
n→∞

DF (s1, an)

where the infimum is taken over all sequences of actions (an) that are asymptotically optimal for s0.

With this definition the regret is always defined with values in [0, ∞] and the value of the regret
DF (s1, s0) only depends on the restriction of the function F to the line segment from s0 to s1. Let f
denote the function f (t) = F ((1− t)s0 + ts1) where t ∈ [0, 1]. As illustrated in Figure 1 we have

DF (s1, s0) = f (1)−
(

f (0) + f ′+(0)
)

(2)

where f ′+(0) denotes the right derivative of f at t = 0. Equation (2) is even valid when the regret is
infinite if we allow the right derivative to take the value −∞.

If the state s0 has the unique optimal action a ∈ A then

F (s1) = DF (s1, s0) + 〈a, s1〉 (3)

so the function F can be reconstructed from DF except for an affine function of s1. The following
proposition follows from Alexandrov’s theorem ([23], Theorem 25.5).

Proposition 2. A convex function on a finite dimensional convex set is differentiable almost everywhere with
respect to the Lebesgue measure.
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A state s0 where F is differentiable has a unique optimal action. Therefore Equation (3) holds for
almost any state s0. In particular the function F can be reconstructed from DF except for an affine function.
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Figure 1. The regret equals the vertical distance between curve and tangent.
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ti ·DF (si, ā) +DF (s̄, a) .

• ∑ ti ·DF (si, a) is minimal if a is optimal for s̄ =
∑
ti · si.63

If the state is s1 but one acts as if the state were s0 one may compare what one achieves and
what could have been achieved. If the state s0 has a unique optimal action a we may simply define
the regret of s0 by

DF (s1, s0) = DF (s1, a)

The following definition leads to a regret function that is essentially equivalent to the so-called64

generalized Bregman divergences defined by Kiwiel [15,16].65

Definition 2. Let F denote a convex function on the state space S. If F (s1) is finite then we define
the regret of the state s0 as

DF (s1, s0) = inf
(an)

lim
n→∞

DF (s1, a)

where the infimum is taken over all sequences of actions (an) that are asymptotically optimal for s0.66

With this definition the regret is always defined with values in [0,∞] and the value of the regret
DF (s1, s0) only depends on the restriction of the function F to the line segment from s0 to s1. Let f
denote the function f(t) = F ((1− t)s0 + ts1) where t ∈ [0, 1]. As illustrated in Figure 1 we have

DF (s1, s0) = f (1)−
(
f (0) + f ′+(0)

)
(2)

Figure 1. The regret equals the vertical distance between curve and tangent.

Proposition 3. The regret DF of states has the following properties:

• DF (s1, s0) ≥ 0 with equality if there exists an action a that is optimal for both s1 and s0.
• s1 → DF (s1, s0) is a convex function.

Further, the following two conditions are equivalent:

• DF (s1, s0) = 0 implies s1 = s0.
• The function F is strictly convex.

We say that a regret function DF is strict if F is strictly convex. The two last properties Proposition 1
do not carry over to regret for states except if the regret is a Bregman divergence as defined below.
The regret is called a Bregman divergence if it can be written in the following form

DF (s1, s0) = F (s1)− (F (s0) + 〈s1 − s0,∇F (s0)〉) (4)

where 〈·, ·〉 denotes the (Hilbert-Schmidt) inner product. In the context of forecasting and statistical
scoring rules the use of Bregman divergences dates back to [24]. A similar but less general definition of
regret was given by Rao and Nayak [25] where the name cross entropy was proposed. Although Bregman
divergences have been known for many years they did not gain popularity before the paper [26] where
a systematic study of Bregman divergences was presented.

We note that if DF is a Bregman divergence and s0 minimizes F then ∇F (s0) = 0 so that the
formula for the Bregman divergence reduces to

DF (s1, s0) = F (s1)− F (s0) .

Bregman divergences satisfy the Bregman identity

∑ ti · DF (si, s) = ∑ ti · DF (si, s̄) + DF (s̄, s) , (5)

but if F is not differentiable this identity can be violated.
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Example 1. Let the state space be the interval [0, 1] with two actions 〈a0, s〉 = 1− 2s and 〈a1, s〉 = 2s− 1.
Let s0 = 0 and s1 = 1. Let further t0 = 1/3 and t1 = 2/3. Then s̄ = 2/3. If s = 1/2 then

∑ ti · DF (si, s) = 0,

but

∑ ti · DF (si, s̄) =
1
3
· (〈a0, 0〉 − 〈a1, 0〉) + 2

3
· (〈a1, 1〉 − 〈a1, 1〉)

=
1
3
· (1− (−1))

=
2
3

.

Clearly the Bregman identity (5) is violated and ∑ ti · DF (si, s) will increase if s is replaced by s̄.

The following proposition is easily proved.

Proposition 4. For a convex and continuous function F on the state space S the following conditions
are equivalent:

• The function F is differentiable in the interior of any face of S .
• The regret DF is a Bregman divergence.
• The Bregman identity (5) is always satisfied.
• For any probability vectors (t1, t2, . . . , tn) the sum ∑ ti · DF (si, s) is always minimal when s = ∑ ti · si.

4. Examples

In this section we shall see how regret functions are defined in some applications.

4.1. Information Theory

We recall that a code is uniquely decodable if any finite sequence of input symbols give a unique
sequence of output symbols. It is well-known that a uniquely decodable code satisfies Kraft’s inequality
(see [27] and ([28], Theorem 3.8))

∑
a∈A

β−`(a) ≤ 1 (6)

where ` (a) denotes the length of the codeword corresponding to the input symbol a ∈ A and β denotes
the size of the output alphabet B. Here the length of a codeword is an integer. If P = (pa)a∈A is
a probability vector over the input alphabet, then the mean code-length is

∑
a∈A

` (a) · pa.

Our goal is to minimize the expected code-length. Here the state space consist of probability
distributions over the input alphabet and the actions are code-length functions.

Shannon established the inequality

− ∑
a∈A

logb (pa) · pa ≤ min ∑
a∈A

` (a) · pa ≤ − ∑
a∈A

logb (pa) · pa + 1.

It is a combinatoric problem to find the optimal code-length function. In the simplest case with
a binary output alphabet the optimal code-length function is determined by the Huffmann algorithm.

A code-length function dominates another code-length function if all letters have shorter
code-length. If a code-length function is not dominated by another code-length function then for all
a ∈ A the length is bounded by ` (a) ≤ |A| − 1. For fixed alphabets A and B there exists only a finite
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number of code-length functions ` that satisfy Kraft’s inequality and are not dominated by other
code-length functions that satisfying Kraft’s inequality.

4.2. Scoring Rules

The use of scoring rules has a long history in statistics. An early contribution was the idea of
minimizing the sum of square deviations that dates back to Gauss and works perfectly for Gaussian
distributions. In the 1920s, Ramsay and de Finetti proved versions of the Dutch book theorem
where determination of probability distributions were considered as dual problems of maximizing
a payoff function [29]. Later it was proved that any consistent inference procedure corresponds to
optimizing with respect to some payoff function. A more systematic study of scoring rules was given
by McCarthy [30].

Consider an experiment with X = {1, 2, . . . , `} as sample space. A scoring rule f is defined as
a function X × M+

1 (X ) → R such that the score is f (x, Q) when a prediction has been given in
terms of a probability distribution Q and x ∈ X has been observed. A scoring rule is proper if for any
probability measure P ∈ M+

1 (X ) the score ∑x∈X P (x) · f (x, Q) is minimal when Q = P. Here the
state space consist of probability distributions over X and the actions are predictions over X , which are
also probability distributions over X .

There is a correspondence between proper scoring rules and Bregman divergences as explained
in [31,32]. If DF is a Bregman divergence and g is a function with domain X then f given by f (x, Q) =

g (x)− DF (δx, Q) defines a scoring rule.
Assume that f is a proper scoring function. Then a function F can be defined as

F(P) = ∑
x∈X

P (x) · f (x, P) .

This lead to the regret function

DF (P, Q) = F(P)− ∑
x∈X

P (x) · f (x, Q) . (7)

Since f is assumed to be proper DF (P, Q) ≥ 0. The Bregman identity (5) follows by straight
forward calculations. With these two results we see that the regret function DF is a Bregman divergence
and that

DF
(
δy, Q

)
= ∑

x∈X
δy (x) · f

(
x, δy

)
− ∑

x∈X
δy (x) · f (x, Q)

= f
(
y, δy

)
− f (y, Q) . (8)

Hence a proper scoring rule f has the form f (x, Q) = g(x)− DF (δx, Q) where g(x) = f (x, δx).
A strictly proper scoring rule can be defined as a proper scoring rule where the corresponding Bregman
divergence is strict.

Example 2. The Brier score is given by

f (x, Q) =
1
n

(
∑

y∈X
(Q (y)− δx (y))

2

)
.

The Brier score is generated by the strictly convex function F (P) = 1
n ∑x∈X P (x)2.
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4.3. Statistical Mechanics

Thermodynamics is the study of concepts like heat, temperature and energy. A major objective
is to extract as much energy from a system as possible. The idea in statistical mechanics is to view
the macroscopic behavior of a thermodynamic system as a statistical consequence of the interaction
between a lot of microscopic components where the interacting between the components are governed
by very simple laws. Here the central limit theorem and large deviation theory play a major role.
One of the main achievements is the formula for entropy as a logarithm of a probability.

Here we shall restrict the discussion to the most simple kind of thermodynamic system from
which we want to extract energy. We may think of a system of non-interacting spin particles in
a magnetic field. For such a system the Hamiltonian is given by

Ĥ (σ) = −µ ∑ hjσj

where σ is the spin configuration, µ is the magnetic moment, hj is the strength of an external magnetic
field, and σj = ±1 is the spin of the the j’th particle. If the system is in thermodynamic equilibrium the
configuration probability is

Pβ (σ) =
exp

(
−βĤ (σ)

)
Zβ

where Z (β) is the partition function

Z (β) = ∑
σ

exp
(
−βĤ (σ)

)
.

Here β is the inverse temperature (kT)−1 of the spin system and k = 1.381 × 10−23 J/K is
Boltzmann’s constant.

The mean energy is given by

∑
σ

Pβ (σ) Ĥ (σ) ,

which will be identified with the internal energy U defined in thermodynamics. The Shannon entropy
can be calculated as

−∑
σ

Pβ (σ) ln Pβ (σ) = −∑
σ

Pβ (σ) ln
exp

(
−βĤ (σ)

)
Zβ

= −∑
σ

Pβ (σ)
(
−βĤ (σ)− ln Z (β)

)
= β ·U + ln Z (β) .

The Shannon entropy times k will be identified with the thermodynamic entropy S.
The amount of energy that can be extracted from the system if a heat bath is available, is called the

exergy [33]. We assume that the heat bath has temperature T0 and the internal energy and entropy of
the system are U0 and S0 if the system has been brought in equilibrium with the heat bath. The exergy
can be calculated by

Ex = U −U0 − T0 (S− S0)

= U −U0 − kT0 (β ·U + ln Z (β)− β0U0 − ln Z (β0))

= kT0

(
(β0 − β) ·U + ln

Z (β0)

Z (β)

)
.
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The information divergence between the actual state and the corresponding state that is in
equilibrium with the environment is

D
(

Pβ

∥∥ Pβ0

)
= ∑

σ

Pβ (σ) ln
Pβ (σ)

Pβ0 (σ)

= ∑
σ

Pβ (σ) ln

exp(−βĤ(σ))
Z(β)

exp(−β0 Ĥ(σ))
Z(β0)

= ∑
σ

Pβ (σ)

(
−βĤ (σ) + β0Ĥ (σ) + ln

Z (β0)

Z (β)

)
= (β0 − β) ·∑

σ

Pβ (σ) Ĥ (σ) + ln
Z (β0)

Z (β)

= (β0 − β) ·U + ln
Z (β0)

Z (β)
.

Hence
Ex = kT0D

(
Pβ

∥∥ Pβ0

)
.

This equation appeared already in [34].

4.4. Portfolio Theory

The relation between information theory and gambling was established by J. L. Kelly [35].
Logarithmic terms appear because we are interested in the exponent in the exponential growth
rate of our wealth. Later Kelly’s approach has been generalized to trading of stocks although the
relation to information theory is weaker [36].

Let X1, X2, . . . , Xk denote price relatives for a list of k assets. For instance X5 = 1.04 means that
5-th asset increases its value by 4%. Such price relatives are mapped into a price relative vector
~X = (X1, X2, . . . , Xk) .

Example 3. A special asset is the safe asset where the price relative is 1 for any possible price relative vector.
Investing in this asset corresponds to placing the money at a safe place with interest rate equal to 0%.

A portfolio is a probability vector~b = (b1, b2, . . . , bk) where for instance b5 = 0.3 means that 30%
of the money is invested in asset no. 5. We note that a portfolio may be traded just like the original
assets. The price relative for the portfolio~b is X1 · b1 + X2 · b2 + · · ·+ Xk · bk =

〈
~X,~b

〉
. The original

assets may be considered as extreme points in the set of portfolios. If an asset has the property that
the price relative is only positive for one of the possible price relative vectors, then we may call it
a gambling asset.

We now consider a situation where the assets are traded once every day. For a sequence of price
relative vectors ~X1, ~X2, . . . ~Xn and a constant re-balancing portfolio~b the wealth after n days is

Sn =
n

∏
i=1

〈
~Xi,~b

〉
(9)

= exp

(
n

∑
i=1

ln
(〈

~Xi,~b
〉))

(10)

= exp
(

n · E
[
ln
〈
~X,~b

〉])
(11)

where the expectation is taken with respect to the empirical distribution of the price relative vectors.
Here E

[
ln
〈
~X,~b

〉]
is proportional to the doubling rate and is denoted W

(
~b, P

)
where P indicates the
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probability distribution of ~X. Our goal is to maximize W
(
~b, P

)
by choosing an appropriate portfolio~b.

The advantage of using constant rebalancing portfolios was demonstrated in [37].

Definition 3. Let~b1 and~b2 denote two portfolios. We say that~b1 dominates~b2 if
〈
~Xj,~b1

〉
≥
〈
~Xj,~b2

〉
for any

possible price relative vector ~Xj j = 1, 2, . . . , n. We say that~b1 strictly dominates~b2 if
〈
~Xj,~b1

〉
>
〈
~Xj,~b2

〉
for any possible price relative vector ~Xj j = 1, 2, . . . , n. A set A of assets is said to dominate the set of assets B if
any asset in B is dominated by a portfolio of assets in A.

The maximal doubling rate does not change if dominated assets are removed. Sometimes assets
that are dominated but not strictly dominated may lead to non-uniqueness of the optimal portfolio.

Let~bP denote a portfolio that is optimal for P and define

G(P) = W
(
~bP, P

)
. (12)

The regret of choosing a portfolio that is optimal for Q when the distribution is P is given by the
regret function

DG(P, Q) = W
(
~bP, P

)
−W

(
~bQ, P

)
. (13)

If~bQ is not uniquely determined we take a minimum over all~b that are optimal for Q.

Example 4. Assume that the price relative vector is (2, 1/2) with probability 1− t and (1/2, 2) with probability t.
Then the portfolio concentrated on the first asset is optimal for t ≤ 1/5 and the portfolio concentrated on the
second asset is optimal for t > 4/5. For values of t between 1/5 and 4/5 the optimal portfolio invests money on
both assets as illustrated in Figure 2.
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one of the assets dominates all other assets or two of the assets are orthogonal gambling assets that176

dominate all other assets.177

Figure 2. The function G for the price relative vectors in Example 4.

Lemma 1. If there are only two price relative vectors and the regret function is strict then either one of the assets
dominates all other assets or two of the assets are orthogonal gambling assets that dominate all other assets.
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Proof. We will assume that no assets are dominated by other assets. Let

~X = (X1, X2, . . . , Xk)

~Y = (Y1, Y2, . . . , Yk)

denote the two price relative vectors. Without loss of generality we may assume that

X1

Y1
≥ X2

Y2
≥ · · · ≥ Xk

Yk
.

If Xi
Yi

=
Xi+1
Yi+1

then Xi
Xi+1

= Yi
Yi+1

so that if Xi ≤ Xi+1 then Yi ≤ Yi+1 and the asset i is dominated by
the asset i + 1. Since we have assumed that no assets are dominated we may assume that

X1

Y1
>

X2

Y2
> · · · > Xk

Yk
.

If P = (1− t, t) is a probability vector over the two price relative vectors then according to [36]
the portfolio~b = (b1, b2, . . . , bn) is optimal if and only if

(1− t)
Xi

b1X1 + · · ·+ bkXk
+ t

Yi
b1Y1 + · · ·+ bkYk

≤ 1

for all i ∈ {1, 2, . . . , k} with equality if bi > 0. Assume that the portfolio~b = δj is optimal. Now

(1− t)
Xj+1

Xj
+ t

Yj+1

Yj
≤ 1

is equivalent to

t ≤
Xj

Yj+1
− Xj+1

Yj+1

Xj
Yj
− Xj+1

Yj+1

. (14)

Similarly

(1− t)
Xj−1

Xj
+ t

Yj−1

Yj
≤ 1

is equivalent to

t ≥
Xj

Yj−1
− Xj−1

Yj−1

Xj
Yj
− Xj−1

Yj−1

. (15)

We have to check that
Xj

Yj−1
− Xj−1

Yj−1

Xj
Yj
− Xj−1

Yj−1

<

Xj
Yj+1
− Xj+1

Yj+1

Xj
Yj
− Xj+1

Yj+1

,

which is equivalent with

0 < XjYj−1 −Yj−1Xj+1 −YjXj−1 −
(
XjYj+1 −Yj+1Xj−1 −YjXj+1

)
.

The right hand side equals the determinant∣∣∣∣∣ Xj+1 − Xj−1 Xj − Xj−1
Yj+1 −Yj−1 Yj −Yj−1

∣∣∣∣∣ ,

which is positive because asset j is not dominated by a portfolio based on asset j− 1 and asset j + 1.
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We see that the portfolio concentrated in asset j is optimal for t in an interval of positive length
and the regret between distributions in such an interval will be zero. In particular the regret will not
be strict.

Strictness of the regret function is only possible if there are only two assets and if a portfolio
concentrated on one of these assets is only optimal for a singular probability measure. According to
the formulas for the end points of intervals (14) and (15) this is only possible if the assets are
gambling assets.

Theorem 1. If the regret function is strict it equals information divergence, i.e.,

DG(P, Q) = D (P‖Q) . (16)

Proof. If the regret function is strict then it is also strict when we restrict to two price relative vectors.
Therefore any two price relative vectors are orthogonal gambling assets. If the assets are orthogonal
gambling assets we get the type of gambling described by Kelly [35], for gambling equations can easily
be derived [36].

5. Sufficiency Conditions

In this section we will introduce some conditions on a regret function. Under some mild conditions
they turn out to be equivalent.

Theorem 2. Let DF denote a regret function based on a continuous and convex function F defined on the state
space of a finite dimensional C∗-algebra. If the state space has at least three orthogonal states then the following
conditions are equivalent:

• The function F equals entropy times a negative constant plus an affine function.
• The regret DF is proportional to information divergence.
• The regret is monotone.
• The regret satisfies sufficiency.
• The regret is local.

In the rest of this section we will describe each of these equivalent conditions and prove that they
are actually equivalent. The theorems and proofs will be stated so that they hold even for more general
state spaces than the ones considered in this paper.

5.1. Entropy and Information Divergence

Definition 4. Let s denote an element in a state space. The entropy of s is defined as

H (s) = inf

(
−

n

∑
i=1

λi ln (λi)

)

where the infimum is taken over all decompositions s = ∑n
i=1 λisi of s into pure states si.

This definition of the entropy of a state was first given by Uhlmann [38]. Using the fact that
entropy is decreasing under majorization we see that the entropy of s is attained at an orthogonal
decomposition [13] and we obtain the familiar equation

H(s) = −tr [s ln(s)] .

In general this definition of entropy does not provide a concave function on a convex set.
For instance, the entropy of points in the square has local maximum in the four different points.
A characterization of the convex sets with concave entropy functions is lacking.
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Definition 5. If the entropy is a concave function then the regret function D−H is called information divergence.

The information divergence is also called Kullback–Leibler divergence, relative entropy or quantum
relative entropy. In a C*-algebra we get

D−H (s1, s2) = −H (s1)− (−H (s2) + 〈s1 − s2,−∇H (s2)〉)
= H (s2)− H (s1) + 〈s1 − s2,∇H (s2)〉
= tr [ f (s2)]− tr [ f (s1)] + tr

[
(s1 − s2) f ′ (s2)

]
= tr

[
f (s2)− f (s1) + (s1 − s2) f ′ (s2)

]
where f (x) = −x ln (x) . Now f ′ (x) = − ln (x)− 1 so that

f (s2)− f (s1) + (s1 − s2) f ′ (s2) = −s2 ln (s2) + s1 ln (s1) + (s1 − s2) (− ln (s2)− 1)

= s1 (ln (s1)− ln (s2)) + s2 − s1.

Hence
D−H (s1, s2) = tr [s1 (ln (s1)− ln (s2)) + s2 − s1] .

For states s1, s2 it reduces to the well-known formula

D−H (s1, s2) = tr [s1 ln (s1)− s1 ln (s2)] .

5.2. Monotonicity

We consider a set T of maps of the state space into itself. The set T will be used to represent those
transformations that we are able to perform on the state space before we choose a feasible action a ∈ A.
Let Φ : S y S denote a map. Then the dual map Φ∗ maps actions into actions and is given by

〈a, Φ (s)〉 = 〈Φ∗(a), s〉 .

Proposition 5 (The principle of lost opportunities). If Φ∗ maps the set of feasible actions A into itself then

F (Φ (s)) ≤ F (s) . (17)

Proof. If a ∈ A then

〈a, Φ (s)〉 = 〈Φ∗(a), s〉
≤ F (s)

because Φ∗(a) ∈ A. Inequality (17) follows because F (Φ (s)) = supa 〈a, Φ (s)〉 .

Corollary 1 (Semi-monotonicity). Let Φ denote a map of the state space into itself such that Φ∗ maps the
set of feasible actions A into itself and let s2 denote a state that minimizes the function F. If DF is a Bregman
divergence then

DF (Φ (s1) , Φ (s2)) ≤ DF (s1, s2) . (18)

Proof. Since s2 minimizes F and F is differentiable we have ∇F (s2) = 0. Since s2 minimizes F and
F (Φ (s2)) ≤ F (s2) we also have that Φ (s2) minimizes F and that ∇F (Φ (s2)) = 0. Therefore
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DF (Φ (s1) , Φ (s2)) = F (Φ (s1))− (F (Φ (s2)) + 〈Φ (s1)−Φ (s2) ,∇F (Φ (s2))〉)
= F (Φ (s1))− F (Φ (s2))

≤ F (s1)− F (s2)

= DF (s1, s2) ,

which proves the inequality.

Next we introduce the stronger notion of monotonicity.

Definition 6. Let DF denote a regret function on the state space S of a finite dimensional C*-algebra. Then DF
is said to be monotone if

DF (Φ (s1) , Φ (s2)) ≤ DF (s1, s2)

for any affine map Φ : S→ S.

Proposition 6. If a regret function DF based on a convex and continuous function F is monotone then it is
a Bregman divergence.

Proof. Assume that DF is monotone. We have to prove that F is differentiable. Since F is convex it
is sufficient to prove that any restriction of F to a line segment is differentiable. Let s0 and s1 denote
states that are the end points of a line segment. The restriction of F to the line segment is given by the
convex and continuous function f (t) = F((1− t)s0 + ts1) so we have to prove that f is differentiable.

If 0 < t1 < t2 < 1 then according to Equation (2) we have

DF ((1− t2)s0 + t2s1, (1− t1)s0 + t1s1) = f (t2)−
(

f (t1) + (t2 − t1) · f ′+ (t1)
)

where f ′+ denotes the derivative from the right. A dilation by a factor r ≤ 1 around s0 decreases the
regret so that

r → f (r · t2)−
(

f (r · t1) + r · (t2 − t1) · f ′+ (r · t1)
)

(19)

is increasing. Since f is convex the function r → f ′+ (r · t1) is increasing. Assume that f is not
differentiable so that r → f ′+ (r · t1) has a positive jump as illustrated on Figure 3.Version April 11, 2017 submitted to Entropy 14 of 26

r · t2 t2r · t1 t1

t

f(t)

Figure 3. Example of a dilation that increases regret.
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Proposition 7. Assume DF is a regret function based on a convex and continuous function F and
assume that Φ is sufficient for s1 and s2 with recovery map Ψ. Assume that both Φ∗ and Ψ∗ map the
set of feasible actions A into itself. Then

DF (Φ (s1) , Φ (s2)) = DF (s1, s2) .

Proof. According to the principle of lest opportunities (Proposition 5) we have

F (s2) = F (Ψ (Φ (s2)))

≤ F (Φ (s2))

≤ F (s2) .

Therefore F (Φ (s2)) = F (s2) . Let a denote an action that is optimal for s2. Then

F (Φ (s2)) = F (s2)

= 〈a, s2〉
= 〈a, Ψ (Φ (s2))〉
= 〈Ψ∗(a), Φ (s2)〉

Figure 3. Example of a dilation that increases regret.

This contradicts that the function (19) is increasing. Therefore f ′+ is continuous and f is
differentiable.
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Recently it has been proved that information divergence on a complex Hilbert space is decreasing
under positive trace preserving maps [39,40]. Previously this was only known to hold if some extra
condition like complete positivity or 2-positivity was assumed [41].

Theorem 3. Information divergence is monotone under any positive trace preserving map on the states of
a finite dimensional C∗-algebra.

Proof. Any finite dimensional C∗-algebra B can be embedded in B (H) and there exist a conditional
expectation E : B (H)→ B. If Φ is a positive trace preserving map of the density matrices of B into it
self then Φ ◦E is positive and trace preserving on B (H) . According to Müller-Hermes and Reeb [39]
we have

D (Φ ◦E (s1)‖Φ ◦E (s2)) ≤ D ( s1‖ s2)

for density matrices in B (H) . In particular this inequality holds for density matrices in B and for such
matrices we have E (si) = si.

5.3. Sufficiency

The notion of sufficiency plays an important role in statistics and related fields. We shall present
a definition of sufficiency that is based on [42], but there are a number of other equivalent ways of
defining this concept. We refer to [43] where the notion of sufficiency is discussed in great detail.

Definition 7. Let (sθ)θ denote a family of states and let Φ denote an affine map S → T where S and T denote
state spaces. A recovery map is an affine map Ψ : T → S such that Ψ (Φ (sθ)) = sθ . The map Φ is said to be
sufficient for (sθ)θ if Φ has a recovery map.

Proposition 7. Assume DF is a regret function based on a convex and continuous function F and assume that
Φ is sufficient for s1 and s2 with recovery map Ψ. Assume that both Φ∗ and Ψ∗ map the set of feasible actions A
into itself. Then

DF (Φ (s1) , Φ (s2)) = DF (s1, s2) .

Proof. According to the principle of lest opportunities (Proposition 5) we have

F (s2) = F (Ψ (Φ (s2)))

≤ F (Φ (s2))

≤ F (s2) .

Therefore F (Φ (s2)) = F (s2) . Let a denote an action that is optimal for s2. Then

F (Φ (s2)) = F (s2)

= 〈a, s2〉
= 〈a, Ψ (Φ (s2))〉
= 〈Ψ∗(a), Φ (s2)〉

and we see that Ψ∗(a) is optimal for Φ (s2) . Now

DF (s1, s2) = inf
a
(F (s1)− 〈a, s1〉)

= inf
a
(F (s1)− 〈Ψ∗(a), Φ (s1)〉)
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where the infimum is taken over actions a that are optimal for s2. Then

inf
a
(F (s1)− 〈Ψ∗(a), Φ (s1)〉) ≥ inf

ã
(F (Φ (s1))− 〈ã, Φ (s1)〉)

= DF (Φ (s1) , Φ (s2))

so we have DF (s1, s2) ≥ DF (Φ (s1) , Φ (s2)) . The reverse inequality is proved in the same way.

The notion of sufficiency as a property of divergences was introduced in [44]. The crucial idea
of restricting the attention to maps of the state space into itself was introduced in [45]. It was shown
in [45] that a Bregman divergence on the simplex of distributions on an alphabet that is not binary
and satisfies sufficiency equals information divergence up a multiplicative factor. Here we extend the
notion of sufficiency from Bregman divergences to regret functions.

Definition 8. Let DF denote a regret function based on a convex and continuous function F on a state space S .
We say DF satisfies sufficiency if

DF (Φ (s1) , Φ (s2)) = DF (s1, s2)

for any affine map S → S that is sufficient for (s1, s2) .

Proposition 8. Let DF denote a regret function based on a convex and continuous function F on a state space
S . If the regret function DF is monotone then it satisfies sufficiency.

Proof. Assume that the regret function DF is monotone. Let s1 and s2 denote two states and let Φ and
Ψ denote maps on the state space such that Φ (Ψ (si)) = si, i = 1, 2 . Then

DF (s1, s2) = DF (Φ (Ψ (s1)) , Φ (Ψ (s2)))

≤ DF (Ψ (s1) , Ψ (s2))

≤ DF (s1, s2) .

Hence DF (Ψ (s1) , Ψ (s2)) = DF (s1, s2) .

Combining the previous results we get that information divergence satisfies sufficiency.
Under some conditions there exists an inverse version of Proposition 8 stating that if monotonicity
holds with equality then the map is sufficient. In statistics where the state space is a simplex, this result
is well established. For density matrices over the complex numbers it has been proved for completely
positive maps in [43]. Some new results on this topic can be found in [46].

5.4. Locality

Often it is relevant to use the following weak version of the sufficiency property.

Definition 9. Let DF denote a regret function based on a convex and continuous function F on a state space S .
The regret function DF is said to be local if

DF (s1, t · s1 + (1− t) · σ) = DF (s1, t · s1 + (1− t) · ρ)

when the states σ and ρ are orthogonal to s1 and t ∈ ]0, 1[ .

Example 5. On a 1-dimensional simplex (an interval) or on the Block sphere any regret function DF is local.
The reason is that if σ and ρ are states that are orthogonal to s1 then σ = ρ.
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Proposition 9. Let DF denote a regret function based on a convex and continuous function F on a state space
S . If the regret function DF satisfies sufficiency then DF is local.

Proof. Let σ and ρ be states that are orthogonal to s1. Let p denote the projection supporting the state
s0. Let the maps Φ and Ψ be defined by

Φ (s) = tr(ps) · s1 + (1− tr(ps)) · ρ,

Ψ (s) = tr(ps) · s1 + (1− tr(ps)) · σ.

Then Φ (s1) = Ψ (s1) = s1 and Φ (σ) = ρ and Ψ (ρ) = σ. Therefore

Φ (t · s1 + (1− t) · σ) = t · s1 + (1− t) · ρ
Ψ (t · s1 + (1− t) · ρ) = t · s1 + (1− t) · σ

and
DF (s1, t · s1 + (1− t) · σ) = DF (s1, t · s1 + (1− t) · ρ) ,

which proves the Proposition.

Theorem 4. Let S be the state space of a C∗-algebra with at least three orthogonal states, and let DF denote
a regret function based on a convex and continuous function F on the state space S . If the regret function DF is
local then it is the Bregman divergence generated by the entropy times a negative constant.

Proof. In the following proof we will assume that the regret function is based on the convex function
F : S → R. First we will prove that the regret function is a Bregman divergence.

Let K denote the convex hull of a set s0, s1, . . . sn of orthogonal states. For x ∈ [0, 1] let gi denote
the function gi (x) = DF (si, xsi + (1− x) si+1). Note that gi is decreasing and continuous from the left.
Let P = ∑ pisi and Q = ∑ qisi where pi, qi ∈ ]0, 1[ for all i = 0, 1, 2, . . . n. If F is differentiable in P then
locality implies that

DF (P, Q) = ∑ piDF (si, Q)−∑ piDF (si, P)

= ∑ pigi (qi)−∑ pigi (pi)

= ∑ pi (gi (qi)− gi (pi)) .

Note that P → DF (P, Q) is a convex function and thereby it is continuous. Assume that P0

is an arbitrary element in K and let (Pn)n∈N denote a sequence such that Pn → P0 for n → ∞.
The sequence (Pn)n∈N can be chosen so that regret is differentiable in Pn for all n ∈ N. Further the
sequence Pn can be chosen such that pn,i is increasing for all i 6= j. Then

DF (P0, Q) = ∑ p0,i (gi (qi)− gi (p0,i)) + p0,jgj
(

p0,j
)
− p0,j lim

n→∞
gj
(

pn,j
)

.

Similarly, if the sequence Pn can be chosen such that pn,i is increasing for all i 6= j, j + 1 then

DF (P0, Q) = ∑ p0,i (gi (qi)− gi (p0,i)) + p0,jgj
(

p0,j
)
− p0,j lim

n→∞
gj
(

pn,j
)

+ p0,j+1gj+1
(

p0,j+1
)
− p0,j+1 lim

n→∞
gj+1

(
pn,j+1

)
,

which implies that p0,j+1gj+1
(

p0,j+1
)
− p0,j+1 limn→∞ gj+1

(
pn,j+1

)
= 0 and that

lim
n→∞

gj+1
(

pn,j+1
)
= gj+1

(
p0,j+1

)
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for all j. Therefore
DF (P0, Q) = ∑ p0,i (gi (qi)− gi (p0,i)) (20)

for all P0, Q in the interior of K. In the following calculations we will assume that the distributions
lie in the interior of K. The validity of the Bregman identity (5) follows directly from Equation (20)
implying that DF is a Bregman divergence.

As a function of Q the regret is minimal when Q = P. In the following calculations we write
x = pi, z = pj, y = qi, and w = qj. If p` = q` for ` 6= i, j then non-negativity of regret can be written as

x (gi (y)− gi (x)) + z
(

gj (w)− gj (z)
)
≥ 0

and we note that this inequality should hold as long as x + z = y + w ≤ 1. Permutation of i and j leads
to the inequality

x
(

gj (y)− gj (x)
)
+ z (gi (w)− gi (z)) ≥ 0

that implies
x
(

gij (y)− gij (x)
)
+ z

(
gij (w)− gij (z)

)
≥ 0 (21)

where gij =
gi+gj

2 .
Assume that x = z = y+w

2 in Inequality (21). Then

x
(

gij (y)− gij (x)
)
+ x

(
gij (w)− gij (x)

)
≥ 0

gij (y)− gij (x) + gij (w)− gij (x) ≥ 0

gij (y) + gij (w)

2
≥ gij (x)

so that gij is mid-point convex, which for a measurable function implies convexity. Therefore gij is
differentiable from left and right.

If y = w and x = y + ε and z = y− ε then we have

(y + ε)
(

gij (y)− gij (y + ε)
)
+ (y− ε)

(
gij (y)− gij (y− ε)

)
≥ 0

with equality when ε = 0. We differentiate with respect to ε from right.(
gij (y)− gij (y + ε)

)
+ (y + ε)

(
−g′ij+ (y + ε)

)
−
(

gij (y)− gij (y− ε)
)
+ (y− ε)

(
g′ij− (y− ε)

)
,

which is positive for ε = 0 so that

−y · g′ij+ (y) + y · g′ij− (y) ≥ 0 (22)

y · g′ij− (y) ≥ y · g′ij+ (y) . (23)

Since gij is convex we have g′ij− (y) ≤ g′ij+ (y) which in combination with Inequality (23) implies
that g′ij− (y) = g′ij+ (y) so that gij is differentiable. Since gi = gij + gik − gjk the function gi is
also differentiable.

As a function of Q the Bregman divergence DF(P, Q) has a minimum at Q = P under the
condition ∑ qi = 1. Since the functions gi are differentiable we can characterize this minimum using
Lagrange multipliers. We have

∂

∂qi
DF (P, Q) = pig′i (qi)

and
∂

∂qi
DF (P, Q)|Q=P = pi · g′i (pi) .
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Further ∂
∂qi

∑ qi = 1 so there exist a constant cK such that pi · g′i (pi) = cK. Hence g′i (pi) =
cK
pi

so
that gi (pi) = cK · ln (pi) + mi for some constant mi.

Now we get

DF (P, Q) = ∑ pi (gi (qi)− gi (pi))

= ∑ pi ((cK · ln (qi) + mi)− (cK · ln (pi) + mi))

= −cK ·∑ pi ln
pi
qi

= D−cK ·H (P, Q) .

Therefore, an affine function exists, defined by K such that

F|K(P) = −cK · H|K(P) + gK (24)

for all P in the interior of K. Since HK is continuous on K Equation (24) holds for any P ∈ K. If each of
the sets K and L is a simplex and x ∈ K ∩ L then

−cK · H|K (x) + gK (x) = −cL · H|L (x) + gL (x)

so that
(cL − cK) · H|K (x) = gL (x)− gK (x) .

If K ∩ L has dimension greater than zero then the right hand side is affine so the left hand side is
affine, which is only possible when cK = cL. Therefore we also have gL (x) = gK (x) for all x ∈ K ∩ L.
Therefore the functions gK can be extended to a single affine function on the whole of S .

6. Applications

6.1. Information Theory

If only integer values of a code-length function ` are allowed then there are only finitely many
actions that are not dominated. Therefore the function F given by

F (P) = −min
`

∑ ` (a) · pa

is piece-wise linear. In particular F is not differentiable so that the regret is not a Bregman
divergence and cannot be monotone according to Proposition 6. In information theory monotonicity of
a divergence function is closely related to the data processing inequality and since the data processing
inequality is one of the most important tools for deriving inequalities in information theory we need to
modify our notion of code-length function in order to achieve a data processing inequality.

We now formulate a version of Kraft’s inequality that allows the code length function to be
non-integer valued.

Theorem 5. Let ` : A→ R be a function. Then the function ` satisfies Kraft’s inequality (6) if and only if for
all ε > 0 there exists an integer n and a uniquely decodable fixed-to-variable length block code κ : An → B∗
such that ∣∣∣∣∣ ¯̀κ (an)− 1

n

n

∑
i=1

` (ai)

∣∣∣∣∣ ≤ ε

where ¯̀
κ (an) denotes the length `κ (an) divided by n. The uniquely decodable block code can be chosen to be

prefix free.
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Proof. Assume that ` satisfies Kraft’s inequality. Then

∑
a1a2...an∈An

β- ∑n
i=1 `(ai) =

(
∑
a∈A

β-`(a)

)n

≤ 1n = 1.

Therefore the function ˜̀ : An → N given by

˜̀ (a1a2...an) =

⌈
n

∑
i=1

` (ai)

⌉

is integer valued and satisfies Kraft’s inequality (6) and there exists a prefix-free code κ : An → {0, 1}∗

such that `κ (a1a2...an) = ˜̀ (a1a2...an) . Therefore∣∣∣∣∣ ¯̀κ (a1a2...an)−
1
n

n

∑
i=1

` (ai)

∣∣∣∣∣ = 1
n

∣∣∣∣∣
⌈

n

∑
i=1

` (ai)

⌉
−

n

∑
i=1

` (ai)

∣∣∣∣∣ ≤ 1
n

so for any ε > 0 choose n such that 1/n ≤ ε.
Assume that for all ε > 0 there exists a uniquely decodable fixed-to-variable length code κ : An →

{0, 1}∗ such that ∣∣∣∣∣ ¯̀κ (a1a2...an)−
1
n

n

∑
i=1

` (ai)

∣∣∣∣∣ ≤ ε

for all strings a1a2...an ∈ An. Then n ¯̀
κ (a1a2...an) satisfies Kraft’s Inequality (6) and(

∑
a∈A

β-`(a)

)n

= ∑
a1a2...an∈An

β- ∑n
i=1 `(ai)

≤ ∑
a1a2...an∈An

β-n( ¯̀
κ(a1a2...an)−ε)

= βnε ∑
a1a2...an∈An

β-n ¯̀
κ(a1a2...an)

≤ βnε.

Therefore ∑a∈A β-`(a) ≤ βε for all ε > 0 and the result is obtained.

Like in Bayesian statistics we focus on finite sequences. Contrary to Bayesian statistics we should
always consider a finite sequence as a prefix of longer finite sequences. Contrary to frequential statistics
we do not have to consider a finite sequence as a prefix of an infinite sequence.

If we minimize the mean code-length over functions that satisfy Kraft’s inequality (6), but without
an integer constraint the code-length should be ` (a) = − logβ (pa) and the function F is given by

F (P) = ∑
a

pa · logβ (pa) .

The function F is proportional to the Shannon entropy and the (negative) proportionality factor is
determined by the size of the output alphabet.

In lossy source coding and rate distortion theory it is important to choose a distortion function
with tractable properties. The notion of sufficiency for divergence functions was introduced in [44]
in order to characterize such tractable distortions functions. In this paper the main result was that
sufficiency together with properties related to Bregman divergence lead directly to the information
bottleneck method introduced by N. Tishby [47]. Logarithmic loss has also been studied for lossy
compression in [48].
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6.2. Statistics

In statistics one is often interested in scoring rules that are local, which means a scoring rule where
the payoff only depends on the probability of the observed value and not on the predicted distribution
over unobserved values. The notion of locality has recently been extended by Dawid, Lauritzen and
Parry [49], but here we shall focus on the original definition. The basic result is that the only local
strictly proper scoring rule is logarithmic score that was proved by Bernardo under the assumption
that scoring rule is given by a smooth function [50].

Definition 10. A local strictly proper scoring rule is a scoring rule of the form f (x, Q) = g (Q (x)) .

Theorem 6. On a finite space a local strictly proper scoring rule is given by a local regret function.

Proof. The regret function of a local strictly proper scoring rule is given by

D (P, Q) = ∑
x

P (x) (g (P (x))− g (Q (x))) .

If Q = (1− t) P + tQi and P and Q are mutually singular then

D (P, Q) = ∑
x

P (x) (g (P (x))− g ((1− t) P (x) + tQi (x)))

= ∑
x

P (x) (g (P (x))− g ((1− t) P (x) + 0))

and we see that the regret does not depend on Qi because Qi vanish on the support of P. Therefore the
regret function is local.

Corollary 2. On a finite space with at least three elements a local strictly proper scoring rule is given by
a function g of the form g (x) = a · ln (x) + b for some constants a and b.

Also the notion of sufficiency plays an important role in statistics. Here we will restrict the
discussion to 1-dimensional exponential families. A natural exponential family is a family of probability
distributions of the form

dPβ

dQ
=

exp (βx)
Z (β)

where Q is a reference measure on the real numbers and Z is the moment generating function given by
Z (β) =

´
exp (βx) dQx. Then xn

1 → x1 + x2 + · · ·+ xn is a sufficient statistic for the family
(

P⊗n
β

)
β

.

Example 6. In a Bernoulli model a sequence xn
1 ∈ {0, 1}n is predicted with probability

n

∏
i=1

pxi (1− p)1−xi = exp

((
n

∑
i=1

x1

)
ln (p) +

(
n−

n

∑
i=1

x1

)
ln (1− p)

)
.

The function xn
1 → x1 + x2 + · · · + xn induces a sufficient map Φ from probability distributions on

{0, 1}n to probability distributions on {0, 1, 2, . . . , n} . The reverse map maps a measure concentrated in
j ∈ {0, 1, 2, . . . , n} into a uniform distributions over sequences xn

1 ∈ {0, 1}n that satisfy ∑n
i=1 x1 = j.

The mean value of Pβ is ˆ
x · exp (βx)

Z (β)
dQx .

The set of possible mean values is called the mean value range and is an interval. Let Pµ denote
the element in the exponential family with mean value µ. Then a Bregman divergence on the mean
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value range is defined by D (λ, µ) = D
(

Pλ ‖Pµ
)

. Note that the mapping µ→ Pµ is not affine so the
Bregman divergence D (λ, µ) will in general not be given by the formula for information divergence
with the family of binomial distributions as the only exception. Nevertheless the Bregman divergence
D (λ, µ) encodes important information about the exponential family. In statistics it is common to use
squared Euclidean distance as distortion measure, but often it is better to use the Bregman divergence
D (λ, µ) as a distortion measure. Note that D (λ, µ) is only proportional to squared Euclidean distance
for the Gaussian location family.

Example 7. An exponential distribution has density

fλ (x) =

{
1
λ exp

(
− x

λ

)
, for x ≥ 0;

0 , else.

This leads to a Bregman divergence on the interval [0; ∞[ given by

ˆ ∞

0
fλ (x) ln

(
fλ (x)
fµ (x)

)
dx =

λ

µ
− 1− ln

(
λ

µ

)
= D− ln (λ, µ) .

This Bregman divergence is called the Isakura-Saito distance. The Isakura-Saito distance is defined
as an unbounded set so our previous results cannot be applied. Affine bijections on [0; ∞[ have the form
Φ (x) = k · x for some constant k > 0. The Isakura-Saito distance obviously satisfy sufficiency for such maps
and it is a simple exercise to check that the Isakura-Saito distance is the only Bregman divergence on [0, ∞[ that
satisfies sufficiency. Any affine map [0; ∞[→ [0; ∞[ is composed of a map x → k · x where k ≥ 0 and a right
translation x → x + t where t ≥ 0. The Itakura-Saito distance decreases under right translations because

∂

∂t
D− ln (λ + t, µ + t) =

∂

∂t

(
λ + t
µ + t

− 1− ln
(

λ + t
µ + t

))
=

(µ + t)− (λ + t)

(µ + t)2 − 1
λ + t

+
1

µ + t

= − (λ− µ)2

(λ + t) (µ + t)2 ≤ 0.

Thus the Isakura-Saito distance is monotone.

Both sufficiency and the Bregman identity are closely related to inference rules. In [51] I. Csiszár
explained why information divergence is the only divergence function on the cone of positive
measures that lead to certain tractable inference rules. One should observe that his inference rules
are closely related to sufficiency and the Bregman identity, and the present paper may be viewed as a
generalization of these results of I. Csiszár.

In the minimum description length approach to statistics [9] it is common to minimize the maximal
regret of the model where the maximum is taken over all possible data sequences. For most exponential
families this approach is computationally difficult and may cause problems with normalization of the
optimal distribution over the parameter. In general this approach will also depend on the length of
the data sequence in a way that is not transitive. That means that one cannot analyze a subsequence
before the length of the whole data sequence is known. In [52] it was proved that for one dimensional
exponential family there are essentially three exponential families where these problems are avoided.
The exponential families are the Gaussian location family, the Gamma distributions, and the Tweedie
distributions of order 3/2. The statistical analysis of the Gaussian location family reduces to minimizing
the sum of squares. Similarly, the Gamma distributions can be analyzed using the Isakura–Saito
distance (or information divergence), but the Tweedie family of order 3/2 is an exotic object that has
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not been analyzed in similar detail. For exponential models in two or more dimensions similar results
are not known, but in general one should expect that most models are complicated to analyze exactly
while certain models simplify due to some type of inner symmetry of the model.

6.3. Statistical Mechanics

Statistical mechanics can be stated based on classical mechanics or quantum mechanics. For our
purpose this makes no difference because our theorems are valid for both classical systems and
quantum systems.

As we have seen before
Ex = kT0 · D (s ‖s0 ) . (25)

Our general results for Bregman divergences imply that the Bregman divergence based on this
exergy satisfies

DEx (s1, s2) = kT0 · D (s1 ‖s2 ) .

Therefore
DEx (Φ (s1) , Φ (s2)) = DEx (s1, s2)

for any map that is sufficient for {s1, s2} . The equality holds for any regret function that is reversible
and conserves the state that is in equilibrium with the environment. Since a different temperature of
the environment leads to a different state that is in equilibrium the equality holds for any reversible
map that leave some equilibrium state invariant. We see that DEx (s1, s2) is uniquely determined as
long as there exists a sufficiently large set of maps that are reversible.

In this exposition we have made some short-cuts. First of all we did not derive Equation (25).
In particular the notion of temperature was used without discussion. Secondly we identified the
internal energy with the mean value of the Hamiltonian and identified the thermodynamic entropy
with k times the Shannon entropy. Finally, in the argument above we need to verify in all details
that the set of reversible maps is sufficiently large to determine the regret function. For classical
thermodynamics a comprehensive exposition was made by Lieb and Yngvason [53,54]. In their
exposition randomness was not taken into account. With the present framework it is also possible to
handle randomness so that one can make a bridge between thermodynamics and statistical mechanics.
The approach of Lieb and Yngvason was recently improved by C. Marletto [55] uses the formalism
of constructor theory to derive results. The basic idea in constructor theory is to distinguish between
possible and impossible transformation in a way that is closely related to the ideas presented in this
paper. A detailed exposition of such relations will be given in a future paper.

According to Equation (25) any bit of information can be converted into an amount of energy!
One may ask how this is related to the mixing paradox (a special case of Gibbs’ paradox). Consider
a container divided by a wall with a blue and a yellow gas on each side of the wall as illustrated in
Figure 4. The question is how much energy can be extracted by mixing the blue and the yellow gas?

We loose one bit of information about each molecule by mixing the blue and the green gas, but if
the color is the only difference no energy can be extracted. This seems to be in conflict with Equation (25),
but in this case different states cannot be converted into each other by reversible processes. For instance
one cannot convert the blue gas into the yellow gas. To get around this problem one can restrict the
set of preparations and one can restrict the set of measurements. For instance one may simply ignore
measurements of the color of the gas. What should be taken into account and what should be ignored,
can only be answered by an experienced physicist. Formally this solves the mixing paradox, but from
a practical point of view nothing has been solved. If for instance the molecules in one of the gases
are much larger than the molecules in the other gas then a semi-permeable membrane can be used to
create an osmotic pressure that can be used to extract some energy. It is still an open question as to
which differences in properties of the two gases that can be used to extract energy.
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6.4. Monotone Regret for Portfolios

We know that in general a local regret function on a state space with at least three orthogonal
states is proportional to information divergence. In portfolio theory we get the stronger result that
monotonicity implies that we are in the situation of gambling introduced by Kelly [35].

Theorem 7. Assume that none of the assets are dominated by a portfolio of other assets. If the regret
function DG(P, Q) given by (13) is monotone then the regret function equals information divergence and the
measures P and Q are supported by k distinct price relative vectors of the form (o1, 0, 0, . . . 0), (0, o2, 0, . . . 0) ,
until (0, 0, . . . ok) .

Proof. If there are more than three price relative vectors then a monotone regret function is always
proportional to information divergence which is a strict regret function. Therefore we may assume
that there are only two price relative vectors. Assume that the regret function is not strict. Then the
function G defined by (12) is not strictly convex. Assume that DG(P, Q) = 0 so that G is affine between
P and Q. Let Φ be a contraction around one of the end points of intersection between the state space
and the line through P and Q. Then monotonicity implies that DG(Φ(P), Φ(Q)) = 0 so that G is affine
on the line between Φ(P) and Φ(Q). This holds for contractions around any point. Therefore G is
affine on the whole state space which implies that there is a single portfolio that dominates all assets.
Such a portfolio must be supported on a single asset. Therefore monotonicity implies that if two assets
are not dominated then the regret function is strict and according to Theorem 1 we have already proved
that a strict regret function in portfolio theory is proportional to information divergence.

Example 8. If the regret function divergence is monotone and one of the assets is the safe asset then there exists
a portfolio~b such that bi · oi ≥ 1 for all i. Equivalently bi ≥ o−1

i which is possible if and only if ∑ o−1
i ≤ 1.

One says that the gamble is fair if ∑ o−1
i = 1. If the gamble is super-fair, i.e., ∑ o−1

i < 1, then the portfolio

bi = o−1
i / ∑ o−1

i gives a price relative equal to
(

∑ o−1
i

)−1
> 1 independently of what happens, which is

a Dutch book.

Corollary 3. In portfolio theory the regret function DG(P, Q) given by (13) is monotone if and only if it
is strict.
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Proof. We use that in portfolio theory the regret function is monotone if and only it is proportional
to information.

7. Concluding Remarks

Convexity of a Bregman divergence is an important property that was first studied systematically
in [56] and extended from probability distributions to matrices in [57]. In [58] it was proved that
if f is a function such that the Bregman divergence based on tr( f (ρ)) is monotone on any (simple)
C*-algebra then the Bregman divergence is jointly convex. As we have seen monotonicity implies that
the Bregman divergence must be proportional to inform divergence, which is jointly convex in both
arguments. We also see that in general joint convexity is not a sufficient condition for monotonicity,
but in the case where the state space has only two orthogonal states it is not known if joint convexity
of a Bregman divergence is sufficient to conclude that the Bregman divergence is monotone.

One should note that the type of optimization presented in this paper is closely related to a game
theoretic model developed by F. Topsøe [59,60]. In his game theoretic model he needed what he called
the perfect match principle. Using the terminology presented in this paper the perfect match principle
states that the regret function is a strict Bregman divergence. As we have seen the perfect match
principle is only fulfilled in portfolio theory if all the assets are gambling assets. Therefore, the theory
of F. Topsøe can only be used to describe gambling while our optimization model can describe
general portfolio theory and our sufficient conditions can explain exactly when our general model
equals gambling. The formalism that has been developed in this paper is also closely related to
constructor theory [61], but a discussion will be postponed to another article.

The original paper of Kullback and Leibler [1] was called “On Information and Sufficiency”.
In the present paper, we have made the relation between information divergence and the notion of
sufficiency more explicit. The results presented in this paper are closely related to the result that
a divergence that is both an f -divergence and a Bregman divergence is proportional to information
divergence (see [44] or [62] and references therein). All f -divergences satisfy a sufficiency condition,
which is the reason why this class of divergences has played such a prominent role in the study of the
relation between information theory and statistics. One major question has been to find reasons for
choosing between the different f -divergences. For instance f -divergences of power type (often called
Tsallis divergences or Cressie-Read divergences) are popular [5], but there are surprisingly few papers
that can point at a single value of the power α that is optimal for a certain problem except if this value
is 1. In this paper we have started with Bregman divergences because each optimization problem
comes with a specific Bregman divergence. Often it is possible to specify a Bregman divergence for
an optimization problem and only in some of the cases this Bregman divergence is proportional to
information divergence.

The idea of sufficiency has different relevance in different applications, but in all cases information
divergence prove to be the quantity that convert the general notion of sufficiency into a number.
In information theory information divergence appear as a consequence of Kraft’s inequality. For code
length functions of integer length we get functions that are piecewise linear. Only if we are interested in
extend-able sequences we get a regret function that satisfies a data processing inequality. In this sense
information theory is a theory of extend-able sequences. For scoring functions in statistics the notion of
locality is important. These applications do not refer to sequences. Similarly the notion of sufficiency
that plays a major role in statistics, does not refer to sequences. Both sufficiency and locality imply that
regret is proportional to information divergence, but these reasons are different from the reasons why
information divergence is used in information theory. Our description of statistical mechanics does
not go into technical details, but the main point is that the many symmetries in terms of reversible
maps form a set of maps so large that our result on invariance of regret under sufficient maps applies.
In this sense statistical mechanics and statistics both apply information divergence for reasons related
to sufficiency. For portfolio theory the story is different. In most cases one has to apply the general
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theory of Bregman divergences because we deal with an optimization problem. The general Bregman
divergences only reduce to information divergence when the assets are gambling assets.

Often one talks about applications of information theory in statistics, statistical mechanics and
portfolio theory. In this paper we have argued that information theory is mainly a theory of sequences,
while some problems in statistics and statistical mechanics are also relevant without reference to
sequences. It would be more correct to say that convex optimization has various application such as
information theory, statistics, statistical mechanics, and portfolio theory and that certain conditions
related to sufficiency lead to the same type of quantities in all these applications.
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